

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	192KB (65.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192gb110-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number				Input			
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Buffer	Description		
CN0	48	60	74	Ι	ST	Interrupt-on-Change Inputs.		
CN1	47	59	73	I	ST			
CN2	16	20	25	I	ST			
CN3	15	19	24	I	ST			
CN4	14	18	23	I	ST			
CN5	13	17	22	I	ST			
CN6	12	16	21	I	ST			
CN7	11	15	20	I	ST			
CN8	4	6	10	I	ST			
CN9	5	7	11	I	ST			
CN10	6	8	12	I	ST			
CN11	8	10	14	I	ST	1		
CN12	30	36	44	I	ST	1		
CN13	52	66	81	Ι	ST	1		
CN14	53	67	82	I	ST			
CN15	54	68	83	I	ST			
CN16	55	69	84	I	ST			
CN17	31	39	49	I	ST			
CN18	32	40	50	1	ST			
CN19	_	65	80	I	ST			
CN20	_	37	47	I	ST			
CN21	_	38	48	1	ST			
CN22	40	50	64	I	ST			
CN23	39	49	63	1	ST			
CN24	17	21	26	1	ST			
CN25	18	22	27	1	ST			
CN26	21	27	32	1	ST			
CN27	22	28	33	1	ST			
CN28	23	29	34	1	ST			
CN29	24	30	35	1	ST			
CN30	27	33	41	1	ST			
CN31	28	34	42		ST			
CN32	29	35	43		ST			
CN33			17		ST	1		
CN34	_	_	38		ST	1		
CN35	_	_	58		ST	1		
CN36		_	59		ST	1		
CN37		_	60	1	ST	1		
CN38		_	61	1	ST	1		
CN39			91	1	ST	4		
CN39 CN40			91	1	ST	4		
CN40 CN41	_	23	28		ST	4		
CN41 CN42		23	20		ST	4		
Legend:	TTL = TTL inp		29			L Schmitt Trigger input buffer		

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

I I L Input buller ANA = Analog level input/output

SI = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus input buffer$

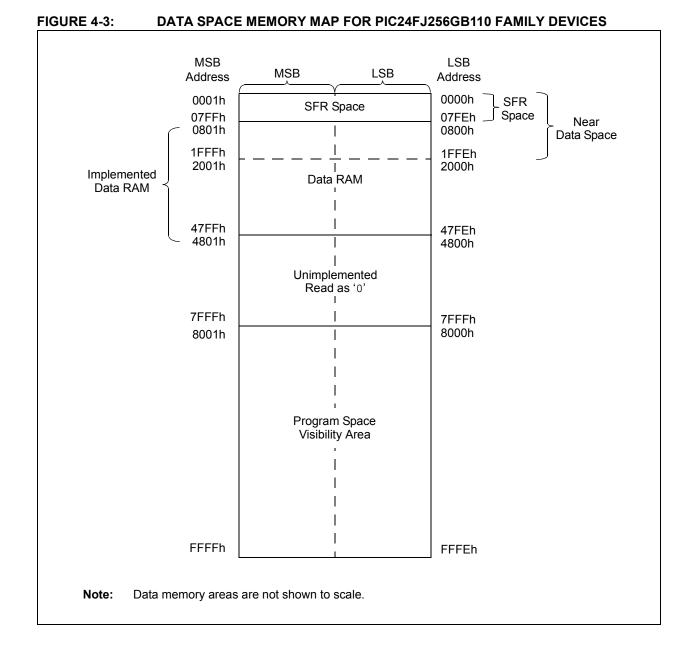
		Pin Number		Input		
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
CN43	—	52	66	I	ST	Interrupt-on-Change Inputs.
CN44	—	53	67	I	ST	
CN45	_	4	6	I	ST	
CN46	—	_	7	I	ST	
CN47	—	5	8	I	ST	
CN48	_	_	9	I	ST	
CN49	46	58	72	I	ST	
CN50	49	61	76	I	ST	
CN51	50	62	77	I	ST	
CN52	51	63	78	I	ST	
CN53	42	54	68	Ι	ST]
CN54	43	55	69	Ι	ST	
CN55	44	56	70	Ι	ST]
CN56	45	57	71	I	ST	
CN57	—	64	79	I	ST	
CN58	60	76	93	I	ST	
CN59	61	77	94	I	ST	
CN60	62	78	98	I	ST	
CN61	63	79	99	I	ST	
CN62	64	80	100	I	ST	
CN63	1	1	3	I	ST	
CN64	2	2	4	I	ST	
CN65	3	3	5	I	ST	
CN66	—	13	18	I	ST	
CN67	—	14	19	I	ST	
CN68	58	72	87	I	ST	
CN69	59	73	88	I	ST	
CN70	—	42	52	I	ST	
CN71	33	41	51	I	ST	
CN74	—	43	53	I	ST	
CN75	—	_	40	I	ST	
CN76	—	_	39	I	ST	
CN77	—	75	90	Ι	ST	
CN78	—	74	89	Ι	ST	
CN79	—	_	96	Ι	ST	
CN80	—	_	97	Ι	ST	
CN81	—	_	95	Ι	ST	
CN82	—	_	1	Ι	ST	
CTED1	28	34	42	Ι	ANA	CTMU External Edge Input 1.
CTED2	27	33	41	I	ANA	CTMU External Edge Input 2.
CTPLS	29	35	43	0	—	CTMU Pulse Output.
CVREF	23	29	34	0	_	Comparator Voltage Reference Output.

