

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb106t-i-pt

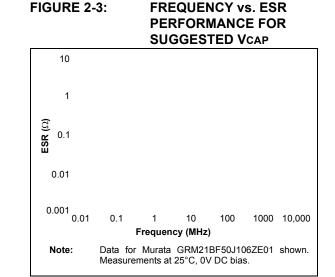
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4 Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This secti	on applies	only	to	PIC24FJ
		th an on-chi			

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:


- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator

Refer to **Section 26.2** "**On-Chip Voltage Regulator**" for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (<5 Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. A suitable example is the Murata GRM21BF50J106ZE01 (10 μ F, 6.3V) or equivalent. Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 29.0 "Electrical Characteristics"** for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to **Section 29.0 "Electrical Characteristics"** for information on VDD and VDDCORE.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

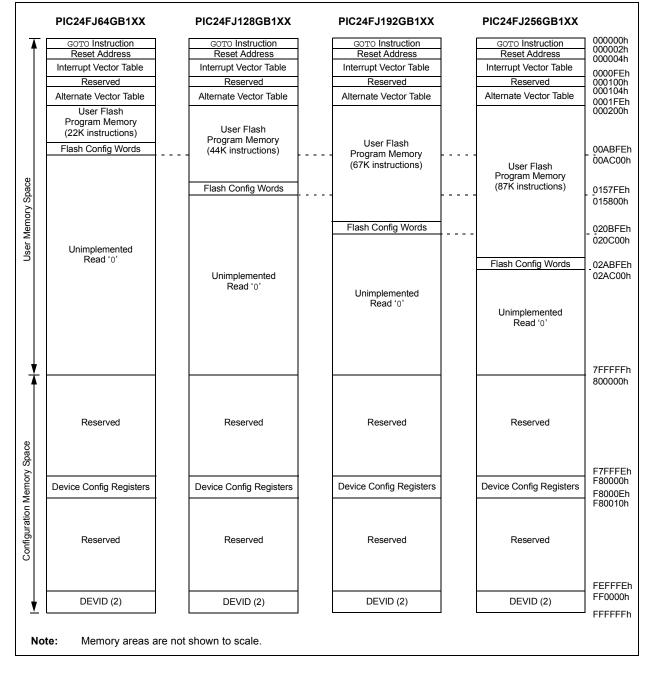
Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 27.0 "Development Support"**.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and busses. This architecture also allows the direct access of program memory from the data space during code execution.


4.1 **Program Address Space**

The program address memory space of the PIC24FJ256GB110 family devices is 4M instructions. The space is addressable by a 24-bit value derived

from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FJ256GB110 family of devices are shown in Figure 4-1.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, it 1. maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.

2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas such as the Device ID. Table write operations are not allowed.

FIGURE 4-6:	ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS
	Program Space
782, <i>894%</i> (82	
	23 15 6 6000000 23 16 8 0 0200000 00000000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 0000000 0200000 00000000 00000000 00000000 00000000 0000000 0200000 0000000 0000000 0000000 0000000 0000000 0200000 0000000 0000000 0000000 0000000 0000000 0200000 0000000 00000000 00000000 00000000 0000000 02000000 00000000 000000000 00000000 00000000 00000000 02000000 00000000 00000000

© 2009 Microchip Technology Inc.

