

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	192КВ (65.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192gb110-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Function 64-Pin TQFP 80-Pin TOFP 100-Pin TQFP 100-Pin TQFP 100-Pin TQFP Portage Description RC1 4 6 1/0 ST RC2 7 1/0 ST RC3 5 8 1/0 ST RC4 9 1/0 ST RC12 39 49 63 1/0 ST RC14 48 60 74 1/0 ST RC14 49 61 76 1/0 ST RD1 49 61 76 1/0 ST RD2 50 62 77 1/0 ST RD3 51 63 78 1/0 ST			Pin Number				
RC1 — 4 6 I/O ST PORTC Digital I/O. RC2 — - 7 I/O ST RC3 — 5 8 I/O ST RC4 — - 9 I/O ST RC12 39 49 63 I/O ST RC14 48 60 74 I/O ST RC14 48 60 74 I/O ST RC14 48 60 74 I/O ST RC14 48 62 77 I/O ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 <td< th=""><th>Function</th><th>64-Pin TQFP, QFN</th><th>80-Pin TQFP</th><th>100-Pin TQFP</th><th>I/O</th><th>Input Buffer</th><th>Description</th></td<>	Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
RC2 7 I/O ST RC3 5 8 I/O ST RC4 9 I/O ST RC12 39 49 63 I/O ST RC13 47 59 73 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD4 55 70 <td>RC1</td> <td>_</td> <td>4</td> <td>6</td> <td>I/O</td> <td>ST</td> <td>PORTC Digital I/O.</td>	RC1	_	4	6	I/O	ST	PORTC Digital I/O.
RC3 5 8 I/O ST RC4 - 9 I/O ST RC12 39 49 63 I/O ST RC13 47 59 73 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RCV 18 22 27 I ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD4 52 66 81 I/O ST RD5 53 67 V/O ST RD4 55 77 I/O	RC2	_	_	7	I/O	ST	
RC4 9 I/O ST RC12 39 49 63 I/O ST RC13 47 59 73 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RCV 18 22 27 I ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD4 52 67 91 I/O ST RD10 44 56 70 </td <td>RC3</td> <td>_</td> <td>5</td> <td>8</td> <td>I/O</td> <td>ST</td> <td></td>	RC3	_	5	8	I/O	ST	
RC123949631/0STRC134759731/0STRC144860741/0STRC154050641/0STRCV1822271STRD04658721/0STRD14961761/0STRD25062771/0STRD35163781/0STRD45266811/0STRD55367821/0STRD65468831/0STRD75569841/0STRD84254681/0STRD104456701/0STRD104456701/0STRD104456701/0STRD114557711/0STRD12-64791/0STRD14-37471/0STRE16177941/0STRE26278981/0STRE36379991/0STRE464801001/0STRE51131/0STRE62241/0STRE622 <td>RC4</td> <td>_</td> <td></td> <td>9</td> <td>I/O</td> <td>ST</td> <td></td>	RC4	_		9	I/O	ST	
RC13 47 59 73 I/O ST RC14 48 60 74 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RCV 18 22 27 I ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD14 64 79 I/O ST RD14 37 </td <td>RC12</td> <td>39</td> <td>49</td> <td>63</td> <td>I/O</td> <td>ST</td> <td></td>	RC12	39	49	63	I/O	ST	
RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RCV 18 22 27 1 ST USB Receive Input (from external transceiver). RD0 46 58 72 I/O ST PORTD Digital I/O. RD1 49 61 76 I/O ST PORTD Digital I/O. RD2 50 62 77 I/O ST PORTD Digital I/O. RD4 52 66 81 I/O ST PORTD Digital I/O. RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST	RC13	47	59	73	I/O	ST	
RC15 40 50 64 I/O ST RCV 18 22 27 I ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD1 43 55 69 I/O ST RD1 44 56 70 I/O ST RD1 45 57 71 I/O ST RD14 37 47 I/O ST RD15 38	RC14	48	60	74	I/O	ST	
RCV 18 22 27 I ST USB Receive Input (from external transceiver). RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST <t< td=""><td>RC15</td><td>40</td><td>50</td><td>64</td><td>I/O</td><td>ST</td><td></td></t<>	RC15	40	50	64	I/O	ST	
RD0 46 58 72 I/O ST PORTD Digital I/O. RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE2	RCV	18	22	27	I	ST	USB Receive Input (from external transceiver).