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TT

TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$ input buffer


4.2 Data Address Space

The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the program space visibility area (see **Section 4.3.3 "Reading Data from Program Memory Using Program Space Visibility"**). PIC24FJ256GB110 family devices implement a total of 16 Kbytes of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	_
POR (RCON<0>)	POR	

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 8.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC Configuration bits
BOR	(CW2<10:8>)
MCLR	COSC Control bits
WDTO	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

REGISTER	7-5: IFS0:	INTERRUP	FLAG STAT	US REGISTE	R 0		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit C
Logondy							
Legend: R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkn	own
bit 15-14	-	ted: Read as					
bit 13				t Flag Status bit	t		
		request has oc request has no					
bit 12	-	-	r Interrupt Flag	Status bit			
		request has oc		Status bit			
		request has no					
bit 11	-	-	nterrupt Flag S	tatus bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
bit 10			t Flag Status b	it			
		request has oc					
hit O	-	request has no		:4			
bit 9		request has oc	t Flag Status b	IL			
		request has oc					
bit 8	•	Interrupt Flag					
		request has oc					
	0 = Interrupt r	request has no	t occurred				
bit 7		Interrupt Flag					
		request has oc					
	•	request has no					
bit 6		•		ipt Flag Status b	Dit		
		request has oc request has no					
bit 5	-	-	el 2 Interrupt F	lag Status bit			
		request has oc	•				
	0 = Interrupt r	request has no	t occurred				
bit 4	Unimplemen	ted: Read as	0'				
bit 3		Interrupt Flag					
		request has oc					
1.1.0	-	request has no					
bit 2	•	•		ipt Flag Status b	DIT		
		request has oc request has no					
bit 1	-	-	el 1 Interrupt F	lag Status bit			
		request has oc	-	lag clatac sit			
		request has no					
bit 0	INT0IF: Exter	nal Interrupt 0	Flag Status bit				
		request has oc					
	0 = Interrupt r	request has no	t occurred				

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
	<u> </u>	CTMUIF		<u> </u>	_	<u> </u>	LVDIF
bit 15							bit 8
				D 444 0	D 444 0	D #44 0	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
	—	—	_	CRCIF	U2ERIF	U1ERIF	
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemer	nted: Read as '0	,				
bit 13	CTMUIF: CT	MU Interrupt Fla	g Status bit				
		request has occur request has not					
bit 12-9	Unimplemer	nted: Read as '0	,				
bit 8	LVDIF: Low-	Voltage Detect Ir	terrupt Flag	Status bit			
		request has occurrequest has not					
bit 7-4	Unimplemer	nted: Read as '0	,				
bit 3	CRCIF: CRC	Generator Inter	rupt Flag Stat	tus bit			
	1 = Interrupt request has occurred						
	0 = Interrupt request has not occurred						
bit 2	U2ERIF: UART2 Error Interrupt Flag Status bit						
	 I = Interrupt request has occurred Interrupt request has not occurred 						
bit 1	U1ERIF: UART1 Error Interrupt Flag Status bit						
		request has occi					
	0 = Interrupt	request has not	occurred				

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 7-29: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	_			—	MI2C2P2	MI2C2P1	MI2C2P0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	SI2C2P2	SI2C2P1	SI2C2P0	—			_
bit 7 bit							bit 0

Legend:							
R = Readable bit		W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15-11	5-11 Unimplemented: Read as '0'						
bit 10-8	MI2C2P<2:0>: Master I2C2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)						
• • 001 = Interrupt is priority 1 000 = Interrupt source is disabled							
bit 7	Unimplemented: Read as '0'						
bit 6-4	SI2C2P<2:0>: Slave I2C2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)						

- 111 = Interrupt is priority 7 (highest priority interrup
 - 001 = Interrupt is priority 1 000 = Interrupt source is disabled
- bit 3-0 Unimplemented: Read as '0'

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are				
	initialized, such that all user interrupt				
	sources are assigned to priority level 4.				