R/W-0, H	S R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0
TRAPR	IOPUWR	—	_			СМ	PMSLP
bit 15							bit 8
R/W-0, H	S R/W-0, HS	R/W-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
Legend:		HS = Hardwar	e settable bit				
R = Reada	ble bit	W = Writable I		U = Unimplem	nented bit, read	as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	1 = A Trap Co	Reset Flag bit onflict Reset has					
bit 14	IOPUWR: Illegal 1 = An illegal Pointer ca	gal Opcode or I opcode detecti aused a Reset opcode or unir	Jninitialized W on, an illegal a	ddress mode o	r uninitialized V	√ register used	as an Address
bit 13-10	-	ted: Read as '0					
bit 9	-	ation Word Misi		lag bit			
	1 = A Configu	ration Word Mis ration Word Mis	smatch Reset I	has occurred	d		
bit 8	1 = Program r	ram Memory P memory bias vo nemory bias volta	ltage remains	powered during		regulator enters	Standby mode.
bit 7	EXTR: Extern 1 = A Master	al Reset (MCLI Clear (pin) Res Clear (pin) Res	R) Pin bit et has occurre	d			2
bit 6	SWR: Softwar 1 = A RESET i	re Reset (Instru instruction has instruction has	ction) Flag bit been executed	l			
bit 5	SWDTEN: So 1 = WDT is er 0 = WDT is di		Disable of WD	T bit ⁽²⁾			
bit 4	1 = WDT time	ndog Timer Tim -out has occurr -out has not oc	ed				
bit 3	1 = Device ha	e From Sleep F Is been in Sleep Is not been in S	mode				
bit 2	IDLE: Wake-u 1 = Device ha	up From Idle Fla is been in Idle r is not been in Id	ag bit node				
bit 1	BOR: Brown-0	out Reset Flag out Reset has o out Reset has n	bit ccurred. Note	that BOR is als	o set after a Po	ower-on Reset.	
bit 0	POR: Power-u	on Reset Flag b up Reset has or up Reset has no	bit ccurred				
	All of the Reset st cause a device Re If the FWDTEN C	eset.			-		

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

REGISTER	7-6: IFS1:	INTERRUPT	FLAG STAT	US REGISTE	ER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_
bit 15		•					bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Interrupt	RT2 Transmitter request has occ request has not	urred	Status bit			
bit 14	1 = Interrupt	RT2 Receiver In request has occ request has not	urred	tatus bit			
bit 13	1 = Interrupt	rnal Interrupt 2 F request has occ request has not	urred				
bit 12	1 = Interrupt	Interrupt Flag S request has occ request has not	urred				
bit 11	1 = Interrupt	Interrupt Flag S request has occ request has not	urred				
bit 10	1 = Interrupt	ut Compare Cha request has occ request has not	urred	pt Flag Status I	bit		
bit 9	1 = Interrupt	ut Compare Cha request has occ request has not	urred	pt Flag Status I	bit		
bit 8	Unimplemen	ted: Read as 'o)'				
bit 7	1 = Interrupt	Capture Channe request has occ request has not	urred	lag Status bit			
bit 6	1 = Interrupt	Capture Channe request has occ request has not	urred	lag Status bit			
bit 5	Unimplemen	ted: Read as 'o)'				
bit 4	1 = Interrupt	nal Interrupt 1 F request has occ request has not	urred				
bit 3	CNIF: Input C 1 = Interrupt	Change Notificat request has occ request has not	ion Interrupt F urred	lag Status bit			
bit 2	1 = Interrupt	arator Interrupt request has occ request has not	urred				
bit 1	1 = Interrupt	ster I2C1 Event request has occ request has not	urred	Status bit			
bit 0	1 = Interrupt	ve I2C1 Event In request has occ request has not	urred	Status bit			

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF	—	_	—		_	_
bit 15							bit 8
U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
—	INT4IF	INT3IF	—	_	MI2C2IF	SI2C2IF	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
pit 15	-	nted: Read as '0					
bit 14		-Time Clock/Cale	•	ot Flag Status b	it		
		request has occu					
	-	request has not					
oit 13-7	•	nted: Read as '0					
oit 6		rnal Interrupt 4 F request has occu					
		request has occur					
oit 5	•	rnal Interrupt 3 F					
		request has occu	0				
		request has not					
oit 4-3	Unimplemer	ted: Read as '0	,				
bit 2	MI2C2IF: Ma	ster I2C2 Event	Interrupt Flag	Status bit			
	1 = Interrupt	request has occu	urred				
	0 = Interrupt	request has not	occurred				
pit 1	SI2C2IF: Sla	ve I2C2 Event In	terrupt Flag S	Status bit			
		request has occu					
	•	request has not					
oit 0	Unimplemer	nted: Read as '0	,				