RD1496176I/OSTRD2506277I/OSTRD3516378I/OSTRD4526681I/OSTRD5536782I/OSTRD6546883I/OSTRD7556984I/OSTRD8425468I/OSTRD9435569I/OSTRD10445670I/OSTRD126479I/OSTRD136580I/OSTRD143747I/OSTRD153848I/OSTRE1617794I/OSTRE2627898I/OSTRE3637999I/OSTRE46480100I/OSTRE5113I/OSTRE6224I/ORE7335I/ORE81318I/ORE9-1419I/OREFO303644OReference Clock Output.	RD0	46	58	72	I/O	ST	PORTD Digital I/O.
RD2506277I/OSTRD3516378I/OSTRD4526681I/OSTRD5536782I/OSTRD6546883I/OSTRD75556984I/OSTRD8425466I/OSTRD9435569I/OSTRD10445670I/OSTRD11455771I/OSTRD126479I/OSTRD136580I/OSTRD143747I/OSTRD153848I/OSTRE2627898I/OSTRE3637999I/OSTRE46480100I/OSTRE5113I/OSTRE5113I/OSTRE6224I/OSTRE5113I/OSTRE6224I/OSTRE7335I/OSTRE81318I/OSTRE91419I/OSTREFO303644O	RD1	49	61	76	I/O	ST	
RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD13 - 65 80 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE4 64 80 <td>RD2</td> <td>50</td> <td>62</td> <td>77</td> <td>I/O</td> <td>ST</td> <td></td>	RD2	50	62	77	I/O	ST	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RD3	51	63	78	I/O	ST	
RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 - 64 79 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1	RD4	52	66	81	I/O	ST	
RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 - 64 79 I/O ST RD13 - 65 80 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2	RD5	53	67	82	I/O	ST	
RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 - 64 79 I/O ST RD13 - 65 80 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2	RD6	54	68	83	I/O	ST	
RD8 42 54 68 I/O ST RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD13 65 80 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 <td>RD7</td> <td>55</td> <td>69</td> <td>84</td> <td>I/O</td> <td>ST</td> <td></td>	RD7	55	69	84	I/O	ST	
RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 - 64 79 I/O ST RD13 - 65 80 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE8 13	RD8	42	54	68	I/O	ST	
RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD13 65 80 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE8 13 18 I/O ST RE9 - 14	RD9	43	55	69	I/O	ST	
RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD13 65 80 I/O ST RD14 37 47 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE8 13 18 I/O ST RE9 - 14	RD10	44	56	70	I/O	ST	
RD12 64 79 I/O ST RD13 65 80 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36	RD11	45	57	71	I/O	ST	
RD13 65 80 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RD12	_	64	79	I/O	ST	
RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RD13	—	65	80	I/O	ST	
RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RD14	_	37	47	I/O	ST	
RE0 60 76 93 I/O ST PORTE Digital I/O. RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RD15	_	38	48	I/O	ST	
RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE0	60	76	93	I/O	ST	PORTE Digital I/O.
RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE1	61	77	94	I/O	ST	
RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE2	62	78	98	I/O	ST	
RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE3	63	79	99	I/O	ST	
RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE4	64	80	100	I/O	ST	
RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE5	1	1	3	I/O	ST	
RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE6	2	2	4	I/O	ST	
RE8 — 13 18 I/O ST RE9 — 14 19 I/O ST REFO 30 36 44 O — Reference Clock Output.	RE7	3	3	5	I/O	ST	
RE9 — 14 19 I/O ST REFO 30 36 44 O — Reference Clock Output.	RE8	_	13	18	I/O	ST]
REFO 30 36 44 O — Reference Clock Output.	RE9	_	14	19	I/O	ST	
	REFO	30	36	44	0	_	Reference Clock Output.