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value E0h with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

9.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 10. "Power-Saving Features" (DS39698).

The PIC24FJ256GB110 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 9-1. Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

Note:	SLEEP_MODE and IDLE_MODE are con-
	stants defined in the assembler include
	file for the selected device.

9.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of the these events:

- On any interrupt source that is individually enabled
- On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	;	Put	the	device	into	SLEEP	mode
PWRSAV	#IDLE_MODE	;	Put	the	device	into	IDLE '	mode

REGISTER 10-19: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U4CTSR<5:0>: Assign UART4 Clear to Send (U4CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U4RXR<5:0>: Assign UART4 Receive (U4RX) to Corresponding RPn or RPIn Pin bits

REGISTER 10-20: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—		OC32
bit 15							bit 8

R/W-0	R/W-0 HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

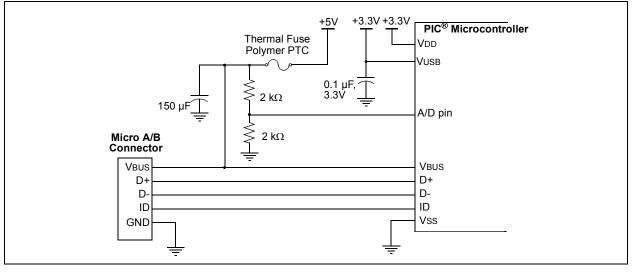
Legend:	HS = Hardware Settable	bit
R = Reada	ble bit W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value	at POR '1' = Bit is set	'0' = Bit is cleared x = Bit is unknown
bit 15	FLTMD: Fault Mode Select bit	
		Fault source is removed and the corresponding OCFLT0 bit i
	cleared in software	ault source is removed and a new PWM period starts
bit 14	FLTOUT: Fault Out bit	
	1 = PWM output is driven high on a Fau	ılt
	0 = PWM output is driven low on a Faul	
bit 13	FLTTRIEN: Fault Output State Select bit	t
	1 = Pin is forced to an output on a Fault	
	0 = Pin I/O condition is unaffected by a	Fault
bit 12	OCINV: OCMP Invert bit	
	1 = OCx output is inverted	
h:+ 11 0	0 = OCx output is not inverted	
bit 11-9 bit 8	Unimplemented: Read as '0'	le hit (20 hit energien)
DILO	 OC32: Cascade Two OC Modules Enab 1 = Cascade module operation enable 	
	0 = Cascade module operation disable	
bit 7	OCTRIG: OCx Trigger/Sync Select bit	
	1 = Trigger OCx from source designate	ed by the SYNCSELx bits
	0 = Synchronize OCx with source desi	gnated by the SYNCSELx bits
bit 6	TRIGSTAT: Timer Trigger Status bit	
	1 = Timer source has been triggered a	
	0 = Timer source has not been triggere	
bit 5	OCTRIS: OCx Output Pin Direction Sele	ect bit
	1 = OCx pin is tristated	ated to OCy ain
	0 = Output compare peripheral x connect	
		source, either by selecting this mode or another equivalent
	SYNCSEL setting.	
2:	Use these inputs as trigger sources only and	d never as sync sources.

Г

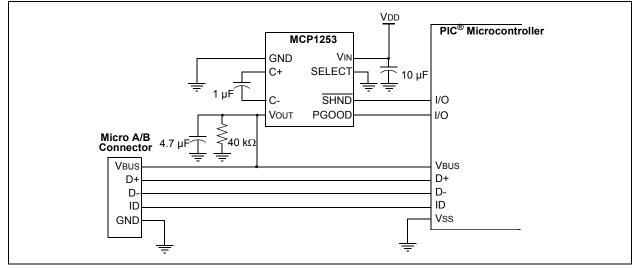
18.1.2 HOST AND OTG MODES

18.1.2.1 D+ and D- Pull-down Resistors

PIC24FJ256GB110 family devices have built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the DPPULDWN and DMPULDWN bits (U10TGCON<5,4>).


