

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	65
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb108-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram (64-Pin TQFP and QFN)

	Pin Number			1 4		
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
CN43	_	52	66	I	ST	Interrupt-on-Change Inputs.
CN44	_	53	67	I	ST	
CN45	_	4	6	I	ST	
CN46	_		7	I	ST	
CN47	_	5	8	I	ST	
CN48	_	_	9	I	ST	
CN49	46	58	72	I	ST	
CN50	49	61	76	I	ST	
CN51	50	62	77	-	ST	
CN52	51	63	78	-	ST	
CN53	42	54	68	Ι	ST	
CN54	43	55	69	Ι	ST	
CN55	44	56	70	Ι	ST	
CN56	45	57	71	Ι	ST	
CN57	—	64	79	Ι	ST	
CN58	60	76	93	Ι	ST	
CN59	61	77	94	I	ST	
CN60	62	78	98	I	ST	
CN61	63	79	99	I	ST	
CN62	64	80	100	I	ST	
CN63	1	1	3	Ι	ST	
CN64	2	2	4	Ι	ST	
CN65	3	3	5	Ι	ST	
CN66	_	13	18	Ι	ST	
CN67	—	14	19	I	ST	
CN68	58	72	87	I	ST	
CN69	59	73	88	I	ST	
CN70	—	42	52	I	ST	
CN71	33	41	51	I	ST	
CN74	—	43	53	I	ST	
CN75	—	—	40	I	ST	
CN76	—	—	39	I	ST	
CN77	—	75	90	I	ST	
CN78	—	74	89	I	ST	
CN79	—	—	96	I	ST	
CN80	—	—	97		ST	
CN81	—	—	95		ST	
CN82		_	1		ST	
CTED1	28	34	42		ANA	CTMU External Edge Input 1.
CTED2	27	33	41		ANA	CTMU External Edge Input 2.
CTPLS	29	35	43	0	—	CTMU Pulse Output.
CVREF	23	29	34	0	—	Comparator Voltage Reference Output.

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TT

TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$ input buffer

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADnPCFG register(s), or clearing all bit in the ANSx registers.

All PIC24F devices will have either one or more ADnPCFG registers or several ANSx registers (one for each port); no device will have both. Refer to **Section 22.0 "10-Bit High-Speed A/D Converter"** for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the ADC module, as follows:

- For devices with an ADnPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADnPCFG or ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin-to-PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 8.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC Configuration bits
BOR	(CW2<10:8>)
MCLR	COSC Control bits
WDTO	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

REGISTER	EGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2									
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF			
bit 15				•			bit 8			
					11.0					
R/W-U	R/W-U		0-0	0-0	0-0	R/W-U	R/W-U			
bit 7	IC4IF	ICSIF				SFIZIF	bit 0			
Legend:	L- L-14		L :4			l (0)				
R = Readab		VV = VVritable	DIT	U = Unimplem	nented bit, read	as '0' x = Dit io unkr	2014/2			
	IPUR				areu	X = DILIS UNKI	IOWII			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	PMPIF: Para	llel Master Port	Interrupt Flag	Status bit						
	1 = Interrupt	request has oc	curred							
hit 12		request nas no		unt Elaa Status k	sit					
DIL 12	1 = Interrupt	request has oc	curred	ipi Flay Status i	JIL					
	0 = Interrupt	request has no	t occurred							
bit 11	OC7IF: Outp	ut Compare Ch	annel 7 Interru	ipt Flag Status t	pit					
	1 = Interrupt	request has oc request has no	curred t occurred							
bit 10	OC6IF: Outp	ut Compare Ch	annel 6 Interru	ipt Flag Status b	bit					
	1 = Interrupt	request has oc request has no	curred t occurred							
bit 9	OC5IF: Outp	ut Compare Ch	annel 5 Interru	ipt Flag Status b	bit					
	1 = Interrupt	request has oc request has no	curred t occurred							
bit 8	IC6IF: Input (Capture Chann	el 6 Interrupt F	lag Status bit						
	1 = Interrupt	request has oc request has no	curred t occurred							
bit 7	IC5IF: Input (Capture Chann	el 5 Interrupt F	lag Status bit						
	1 = Interrupt	request has oc request has no	curred t occurred	Ū						
bit 6	IC4IF: Input (Capture Chann	el 4 Interrupt F	lag Status bit						
	1 = Interrupt	request has oc request has no	curred t occurred							
bit 5	IC3IF: Input (Capture Chann	el 3 Interrupt F	lag Status bit						
	1 = Interrupt	request has oc request has no	curred t occurred							
bit 4-2	Unimplemen	ited: Read as '	0'							
bit 1	SPI2IF: SPI2	Event Interrup	t Flag Status b	it						
	1 = Interrupt	request has oc	curred							
hit 0		request has no	t Eloa Status h	.i+						
	1 = nterrunt	request has oc	curred	ni (
	0 = Interrupt	request has no	t occurred							