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	OC7IP2	OC7IP1	OC7IP0		OC6IP2	OC6IP1	OC6IP0				
bit 15						1	bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0				
bit 7							bit				
Legend:											
R = Readable	e hit	W = Writable I	nit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own				
							101111				
bit 15	Unimplemer	nted: Read as '0)'								
bit 14-12	OC7IP<2:0>	: Output Compa	re Channel 7	Interrupt Priorit	y bits						
	111 = Interru	pt is priority 7 (h	nighest priority	interrupt)							
	•										
	001 = Interrupt is priority 1										
		pt source is disa	abled								
bit 11	Unimplemer	nted: Read as 'o)'								
bit 10-8	OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1										
		pt source is disa									
bit 7	-	nted: Read as '0									
bit 6-4	OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 3		-									
011.5	-	nted: Read as '0		www.et Deieniterbit	-						
	IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
bit 2-0	111 – Intorru	int is priority 7 (k	naboet priority								
	111 = Interru •	pt is priority 7 (h	nighest priority	(interrupt)							
	111 = Interru •	ıpt is priority 7 (ł	nighest priority	(interrupt)							
	• • •	pt is priority 7 (h pt is priority 1	nighest priority	(interrupt)							

© 2009 Microchip Technology Inc.

REGISTER 10-21: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	itable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS3R<5:0>: Assign SPI3 Slave Select Input (SS31IN) to Corresponding RPn or RPIn Pin bits

REGISTER 10-22: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15				·		•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7				·		•	bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP1R<5:0>:** RP1 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP1 (see Table 10-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—		RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 10-35: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

bit 15-14 Unimplemented: Read as '0'

- bit 13-8
 RP27R<5:0>: RP27 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP27 (see Table 10-3 for peripheral function numbers)

 bit 7-6
 Unimplemented: Read as '0'
- bit 5-0 **RP26R<5:0>:** RP26 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP26 (see Table 10-3 for peripheral function numbers)

REGISTER 10-36: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writa		W = Writable	bit U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

bit 15-14 Unimplemented: Read as '0'

'1' = Bit is set

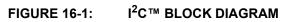
bit 13-8 **RP29R<5:0>:** RP29 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP29 (see Table 10-3 for peripheral function numbers)

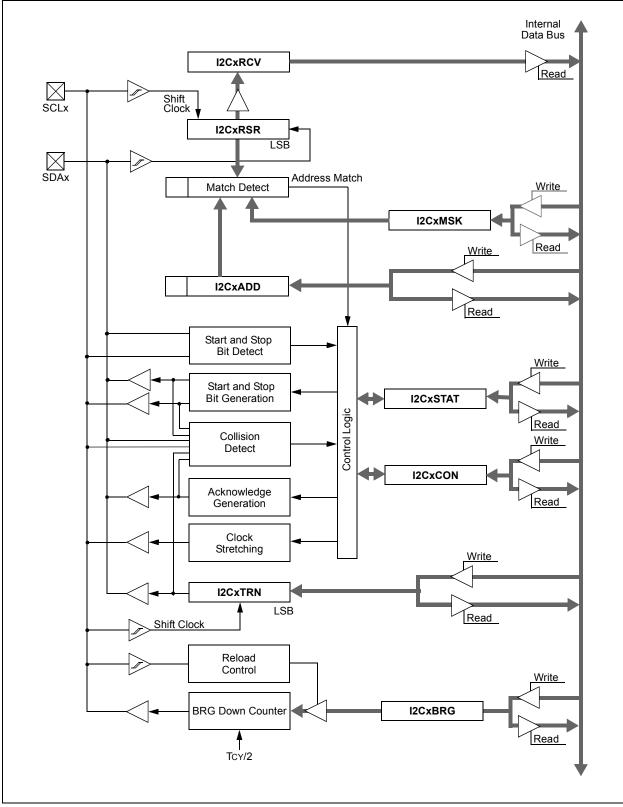
bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP28R<5:0>:** RP28 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP28 (see Table 10-3 for peripheral function numbers)