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$ input buffer

3.3.2 DIVIDER

The divide block supports signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

TABLE 4-10: UART REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	-	_	_	-	-	_	_				Trar	nsmit Regis	ter				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				Rec	eive Regist	er				0000
U1BRG	0228							Baud R	Rate Generator Prescaler Register						0000			
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				Trar	nsmit Regis	ter				xxxx
U2RXREG	0236	_	_	-	-	-	_	_				Rec	eive Regist	er				0000
U2BRG	0238							Baud R	ate Genera	tor Prescaler	Register							0000
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	—	—	—	_	_	_	_				Trar	nsmit Regis	ter				xxxx
U3RXREG	0256	—	—	—	_	_	_	_				Rec	eive Regist	ter				0000
U3BRG	0258							Baud R	ate Genera	tor Prescaler	Register							0000
U4MODE	02B0	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	—	—	—	—	_	—	—	Transmit Register							xxxx		
U4RXREG	02B6	_	_	_	_	_	_					Rec	eive Regist	er				0000
U4BRG	02B8							Baud R	ate Genera	tor Prescaler	Register							0000
Logondi		implomente	d road oo '(' Booot valu	ion are ab	own in how	adaaimal											

d. read as 0. Reset values are snown in nexadecimal

TABLE 4-11: SPI REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI1BUF	0248							Tra	ansmit and F	Receive Bu	ffer							0000
SPI2STAT	0260	SPIEN		SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_		—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL			_	_	_	_	_	_	_		_	SPIFE	SPIBEN	0000
SPI2BUF	0268							Tra	ansmit and F	Receive Bu	ffer							0000
SPI3STAT	0280	SPIEN		SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	0282	_		_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	0284	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_		_	_	_	_	SPIFE	SPIBEN	0000
SPI3BUF	0288							Tra	ansmit and I	Receive Bu	ffer							0000
Legend:	nd: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

© 2009 Microchip Technology Inc.

TABLE 4-24: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarm	Value Registe	r Window Bas	ed on ALR	MPTR<1:0	>						xxxx
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624						RTCC	Value Regist	er Window Ba	sed on RT	CPTR<1:0>							xxxx
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	xxxx
Lawawala					aliza a a a a a la a		la alma al											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: COMPARATORS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	_	_	—		C3EVT	C2EVT	C1EVT	_	—	-	—	—	C3OUT	C2OUT	C10UT	0000
CVRCON	0632	_	_	_	_	_	_	_	_	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CEN	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2CON	0636	CEN	COE	CPOL	_	_	—	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3CON	0638	CEN	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	-	-	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	—	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0	0040
CRCXOR	0642	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	_	0000
CRCDAT	0644							(CRC Data Ir	nput Registe	er							0000
CRCWDAT	0646								CRC Resi	ult Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

DAMA		DAAL O					
				R/W-U			U-0
UZIXIE	UZRXIE	INTZIEV"	ISE	14IE	UC4IE	OUSIE	—
DIL 15							DIL O
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE	_	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7				_		_	bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	U2TXIE: UAF	RT2 Transmitter	Interrupt Enat	ble bit			
	1 = Interrupt	request enabled	bled				
bit 14	U2RXIE: UA	RT2 Receiver In	terrupt Enable	bit			
	1 = Interrupt	request enabled	1				
	0 = Interrupt	request not ena	bled				
bit 13	INT2IE: Exter	rnal Interrupt 2 I	Enable bit ⁽¹⁾				
	\perp = Interrupt	request enabled	l hled				
bit 12	T5IE: Timer5	Interrupt Enable	e bit				
Sit 12	1 = Interrupt	request enabled	l				
	0 = Interrupt	request not ena	bled				
bit 11	T4IE: Timer4	Interrupt Enabl	e bit				
	1 = Interrupt	request enabled	l blod				
hit 10		ut Compare Ch	annel 4 Interru	nt Enable bit			
	1 = Interrupt	request enabled					
	0 = Interrupt	request not ena	bled				
bit 9	OC3IE: Outp	ut Compare Cha	annel 3 Interru	pt Enable bit			
	1 = Interrupt	request enabled	 hlad				
hit Q		request not ena	,				
bit 7		Canture Channe) A 8 Interrunt E	nahle hit			
	1 = Interrupt	request enabled	l o interrupt E				
	0 = Interrupt	request not ena	bled				
bit 6	IC7IE: Input (Capture Channe	el 7 Interrupt E	nable bit			
	1 = Interrupt	request enabled	l				
hit 5		request not ena	,				
bit 4		rnal Interrunt 1 I	, =nahle hit(1)				
	1 = Interrupt	request enabled					
	0 = Interrupt	request not ena	bled				
bit 3	CNIE: Input (Change Notifica	tion Interrupt E	nable bit			
	1 = Interrupt	request enabled	 blad				
hit 2		request not ena	uieu Enabla bit				
	1 = Interrupt	request enabled					
	0 = Interrupt	request not ena	bled				
Note 1, if	an automal into	runt in anabled	the interrupt	input must also	ho configurad	l to an available	

