

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	64GB108	128GB108	192GB108	256GB108				
Operating Frequency		DC – 3	2 MHz					
Program Memory (bytes)	64K	128K	192K	256K				
Program Memory (instructions)	22,016	44,032	67,072	87,552				
Data Memory (bytes)		16,	384	·				
Interrupt Sources (soft vectors/NMI traps)		66 (6	62/4)					
I/O Ports		Ports A, B, 0	C, D, E, F, G					
Total I/O Pins		6	5					
Remappable Pins		40 (31 I/O, 9	9 Input only)					
Timers:								
Total Number (16-bit)		5	[1]					
32-Bit (from paired 16-bit timers)		2	2					
Input Capture Channels		9	(1)					
Output Compare/PWM Channels	g(1)							
Input Change Notification Interrupt	63							
Serial Communications:								
UART		4	[1]					
SPI (3-wire/4-wire)		3	(1)					
I ² C™		:	3					
Parallel Communications (PMP/PSP)		Ye	es					
JTAG Boundary Scan/Programming		Ye	es					
10-Bit Analog-to-Digital Module (input channels)		1	6					
Analog Comparators		:	3					
CTMU Interface	Yes							
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT; Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)							
Instruction Set	76 Base Ins	structions, Multiple	Addressing Mod	e Variations				
Packages		80-Pin	TQFP					

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ256GB110 FAMILY: 80-PIN DEVICES

Note 1: Peripherals are accessible through remappable pins.

TABLE 4-16: PORTE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ⁽¹⁾	Bit 8 ⁽¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02E0	—	—	—	_	_	—	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
PORTE	02E2	_	_	_	—	_	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02E4	_	_	_	—	_	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
ODCE	02E6	_	_	_	—	_	_	ODE9	ODE8	ODE7	ODE6	ODE5	ODE4	ODE3	ODE2	ODE1	ODE0	0000

Legend:

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices. Bits are unimplemented on 64-pin devices; read as '0'. Note 1:

TABLE 4-17: PORTF REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 ⁽²⁾	Bit 1	Bit 0	All Resets
TRISF	02E8	_	_	TRISF13	TRISF12	_	_	_	_	_	_	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02EA	_	_	RF13	RF12		_	_	_	_	_	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02EC	_	_	LATF13	LATF12	_	_	_	_	_	_	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	02EE	—		ODF13	ODF12	_	_	_		—		ODF5	ODF4	ODF3	ODF2	ODF1	ODF0	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices. Legend:

Bits are unimplemented on 64-pin and 80-pin devices; read as '0'. Note 1:

Bits are unimplemented on 64-pin devices; read as '0'. 2:

TABLE 4-18: PORTG REGISTER MAP

File Name	Addr	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 ⁽²⁾	Bit 0 ⁽²⁾	All Resets
TRISG	02F0	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	—	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02F2	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG	02F4	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG	02F6	ODG15	ODG14	ODG13	ODG12	_	_	ODG9	ODG8	ODG7	ODG6	_	_	ODG3	ODG2	ODG1	ODG0	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits unimplemented on 64-pin and 80-pin devices; read as '0'.

2: Bits unimplemented on 64-pin devices; read as '0'.

TABLE 4-19: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC		_	_	_		_	_	_	—	—	—	—	—	—	RTSECSEL	PMPTTL	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
—	—	—	—	—	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU interrupt priority level is 7 (15). User interrupts disabled.
	110 = CPU interrupt priority level is 6 (14)
	101 = CPU interrupt priority level is 5 (13)
	100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11)
	010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)

- **Note 1:** See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - **2:** The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the interrupt priority level if IPL3 = 1.
 - 3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	-	_		—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	_	_	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	_
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Readable I	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkn	iown

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less

- **Note 1:** See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 1	MI2C1IE: Master I2C1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	Si2C1IE: Slave I2C1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.

REGISTER 7-19: IF	PC2: INTERRUPT PRIORITY	CONTROL REGISTER 2
-------------------	-------------------------	---------------------------