-n = Value at POR

x = Bit is unknown


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL					—				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 15	TON: Timer1										
	1 = Starts 16 0 = Stops 16										
bit 14	-	ted: Read as '	o'								
bit 13	-	in Idle Mode bit									
	1 = Discontinue module operation when device enters Idle mode										
	0 = Continue	module operat	ion in Idle mod	le							
bit 12-7	Unimplemer	nted: Read as '	o'								
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit							
	When TCS = 1: This hit is imported										
	This bit is ignored. <u>When TCS = 0:</u>										
	1 = Gated time accumulation enabled										
		me accumulatio									
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits							
	11 = 1:256										
	10 = 1:64 01 = 1:8										
	01 - 1.0 00 = 1.1										
bit 3	Unimplemer	nted: Read as '	o'								
bit 2	-			hronization Sel	lect bit						
	TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1:										
	1 = Synchronize external clock input										
	0 = Do not synchronize external clock input										
	When TCS =										
L:1 4	This bit is ign		Calaat hit								
bit 1		Clock Source S I clock from T10		riging odgo)							
		clock (Fosc/2)		rising edge)							
	Unimplemented: Read as '0'										


REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾

Note 1: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter reset and is not recommended.

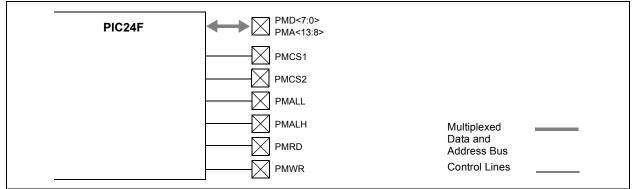
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	DISSCK ⁽¹⁾	DISSDO ⁽²⁾	MODE16	SMP	CKE ⁽³⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽⁴	-	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0
bit 7							bit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-13	Unimplemen	ted: Read as '	٥'				
bit 12	•		o bit (SPI Master	modes only)(1))		
	1 = Internal S		abled; pin funct				
bit 11		able SDOx pin					
	1 = SDOx pir	•	y module; pin fu	unctions as I/O			
bit 10	-		nunication Sele	ct bit			
			-wide (16 bits)				
	0 = Commun	ication is byte-	wide (8 bits)				
bit 9	SMP: SPIx D	ata Input Sam	ole Phase bit				
		a sampled at e	nd of data outp				
	0 = Input data Slave mode:	a sampled at n	niddle of data o	utput time			
		cleared when	SPIx is used in	Slave mode.			
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽³⁾				
			ges on transitio ges on transitio				
bit 7	SSEN: Slave	Select Enable	(Slave mode) b	oit ⁽⁴⁾			
		used for Slave not used by mo	mode dule; pin contro	olled by port fur	nction		
bit 6	CKP: Clock F	Polarity Select I	oit				
			nigh level; activ ow level; active				
bit 5	MSTEN: Mas	ter Mode Enat	ole bit				
	1 = Master m 0 = Slave mo						
Note 1:	If DISSCK = 0, S Select" for more		onfigured to an	available RPn	pin. See Sectio	on 10.4 "Perip	heral Pin
2:	If DISSDO = 0, S Select" for more	DOx must be o	configured to ar	ı available RPn	pin. See Secti	on 10.4 "Perip	oheral Pin
3:	The CKE bit is no SPI modes (FRM	ot used in the F	ramed SPI mod	des. The user s	hould program	this bit to '0' fo	or the Frame
4:	If SSEN = 1, \overline{SSx}	,	jured to an avai	ilable RPn pin.	See Section 10).4 "Periphera	I Pin Select