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.

REGISTE	R 12-1: TxCC	ON: TIMER2 A	ND TIMER4	CONTROL R	EGISTER ⁽³⁾		
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—	—	_	—	_
bit 15							bit 8
11-0	P/M/0	P/M/_0	P///_0	P///_0	11-0	P/M/-0	11-0
			TCKPS0	T32(1)		TCS ⁽²⁾	
bit 7	TOME			102		100	bit 0
Legend:							
R = Read	able bit	vv = vvritable	DIT	U = Unimplem	iented bit, read	i as 'U'	
-n = value	e at POR	" = Bit is set		"U" = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timerx	on bit					
	When TxCO	N<3> = 1:					
	1 = Starts 32	2-bit Timerx/y					
	0 = Stops 32						
	1 = Starts 10	6-bit Timerx					
	0 = Stops 16	6-bit Timerx					
bit 14	Unimpleme	nted: Read as ')'				
bit 13	TSIDL: Stop	in Idle Mode bit					
	1 = Discontir 0 = Continue	nue module ope e module operati	ration when de on in Idle mod	vice enters Idle e	mode		
bit 12-7	Unimpleme	nted: Read as ')'				
bit 6	TGATE: Tim	erx Gated Time	Accumulation	Enable bit			
	<u>When TCS =</u> This bit is iar	<u>= 1:</u> nored.					
	When TCS =	<u>= 0:</u>					
	1 = Gated ti	me accumulatio	n enabled				
	0 = Gated ti	me accumulatio	n disabled	.			
DIT 5-4	11 - 1:256	>: Timerx Input	Clock Prescale	Select bits			
	10 = 1.230 10 = 1.64						
	01 = 1:8						
	00 = 1:1		((1)				
bit 3	T32: 32-Bit	Imer Mode Sele	ect bit("	timor			
	1 = Timerx a 0 = Timerx a	and Timery act a	is two 16-bit tin	ners			
	In 32-bit mod	de, T3CON cont	rol bits do not a	affect 32-bit tim	er operation.		
bit 2	Unimpleme	nted: Read as ')'				
bit 1	TCS: Timerx	Clock Source S	Select bit ⁽²⁾				
	1 = Externa 0 = Internal	al clock from pin, clock (Fosc/2)	TxCK (on the	rising edge)			
bit 0	Unimpleme	nted: Read as ')'				
Note 1	In 32-hit mode t	he T3CON or T	5CON control h	oits do not affec	t 32-hit timer o	peration	
2:	If TCS = 1, RPIN	IRx (TxCK) mus	t be configured	to an available	e RPn pin. For	more informatio	on, see
	Section 10.4 "P	eripheral Pin S	elect".				

3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

REGISTER	13-2: ICxC	ON2: INPUT	CAPTURE x	CONTROL R	EGISTER 2		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	_	—	—	_	—	IC32
bit 15							bit 8
R/W-0	R/W-0 HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0
Legend:		HS = Hardwa	are Settable bit				
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 8	IC32: Cascad 1 = ICx and I 0 = ICx funct	e Two IC Mod Cy operate in ions independ	ules Enable bit cascade as a 3 ently as a 16-bi	(32-bit operation 2-bit module (th t module	on) his bit must be	set in both mod	dules)
bit 7	ICTRIG: ICx ⁻ 1 = Trigger IC	Trigger/Sync S Cx from source	elect bit elect bit e designated by	SYNCSELx bi	ts		
bit 6	TRIGSTAT: T 1 = Timer sol 0 = Timer sol	imer Trigger S urce has been urce has not b	tatus bit triggered and is een triggered a	s running (set i nd is being hel	n hardware, ca d clear	n be set in soft	ware)
bit 5	Unimplemen	ted: Read as	0'	5			
bit 4-0	SYNCSEL<4 11111 = Res 11110 = Inpu 11101 = Inpu 11100 = CTM 11011 = A/D	: 0>: Trigger/Sy erved t Capture 9 t Capture 6 1U ⁽¹⁾ 1)	vnchronization §	Source Selectio	on bits		