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0		SPI1IP2	SPI1IP1	SPI1IP0
bit 15		1					bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0
bit 7							bit 0
Legend:	- L:L		.:4			l (0)	
R = Readable		VV = VVritable t	DIT	U = Unimplem	nented bit, read	as 'U'	
-n = value at	PUR	I = DILIS SEL			areu	X - DILISUIIKI	IOWIT
bit 15	Unimplemen	ted: Read as '0	,				
bit 14-12	U1RXIP<2:0>	: UART1 Recei	iver Interrupt F	Prioritv bits			
	111 = Interru	pt is priority 7 (h	ighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 11	Unimplemen	ted: Read as '0	,				
bit 10-8	SPI1IP<2:0>:	SPI1 Event Int	errupt Priority	bits			
	111 = Interru	pt is priority 7 (h	ighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 7	Unimplemen	ted: Read as '0	,				
bit 6-4	SPF1IP<2:0>	: SPI1 Fault Int	errupt Priority	bits			
		pt is priority 7 (n	lignest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1 ot source is disa	abled				
bit 3	Unimplemen	ted: Read as '0	,				
bit 2-0	T3IP<2:0>: T	imer3 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (h	ighest priority	interrupt)			
	•		0 1 9	. ,			
	•						
	- 001 = Interrui	pt is prioritv 1					
	000 = Interru	pt source is disa	abled				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
DIT 15		ted: Read as). 				
DIC 14-12		: UARIZ ITAN	biobest priority				
	•		nighest phonty	interrupt)			
	•						
	• 001 - Internu	at is priority 1					
	001 = Interru	ot is priority i ot source is dis	abled				
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	eiver Interrupt I	Priority bits			
	111 = Interrup	ot is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
	000 = Interru	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '	D'				
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority b	oits			
	111 = Interrup	ot is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
1.11.0	000 = Interrup	ot source is dis	abled				
DIT 3		ted: Read as	Drievity bite				
DIL Z-U	151P<2:0>: 11	nt is priority 7 (highest priority	(interrunt)			
	•		nighest phonty	interrupt)			
	•						
	• 001 - Intorru	ot is priority 1					
	000 = Interru	ot source is dis	abled				
	- 1						

REGISTER 7-24: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

REGISTER 7-25: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—			—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7							bit 0

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-7	Unimplen	nented: Read as '0'		
bit 6-4	SPI2IP<2	:0>: SPI2 Event Interrupt Pr	iority bits	
	111 = Inte	errupt is priority 7 (highest p	riority interrupt)	
	•			
	•			
	•			
	001 = Inte	errupt is priority 1		
	000 – 1110			
bit 3	Unimplen	nented: Read as '0'		
bit 2-0	SPF2IP<2	2:0>: SPI2 Fault Interrupt Pr	iority bits	
	111 = Inte	errupt is priority 7 (highest p	riority interrupt)	
	•			

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

8.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set).
 - Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- 2. Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 8-1.

EXAMPLE 8-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO ;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

REGISTER 10-35: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

bit 15-14 Unimplemented: Read as '0'

- bit 13-8
 RP27R<5:0>: RP27 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP27 (see Table 10-3 for peripheral function numbers)

 bit 7-6
 Unimplemented: Read as '0'
- bit 5-0 **RP26R<5:0>:** RP26 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP26 (see Table 10-3 for peripheral function numbers)

REGISTER 10-36: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

11.0	11.0						
0-0	0-0	R/W-U	R/VV-U	R/W-U	R/ W-U	R/W-U	R/ W-U
		RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	

'0' = Bit is cleared

bit 15-14 Unimplemented: Read as '0'

'1' = Bit is set

bit 13-8 **RP29R<5:0>:** RP29 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP29 (see Table 10-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP28R<5:0>:** RP28 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP28 (see Table 10-3 for peripheral function numbers)

-n = Value at POR

x = Bit is unknown

REGISTER 10-37:	RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15
-----------------	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾

Peripheral output number n is assigned to pin, RP31 (see Table 10-3 for peripheral function numbers)bit 7-6 Unimplemented: Read as '0'

Dil 7-6 Unimplemented: Read as 0

bit 5-0 RP30R<5:0>: RP30 Output Pin Mapping bits⁽²⁾

Peripheral output number n is assigned to pin, RP30 (see Table 10-3 for peripheral function numbers)

Note 1: Unimplemented on 64-pin and 80-pin devices; read as '0'.

2: Unimplemented on 64-pin devices; read as '0'.

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5		ADDEN: Address Character Detect bit (bit 8 of received data = 1)
		 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled
bit 4		RIDLE: Receiver Idle bit (read-only)
		1 = Receiver is Idle0 = Receiver is active
bit 3		PERR: Parity Error Status bit (read-only)
		 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2		FERR: Framing Error Status bit (read-only)
		 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1		OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
		 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the RSR to the empty state
bit 0		URXDA : Receive Buffer Data Available bit (read-only)
		1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1	l: Va (11	alue of bit only affects the transmit properties of the module when the IrDA encoder is enabled REN = 1).
2	2: If	UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin.

See Section 10.4 "Peripheral Pin Select" for more information.

20.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (Military Time) display option
- Calendar data as date, month and year
- Automatic, hardware-based day of the week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for _compact firmware
- Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 20-1. The SOSC and RTCC will both remain running while the device is held in Reset with MCLR and will continue running after MCLR is released.