REGISTER 15-2: SPIxCON1: SPIx CONTROL REGISTER 1

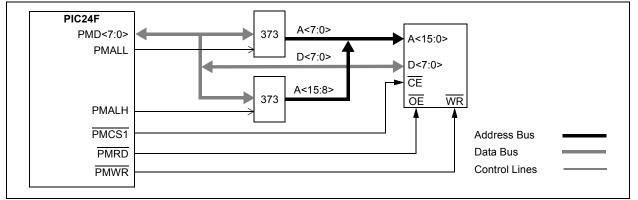
NOTES:

18.7.4 USB VBUS POWER CONTROL REGISTER

REGISTER 18-22: U1PWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER


R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
PWMEN	_	_	_		—	PWMPOL	CNTEN		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	_	_	_	—	—	—		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable b	it	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	PWMEN: PW	M Enable bit							
		nerator is enable							
	0 = PWM ger	nerator is disable	ed; output is h	neld in Reset sta	ate specified b	y PWMPOL			
bit 14-10	Unimplemen	ted: Read as '0	,						
bit 9	PWMPOL: P	NM Polarity bit							
	1 = PWM out	put is active-low	and resets h	ligh					
	DIA/AA subsub is a stick and as a talen								

- 0 = PWM output is active-high and resets low
- bit 8 CNTEN: PWM Counter Enable bit
 - 1 = Counter is enabled
 - 0 = Counter is disabled
- bit 7-0 Unimplemented: Read as '0'


FIGURE 19-5: MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, TWO CHIP SELECTS)

PIC24F → PMA<13:8>	
PMD<7:0> PMA<7:0>	
PMCS1	
PMCS2 Address Bus	
PMALL Multiplexed Data and	
PMRD Address Bus	
PMWR Control Lines	

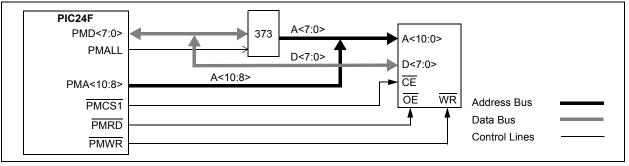
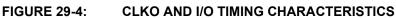

FIGURE 19-6: MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, TWO CHIP SELECTS)

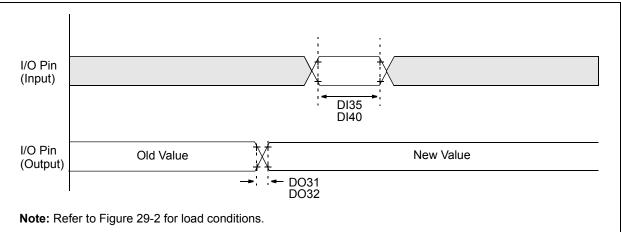
FIGURE 19-8: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION

© 2009 Microchip Technology Inc.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB		_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾			
bit 15				•			bit			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CHONA			CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0			
bit 7			01100/11	oniconic	01100/12	onicorti	bit			
Legend:										
R = Readab	le hit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value a		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	nown			
oit 15	CHONB: CI	hannel 0 Negativ	e Input Select f	or MUX B Multi	plexer Setting	bit				
	1 = Channe	el 0 negative inpu	ut is AN1							
		el 0 negative inpu								
bit 14-13	-	ented: Read as								
oit 12-8		0>: Channel 0 P								
	10001 = Channel 0 positive input is internal band gap reference (VBG) ⁽²⁾									
	10000 = Channel 0 positive input is VBG/2 ⁽²⁾									
	01111 = Channel 0 positive input is AN15									
		hannel 0 positive								
		hannel 0 positive								
		hannel 0 positive								
		hannel 0 positive								
		hannel 0 positive								
		hannel 0 positive								
		hannel 0 positive								
	00111 = Channel 0 positive input is AN7									
	00110 = Channel 0 positive input is AN6 00101 = Channel 0 positive input is AN5									
		hannel 0 positive								
		hannel 0 positive								
		hannel 0 positive								
		hannel 0 positive								
		hannel 0 positive								
bit 7	CHONA: CI	hannel 0 Negativ	e Input Select f	or MUX A Multi	plexer Setting	bit				
	1 = Channe	el 0 negative inpu	ut is AN1		-					
	0 = Channe	el 0 negative inpi	ut is VR-							
bit 6-5	Unimplem	ented: Read as	'0'							
bit 4-0	CH0SA<4:	0>: Channel 0 P	ositive Input Se	lect for MUX A	Multiplexer Se	ttina bits				
		ed combinations	-		-	-				
Note 1: C	Combinations,	'10010' through	'11111', are ur	implemented;	do not use.					
		ence must be all				ng these chann	els for a			
С	onversion. Se	e Section 29.1 '	'DC Characteri	stics" for more	information.					