- 11010 = Comparator 3⁽¹⁾ 11001 = Comparator 2⁽¹⁾ 11000 = Comparator 1⁽¹⁾
 - 10111 = Input Capture 4
 - 10110 = Input Capture 3
 - 10101 = Input Capture 2
 - 10100 = Input Capture 1
 - 10011 = Input Capture 8
 - 10010 = Input Capture 7
 - 1000x = reserved 01111 = Timer5
 - 01111 = Timer5 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = Input Capture 5
 - 01001 = Output Compare 9
 - 01000 = Output Compare 8 00111 = Output Compare 7
 - 00111 = Output Compare 7 00110 = Output Compare 6
 - 00110 = Output Compare 6 00101 = Output Compare 5
 - 00101 = Output Compare 5 00100 = Output Compare 4
 - 00100 = Output Compare 4 00011 = Output Compare 3
 - 00011 = Output Compare 3 00010 = Output Compare 2
 - 00001 = Output Compare 2 00001 = Output Compare 1
 - 00000 = Not synchronized to any other module

Note 1: Use these inputs as trigger sources only and never as sync sources.

REGISTER 18-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_		_	_	—
bit 15	·				•	•	bit
R/\\/_0	R/W_0	R/W_0	R/W/-0	R/M-0	R/W-0	11-0	R/\\/_0
IDIE	TIMSECIE		ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE
bit 7		Lowrence	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OLOVDIE	OLOLINDIL		bit
Legend:							
R = Readat	ole bit	W = Writable b	bit	U = Unimplen	nented bit. read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is un	known
bit 15-8	Unimplemen	ted: Read as '0	,				
bit 7	IDIE: ID Inter	rupt Enable bit					
	1 = Interrupt	enabled					
	0 = Interrupt	disabled					
bit 6	T1MSECIE: 1	I Millisecond Tir	ner Interrupt E	Enable bit			
	1 = Interrupt	enabled					
	0 = Interrupt	disabled					
bit 5	LSTATEIE: L	ine State Stable	Interrupt Ena	ble bit			
	1 = Interrupt	enabled					
hit 4		Activity Interru	nt Enable bit				
		enabled					
	0 = Interrupt	disabled					
bit 3	SESVDIE: Se	ession Valid Inte	rrupt Enable b	bit			
	1 = Interrupt	enabled					
	0 = Interrupt	disabled					
bit 2	SESENDIE: E	B-Device Sessio	on End Interru	pt Enable bit			
	1 = Interrupt	enabled					
	0 = Interrupt	disabled					
bit 1	Unimplemen	ted: Read as '0	,				
bit 0	VBUSVDIE: /	A-Device VBUS	Valid Interrupt	Enable bit			
	1 = Interrupt	enabled					

0 = Interrupt disabled

NOTES:

20.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (Military Time) display option
- Calendar data as date, month and year
- Automatic, hardware-based day of the week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for _compact firmware
- · Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 20-1. The SOSC and RTCC will both remain running while the device is held in Reset with MCLR and will continue running after MCLR is released.

FIGURE 20-1: RTCC BLOCK DIAGRAM

26.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "PIC24F Family Reference Manual":
 Section 9. "Watchdog Timer (WDT)" (DS39697)
 - Section 32. "High-Level Device Integration" (DS39719)
 - Section 33. "Programming and Diagnostics" (DS39716)

PIC24FJ256GB110 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming
- In-Circuit Emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location F80000h. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-5.

Note that address F80000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh) which can only be accessed using table reads and table writes.