18.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-the-Go operation, the USB 2.0 specification requires that the Host application supply power on VBUS. Since the


FIGURE 18-6: HOST INTERFACE EXAMPLE

microcontroller is running below VBUS and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 18-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 18-7.

FIGURE 18-7: OTG INTERFACE EXAMPLE

18.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the "On-The-Go Supplement to the USB 2.0 Specification" for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in Suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as Host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF (U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

When the B-device has finished in its role as Host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power-down VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation, and drives Reset signaling.

18.7 USB OTG Module Registers

There are a total of 37 memory mapped registers associated with the USB OTG module. They can be divided into four general categories:

- USB OTG Module Control (12)
- USB Interrupt (7)
- USB Endpoint Management (16)
- USB VBUS Power Control (2)

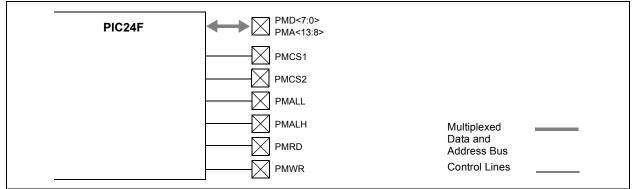
This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 18-1 and Register 18-2, are shown separately in **Section 18.2 "USB Buffer Descriptors and the BDT"**.

With the exception U1PWMCON and U1PWMRRS, all USB OTG registers are implemented in the Least Significant Byte of the register. Bits in the upper byte are unimplemented, and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.

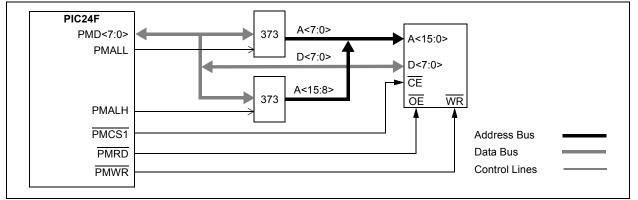
Registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1: Specifies the 256-word page in data RAM used for the BDT; 8-bit value with bit 0 fixed as '0' for boundary alignment
- U1FRML and U1FRMH: Contains the 11-bit byte counter for the current data frame
- U1PWMRRS: Contains the 8-bit value for PWM duty cycle (bits<15:8>) and PWM period (bits<7:0>) for the VBUS boost assist PWM module.

REGISTER 19-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)


bit 2	BEP: Byte Enable Polarity bit 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	<u>For Master mode 1 (PMMODE<9:8> = 11):</u> 1 = Enable strobe active-high <u>(PMENB)</u> 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.


FIGURE 19-5: MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, TWO CHIP SELECTS)

PIC24F → PMA<13:8>	
PMD<7:0> PMA<7:0>	
PMCS1	
PMCS2 Address Bus	
PMALL Multiplexed Data and	
PMRD Address Bus	
PMWR Control Lines	

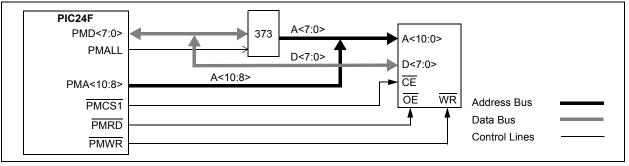

FIGURE 19-6: MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, TWO CHIP SELECTS)

FIGURE 19-8: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION

© 2009 Microchip Technology Inc.

REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

...

01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

... 00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment

111111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 20-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7				·			bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
L							

Unimplemented: Read as '0'
RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
PMPTTL: PMP Module TTL Input Buffer Select bit
 1 = PMP module inputs (PMDx, PMCS1) use TTL input buffers 0 = PMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>)) bit must also be set.