REGISTER 22-4: AD1CHS: A/D INPUT SELECT REGISTER


REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)


- bit 4 **CREF:** Comparator Reference Select bits (non-inverting input)
 - 1 = Non-inverting input connects to internal CVREF voltage
 - 0 = Non-inverting input connects to CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of comparator connects to VBG/2
 - 10 = Inverting input of comparator connects to CxIND pin
 - 01 = Inverting input of comparator connects to CXINC pin
 - 00 = Inverting input of comparator connects to CxINB pin

REGISTER 23-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	—	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15	 CMIDL: Comparator Stop in Idle Mode bit 1 = Module does not generate interrupts in Idle mode, but is otherwise operational 0 = Module continues normal operation in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

TABLE 29-17: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS				perating Co emperature			(unless otherwise stated) for Industrial
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TIOR	Port Output Rise Time	—	10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	
DI35	Tinp	INTx pin High or Low Time (output)	20	—	—	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

D

Data Memory	
Address Space	41
Memory Map	41
Near Data Space	
SFR Space	
Software Stack	59
Space Organization	
DC Characteristics	
I/O Pin Input Specifications	318
I/O Pin Output Specifications	319
Idle Current	315
Operating Current	314
Power-Down Current	316
Program Memory Specifications	319
Development Support	299
Device Features (Summary)	
100-Pin	15
64-Pin	
80-Pin	14
Doze Mode	132

Е

Electrical Characteristics	
A/D Specifications	
Absolute Maximum Ratings	
External Clock	
Internal Voltage Regulator Specifications	
Load Conditions and Requirements for	
Specifications	
PLL Clock Specifications	
Temperature and Voltage Specifications	
Thermal Conditions	
V/F Graph	
ENVREG Pin	
Equations	
A/D Conversion Clock Period274	
Baud Rate Reload Calculation 193	
Calculating the PWM Period176	
Calculation for Maximum PWM Resolution	
Estimating USB Transceiver Current	
Consumption211	
Relationship Between Device and SPI	
Clock Speed190	
RTCC Calibration	
UART Baud Rate with BRGH = 0	
UART Baud Rate with BRGH = 1	
Errata 9	

F

40, 287–291
63
63
64
64
64
69

I

I/O Ports	
Analog Port Pins Configuration	
Input Change Notification	
Open-Drain Configuration	
Parallel (PIO)	

Peripheral Pi	n Select	135
Pull-ups and	Pull-downs	
I ² C		
	dresses	
-	Rate as Bus Master	
	ss Masking	193
Input Capture		
	rations	
	and Trigger Modes	
Input Capture with Instruction Set	Dedicated Timers	169
		205
Inter-Integrated Ci	ircuit. See I ² C.	101
	able (IVT)	
Interrupts		/ /
•	equence	77
	Status Registers	
	Vectors	
	ervice Procedures	
Vector Table		78
IrDA Support		201
J		
•		207
JTAG Intenace		297
Μ		
Microchip Internet	Web Site	348
	ssembler, Linker, Librarian	
	Development Environment	
Software	•	299
MPLAB PM3 Devi	ce Programmer	302
MPLAB REAL ICE	E In-Circuit Emulator System	301
MPLINK Object Li	nker/MPLIB Object Librarian	300
N		
		12
		42
0		
Oscillator Configu		
Clock Selecti	on	122
	ing	
	се	
	g Scheme	
0	uration on POR	
USB Operati	on	128