26.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256GB110 FAMILY DEVICES

In PIC24FJ256GB110 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 26-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 26-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ256GB110 FAMILY DEVICES

Device	Configuration Word Addresses					
Device	1	2	3			
PIC24FJ64GB1	ABFEh	ABFCh	ABFAh			
PIC24FJ128GB1	157FEh	157FC	157FA			
PIC24FJ192GB1	20BFEh	20BFC	20BFA			
PIC24FJ256GB1	2ABFEh	2ABFC	2ABFA			

REGISTER 26-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- bit 4 **IOL1WAY:** IOLOCK One-Way Set Enable bit
 - 1 = The IOLOCK bit (OSCCON<6>)can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
 - 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been completed

bit 3 DISUVREG: Internal USB 3.3V Regulator Disable bit

- 1 = Regulator is disabled
- 0 = Regulator is enabled
- bit 2 Reserved: Always maintain as '1'
- bit 1-0 **POSCMD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator disabled
 - 10 = HS Oscillator mode selected
 - 01 = XT Oscillator mode selected
 - 00 = EC Oscillator mode selected

REGISTER 26-3: CW3: FLASH CONFIGURATION WORD 3

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
							—			
bit 23							bit 16			
	R/PU-1	R/PO-1	0-1	0-1	<u>U-1</u>	U-1	U-1			
VVPEND	WPCFG	WPDIS								
DIL 15										
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
WPFP7	WPFP6	WPFP5	WPFP4	WPFP3	WPFP2	WPFP1	WPFP0			
bit 7					•	•	bit 0			
Legend:										
R = Readable	DIT	PO = Progran	n-once bit		nented bit, read					
-n = value wh	en device is un	programmed		"I" = Bit is set		0 = Bit is clea	ared			
 bit 23-16 Unimplemented: Read as '1' bit 15 WPEND: Segment Write Protection End Page Select bit Protected code segment lower boundary is at the bottom of program memory (000000h); upper boundary is the code page specified by WPFP<7:0> Protected code segment upper boundary is at the last page of program memory; lower boundary is the code page specified by WPFP<7:0> bit 14 WPCFG: Configuration Word Code Page Protection Select bit Last page (at the top of program memory) and Flash Configuration Words are not protected Last page and Flash Configuration Words are code protected bit 13 WPDIS: Segment Write Protection Disable bit Segmented code protection disabled 										
	0 = Segmente WPFPx C	ed code prote configuration bi	ection enabled its	; protected se	gment defined	by WPEND,	WPCFG and			
bit 12-8		ed: Read as "	l' a Casmant Da	under (Dese bi	40					
bit 7-0 WPFP<7:0>: Protected Code Segment Boundary Page bits Designates the 512-word program code page that is the boundary of the protected code segment, starting with Page 0 at the bottom of program memory. If WPEND = 1: Last address of designated code page is the upper boundary of the segment. If WPEND = '0': First address of designated code page is the lower boundary of the segment.										

REGISTER 26-4: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U
—	—	—	—	—	—	—	—
bit 23	•						bit 16
U	U	R	R	R	R	R	R
—	—	FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2
bit 15		•					bit 8
R	R	R	R	R	R	R	R
FAMID1	FAMID0	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0
Legend: R =	Read-only bit			U = Unimplem	nented bit		

bit 23-14 Unimplemented: Read as '1'

- bit 13-6 **FAMID<7:0>:** Device Family Identifier bits 01000000 = PIC24FJ256GB110 family
- bit 5-0 **DEV<5:0>:** Individual Device Identifier bits 000001 = PIC24FJ64GB106 000011 = PIC24FJ64GB108 000111 = PIC24FJ64GB110 001001 = PIC24FJ128GB106 001011 = PIC24FJ128GB108 001111 = PIC24FJ128GB110 010001 = PIC24FJ192GB106 010011 = PIC24FJ192GB108 010111 = PIC24FJ192GB110 011001 = PIC24FJ256GB106 011011 = PIC24FJ256GB108 011111 = PIC24FJ256GB110