							n
R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾	—	ADSIDL	_	—	—	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R/W-0, HCS
SSRC2	SSRC1	SSRC0	_	—	ASAM	SAMP	DONE
bit 7							bit 0
Legend:		HCS = Hardw	are Clearable/	Settable bit			
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	ADON: A/D C	perating Mode	bit ⁽¹⁾				
		verter module is	operating				
	0 = A/D Conv	erter is off					
bit 14	Unimplemen	ted: Read as ')'				
bit 13		o in Idle Mode I					
				evice enters Idle	e mode		
h:: 40.40		module operat		le			
bit 12-10	-	ted: Read as '					
bit 9-8		Data Output Fo					
		ractional (sddd al (dddd dddd					
		nteger (ssss					
		b 5500 0000		,			
bit 7-5	SSRC<2:0>:	Conversion Tri	gger Source So	elect bits			
				starts conversio	on (auto-conve	rt)	
		event ends sar	npling and star	ts conversion			
	101 = Reserv		sampling and	starts conversi	on		
	011 = Reserv	-	oumphing und				
				starts conversi			
				ampling and sta			
h:: 4 0		-		nd starts conver	sion		
bit 4-3	-	ted: Read as '					
bit 2		ample Auto-Sta		conversion co	moletes SAM	⊃ bit is auto-set	
		begins when S					
bit 1		ample Enable					
	1 = A/D samp	le/hold amplifie	er is sampling i	nput			
	0 = A/D samp	le/hold amplifie	er is holding				
bit 0	DONE: A/D C	conversion Stat	us bit				
		ersion is done					
	0 = A/D conve	ersion is NOT c	one				
Note 1: Va	lues of ADC1B	UFx registers v	vill not retain th	eir values once	e the ADON bit	is cleared. Rea	ad out the

REGISTER 22-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

100-Lead TQFP (14x14x1 mm)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

INDEX

4	
	4

A/D Converter	
Analog Input Model	
Transfer Function	
AC Characteristics	
ADC Conversion Timing	326
CLKO and I/O Timing	324
Alternate Interrupt Vector Table (AIVT)	77
Assembler	
MPASM Assembler	300

В

Block Diagrams	
10-Bit High-Speed A/D Converter	268
16-Bit Asynchronous Timer3 and Timer5	
16-Bit Synchronous Timer2 and Timer4	165
16-Bit Timer1 Module	161
32-Bit Timer2/3 and Timer4/5	
Accessing Program Space Using Table	
Operations	61
Addressable PMP Example	248
Addressing for Table Registers	63
BDT Mapping for Endpoint Buffering Modes	
CALL Stack Frame	59
Comparator Voltage Reference	281
CPU Programmer's Model	35
CRC Module	263
CRC Shift Engine	264
CTMU Connections and Internal Configuration	
for Capacitance Measurement	283
CTMU Typical Connections and Internal	
Configuration for Pulse Delay Generation	284
CTMU Typical Connections and Internal	
Configuration for Time Measurement	284
Data Access From Program Space Address	
Generation	
I ² C Module	
Individual Comparator Configurations	
Input Capture	
LCD Control	
Legacy PMP Example	248
On-Chip Regulator Connections	
Output Compare (16-Bit Mode)	174
Output Compare (Double-Buffered	
16-Bit PWM Mode)	176
PCI24FJ256GB110 Family (General)	
PIC24F CPU Core	34
PMP 8-Bit Multiplexed Address and	050
Data Application	250
PMP EEPROM (8-Bit Data)	
PMP Master Mode, Demultiplexed Addressing PMP Master Mode, Fully Multiplexed	240
	240
Addressing PMP Master Mode, Partially Multiplexed	249
Addressing	240
PMP Module Overview PMP Multiplexed Addressing	
PMP Parallel EEPROM (16-Bit Data)	
PMP Partially Multiplexed Addressing	
PMP Partially Multiplexed Addressing PSV Operation	
Reset System	
RTCC	
Shared I/O Port Structure	

С

C Compilers	
MPLAB C18	300
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Basic Clock Switching Example	127
Configuring UART1 Input and Output	
Functions (PPS)	
Erasing a Program Memory Block, 'C'	67
Erasing a Program Memory Block, Assembly	
Initiating a Programming Sequence, 'C'	68
Initiating a Programming Sequence, Assembly	68
Loading the Write Buffers, 'C'	68
Loading the Write Buffers, Assembly	67
Port Write/Read	
PWRSAV Instruction Syntax	131
Single-Word Flash Programming, 'C'	69
Single-Word Flash Programming, Assembly	69
Code Protection	
Code Segment Protection	295
Configuration Options	
Configuration Protection	296
Configuration Bits	287
Core Features	11
CPU	
Arithmetic Logic Unit (ALU)	
Control Registers	
Core Registers	
Programmer's Model	33
CRC	
Setup Example	
User Interface	264
CTMU	
Measuring Capacitance	
Measuring Time	
Pulse Delay and Generation	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	348