FIGURE 20-1: RTCC BLOCK DIAGRAM

20.1.4 RTCVAL REGISTER MAPPINGS

REGISTER 20-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
YRTEN3	YRTEN2	YRTEN1	YRTEN0	YRONE3	YRONE3 YRONE2		YRONE0
bit 7							bit 0

Legend:

-ogona.					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 20-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.
- bit 11-8 **MTHONE<3:0>:** Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	associated "PIC24F Family Reference
	Manual" chapter.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- · Four edge input trigger sources
- Polarity control for each edge source
- Control of edge sequence
- · Control of response to edges
- · Time measurement resolution of 1 nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance, or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based sensors.

The CTMU is controlled through two registers, CTMUCON and CTMUICON. CTMUCON enables the module, and controls edge source selection, edge source polarity selection, and edge sequencing. The CTMUICON register has controls the selection and trim of the current source.

25.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse with a width equal to the time between edge events on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and two external pins (CTEDG1 and CTEDG2). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

$$I = C \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A precision resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 25-1 shows the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 25-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

TABLE 29-13: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 48	MHz MHz	EC ECPLL
		Oscillator Frequency	3 4 10 12 31	 	10 8 32 32 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC
OS20	Tosc	Tosc = 1/Fosc	—	—		—	See parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5		DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	—	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾		6	10	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
OS50	Fplli	PLL Input Frequency Range ⁽²⁾	4	—	32	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	PLL Output Frequency Range	95.76	—	96.24	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	—	200	μS	
OS53	DCLK	CLKO Stability (Jitter)	-0.25		0.25	%	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-15: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Sym	Characteristic	Min Typ Max		Units	Conditions		
	TFRC	FRC Start-up Time	—	15	_	μS		
	TLPRC	LPRC Start-up Time	_	40		μS		

TABLE 29-16: INTERNAL RC OSCILLATOR ACCURACY

		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Characteristic	Min Typ Max Units Conditions				Conditions	
F20	FRC Accuracy@ 8 MHz ⁽¹⁾	-2		2	%	+25°C, $3.0V \le VDD \le 3.6V$	
		-5		5	%	$\begin{array}{l} -40^{\circ}C \leq TA \leq +85^{\circ}C, \\ 3.0V \leq VDD \leq 3.6V \end{array}$	
F21	LPRC Accuracy @ 31 kHz ⁽²⁾	-20	—	20	%	$\begin{array}{l} -40^{\circ}C \leq TA \leq +85^{\circ}C, \\ 3.0V \leq VDD \leq 3.6V \end{array}$	

Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.

2: Change of LPRC frequency as VDD changes.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
Device Supply									
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.0	—	Lesser of VDD + 0.3 or 3.6	V			
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V			
Reference Inputs									
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVDD	V			
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V			
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V			
Analog Input									
AD10	VINH-VINL	Full-Scale Input Span	VREFL		VREFH	V	(Note 2)		
AD11	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V			
AD12	Vinl	Absolute VINL Input Voltage	AVss – 0.3		AVDD/2	V			
AD13	_	Leakage Current	—	±0.00 1	±0.610	μA	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ AVDD = VREFH = 3V, Source Impedance = 2.5 k\Omega		
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	—	2.5K	Ω	10-bit		
			ADC Ac	curacy					
AD20b	Nr	Resolution	_	10	_	bits			
AD21b	INL	Integral Nonlinearity	—	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD22b	DNL	Differential Nonlinearity	—	±0.5	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD23b	Gerr	Gain Error	—	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD24b	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD25b	_	Monotonicity ⁽¹⁾	_		_	_	Guaranteed		

TABLE 29-18: ADC MODULE SPECIFICATIONS

Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.

100-Lead TQFP (14x14x1 mm)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

U

UART	
Baud Rate Generator (BRG)200	
Operation of UxCTS and UxRTS Pins	
Receiving	
Transmitting	
8-Bit Data Mode 201	
9-Bit Data Mode201	
Break and Sync Sequence	
Universal Asynchronous Receiver Transmitter. See UART.	
Universal Serial Bus	
Buffer Descriptors	
Assignment in Different Buffering Modes213	
Interrupts	
and USB Transactions	
Universal Serial Bus. See USB OTG.	
USB On-The-Go (OTG)12	
USBOTG	
Buffer Descriptors and BDT212	
Device Mode Operation	
DMA Interface	
Hardware Configuration	
Device Mode	
External Interface211	
Host and OTG Modes210	
Transceiver Power Requirements	
VBUS Voltage Generation	
Host Mode Operation	
Interrupts	
OTG Operation	
Registers	
VBUS Voltage Generation211	

V

VDDCORE/VCAP Pin	. 293
Voltage Regulator (On-Chip)	. 293
and BOR	. 294
Standby Mode	. 294
Tracking Mode	. 293
w	
Watchdog Timer (WDT)	. 294
Control Register	. 295
Windowed Operation	. 295
WWW Address	. 348
WWW, On-Line Support	9