REGISTER 26-5: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U		
—	—	—	—	—	—	—	—		
bit 23							bit 16		
U	U	U	U	U	U	U	R		
—	—	—	—	—	—	—	MAJRV2		
bit 15							bit 8		
R	R	U	U	U	R	R	R		
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0		
bit 7	•						bit 0		
Legend: R =	Read-only bit			U = Unimpler	mented bit				
Legend: R =	Legend: R = Read-only bit U = Unimplemented bit								

bit 23-9	Unimplemented: Read as '0'
bit 8-6	MAJRV<2:0>: Major Revision Identifier bits
bit 5-3	Unimplemented: Read as '0'
bit 2-0	DOT<2:0>: Minor Revision Identifier bits

TABLE 29-3:	DC CHARACTERISTICS:	TEMPERATURE	AND VOLTAGE SPECIFICATIONS

DC CH	ARACTER	ISTICS	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stateOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾ Max Units		Conditions			
Operat	Operating Voltage								
DC10	DC10 Supply Voltage								
	Vdd		2.2	_	3.6	V	Regulator enabled		
	Vdd		VDDCORE		3.6	V	Regulator disabled		
	VDDCORE		2.0	—	2.75	V	Regulator disabled		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5		—	V			
DC16	VPOR	VDD Start Voltage To Ensure Internal Power-on Reset Signal	Vss	_	_	V			
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms		
DC18	VBOR	BOR Voltage on VDD Transition. High-to-Low	—	2.05	_	V	Voltage regulator enabled		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

DC CHARAC	TERISTICS		Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Max	Units		Conditions		
Idle Current (IIDLE) ⁽²⁾						
DC40	220	310	μA	-40°C			
DC40a	220	310	μA	+25°C	2.0∨ ⁽³⁾		
DC40b	220	310	μA	+85°C			
DC40d	300	390	μA	-40°C		1 1111175	
DC40e	300	390	μA	+25°C	3.3∨ ⁽⁴⁾		
DC40f	300	420	μA	+85°C			
DC43	0.85	1.1	mA	-40°C			
DC43a	0.85	1.1	mA	+25°C	2.0∨ ⁽³⁾		
DC43b	0.87	1.2	mA	+85°C			
DC43d	1.1	1.4	mA	-40°C		4 101173	
DC43e	1.1	1.4	mA	+25°C	3.3∨ ⁽⁴⁾		
DC43f	1.1	1.4	mA	+85°C			
DC47	4.4	5.6	mA	-40°C			
DC47a	4.4	5.6	mA	+25°C	2.5∨ ⁽³⁾		
DC47b	4.4	5.6	mA	+85°C			
DC47c	4.4	5.6	mA	-40°C		10 Mir 3	
DC47d	4.4	5.6	mA	+25°C	3.3∨ ⁽⁴⁾		
DC47e	4.4	5.6	mA	+85°C			
DC50	1.1	1.4	mA	-40°C			
DC50a	1.1	1.4	mA	+25°C	2.0∨ ⁽³⁾		
DC50b	1.1	1.4	mA	+85°C			
DC50d	1.4	1.8	mA	-40°C			
DC50e	1.4	1.8	mA	+25°C	3.3∨ ⁽⁴⁾		
DC50f	1.4	1.8	mA	+85°C			
DC51	4.3	13	μA	-40°C			
DC51a	4.5	13	μA	+25°C	2.0∨ ⁽³⁾		
DC51b	10	32	μA	+85°C]		
DC51d	44	77	μA	-40°C			
DC51e	44	77	μA	+25°C	3.3∨ ⁽⁴⁾		
DC51f	70	132	μA	+85°C]		

TABLE 29-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core off, OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

AC CHA	ARACTERI	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Min.	Тур	Max.	Units	Conditions	
		Cloc	k Paramet	ters			
AD50	Tad	ADC Clock Period	75	_	_	ns	Tcy = 75 ns, AD1CON3 in default state
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	
		Con	version R	ate			
AD55	tCONV	Conversion Time	—	12	—	TAD	
AD56	FCNV	Throughput Rate		—	500	ksps	AVDD > 2.7V
AD57	tSAMP	Sample Time	—	1	_	TAD	
		Cloc	k Paramet	ters			
AD61	tPSS	Sample Start Delay from setting Sample bit (SAMP)	2	_	3	TAD	

TABLE 29-19: ADC CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimensior	MIN	NOM	MAX	
Contact Pitch		0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A