Special Considerations	129
Output Compare	
32-Bit Mode	173
Synchronous and Trigger Modes	173
Output Compare with Dedicated Timers	173
Ρ	
Packaging	327
Details	
Marking	327

Parallel Master Port. See PMP	
Peripheral Enable Bits	132
Peripheral Module Disable Bits	132

Peripheral Pin Select (PPS)135
Available Peripherals and Pins
Configuration Control 139
Considerations for Use140
Input Mapping136
Mapping Exceptions
Output Mapping
Peripheral Priority136
Registers
Pinout Descriptions
PMSLP Bit
and Wake-up Time
POR
and On-Chip Voltage Regulator
Power-Saving Features
Clock Frequency and Clock Switching
Instruction-Based Modes
Idle
Sleep
Power-up Requirements
Product Identification System
Program Memory
Access Using Table Instructions
Address Construction
Address Space
Flash Configuration Words
Memory Maps
Organization
Program Space Visibility
Program Space Visibility (PSV)
Pulse-Width Modulation (PWM) Mode
Pulse-Width Modulation, See PWM.
PWM
Duty Cycle and Period176

R

Reader Response	
Reference Clock Output	129
Register Maps	
A/D Converter	53
Comparators	56
CPU Core	43
CRC	56
CTMU	
I ² C	49
ICN	
Input Capture	47
Interrupt Controller	45
NVM	58
Output Compare	
Pad Configuration	52
Parallel Master/Slave Port	55
Peripheral Pin Select	57
PMD	58
PORTA	51
PORTB	51
PORTC	51
PORTD	51
PORTE	
PORTF	
PORTG	
RTCC	
SPI	50
System	58
Timers	
UART	50
USB OTG	54

Registers	
AD1CHS (A/D Input Select)	
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CSSL (A/D Input Scan Select, Low)	
AD1PCFGH (A/D Port Configuration, High)	
AD1PCFGL (A/D Port Configuration, Low)	
ALCFGRPT (Alarm Configuration)	
ALMINSEC (Alarm Minutes and Seconds Value)	
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	259
BDnSTAT Prototype (Buffer Descriptor n	
Status, CPU Mode)	215
BDnSTAT Prototype (Buffer Descriptor n	
Status, USB Mode)	214
CLKDIV (Clock Divider)	
CMSTAT (Comparator Status)	280
CMxCON (Comparator x Control)	
CORCON (CPU Control)	
CORCON (CPU Core Control)	
CRCCON (CRC Control)	265
CRCXOR (CRC XOR Polynomial)	266
CTMUCON (CTMU Control)	285
CTMUICON (CTMU Current Control)	
CVRCON (Comparator Voltage	
Reference Control)	282
CW1 (Flash Configuration Word 1)	
CW2 (Flash Configuration Word 2)	
CW3 (Flash Configuration Word 3)	
DEVID (Device ID)	
DEVREV (Device Revision)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON1 (Input Capture x Control 1)	
ICxCON2 (Input Capture x Control 2)	
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IEC5 (Interrupt Enable Control 5)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	
IFS5 (Interrupt Flag Status 5)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTTREG (Interrupt Control and Status)	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
· · · ·	
IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12)	100
· · · ·	
	109
IPC13 (Interrupt Priority Control 13)	109 110
IPC15 (Interrupt Priority Control 15)	109 110 111
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16)	109 110 111 112
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18)	109 110 111 112 113
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19)	109 110 111 112 113 113
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 2)	109 110 111 112 113 113 99
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 2) IPC20 (Interrupt Priority Control 20)	109 110 111 112 113 113 99 114
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 2) IPC20 (Interrupt Priority Control 20) IPC21 (Interrupt Priority Control 21)	109 110 111 112 113 113 99 114 115
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 2) IPC20 (Interrupt Priority Control 20)	109 110 111 112 113 113 99 114 115 116