REGISTER 7-13: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
IC5IE	IC4IE	IC3IE		_		SPI2IE	SPF2IE			
bit 7										
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15-14	Unimplemer	ted: Read as '	0'							
bit 13	PMPIE: Para	llel Master Port	Interrupt Enal	ble bit						
	1 = Interrupt	request enable	d							
hit 12		ut Compare Ch		unt Encollo hit						
		request enable	d							
	0 = Interrupt	request not ena	abled							
bit 11	OC7IE: Outp	ut Compare Ch	annel 7 Interru	upt Enable bit						
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not ena	abled							
bit 10	OC6IE: Outp	ut Compare Ch	annel 6 Interru	upt Enable bit						
	1 = Interrupt	request enable	d abled							
hit 9	OCSIE: Outo	ut Compare Ch	annel 5 Interri	int Enable bit						
bit 5	1 = Interrupt	request enable	d							
	0 = Interrupt	request not ena	abled							
bit 8	IC6IE: Input	Capture Chann	el 6 Interrupt E	Enable bit						
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not ena	abled							
bit 7	IC5IE: Input (Capture Chann	el 5 Interrupt E	nable bit						
	$\perp = Interrupt$ 0 = Interrupt	request enable	u abled							
bit 6	IC4IE: Input (Capture Chann	el 4 Interrupt F	nable bit						
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not ena	abled							
bit 5	IC3IE: Input	Capture Chann	el 3 Interrupt E	Enable bit						
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not ena	abled							
		ited: Read as	U t Evente hit							
DIT	1 = Interrupt	Event Interrup								
	1 = Interrupt 0 = Interrupt	request not enable	abled							
bit 0	SPF2IE: SPI	2 Fault Interrup	t Enable bit							
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not ena	abled							

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	_	_	—	—
bit 15	÷		·			·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0
bit 7	·		•		•	•	bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15-7	Unimplemen	ted: Read as '	כ'				
bit 6-4	AD1IP<2:0>:	A/D Conversio	n Complete In	terrupt Priority I	bits		
	111 = Interru	pt is priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	smitter Interrup	t Priority bits			
	111 = Interru	pt is priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 7-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	PMPIP2	PMPIP1	PMPIP0	—	OC8IP2	OC8IP1	OC8IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15-7	Unimplemen	ted: Read as '	D'				
bit 6-4	PMPIP<2:0>:	Parallel Maste	r Port Interrup	t Priority bits			
	111 = Interrup	ot is priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
	000 = Interrup	ot source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2-0	OC8IP<2:0>:	Output Compa	are Channel 8 I	nterrupt Priority	y bits		
	111 = Interrup	ot is priority 7 (l	highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
	000 = Interrup	ot source is dis	abled				

REGISTER 7-28: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

REGISTER 10-31: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8**RP19R<5:0>:** RP19 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP19 (see Table 10-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP18 (see Table 10-3 for peripheral function numbers)

REGISTER 10-32: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP21R<5:0>:** RP21 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP21 (see Table 10-3 for peripheral function numbers)bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP20R<5:0>:** RP20 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP20 (see Table 10-3 for peripheral function numbers)

FIGURE 14-2: OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

14.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[(PRy) + 1] \cdot TCY \cdot (Timer Prescale Value)$

where: PWM Frequency = 1/[PWM Period]

- **Note 1:** Based on TCY = TOSC * 2, Doze mode and PLL are disabled.
- Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register will yield a period consisting of 8 time base cycles.

14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS, and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

REGISTER	15-1: SPIX	51A1: 5PIX 5	AIUS AND	CONTROL R	EGIƏTER		
R/W-0	U-0	R/W-0	U-0	U-0	R-0	R-0	R-0
SPIEN ⁽¹⁾	—	SPISIDL		_	SPIBEC2	SPIBEC1	SPIBEC0
bit 15							bit 8
R-0	R/C-0 HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
SRMPT	SPIROV	PIROV SRXMPT SISEL2 SISEL1	SISEL1	SISEL0	SPITBF	SPIRBF	
bit 7							bit 0
Legend:		C = Clearable	bit	HS = Hardwa	re settable bit		
R = Readab	le bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
·							
bit 15	SPIEN: SPIX	Enable bit ⁽¹⁾					
	1 = Enables r 0 = Disables r	nodule and con module	figures SCKx,	SDOx, SDIx ar	nd SSx as seria	al port pins	
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13	SPISIDL: Sto	p in Idle Mode I	oit				
	1 = Discontinue 0 = Continue	ue module oper module operati	ation when de	evice enters Idle	emode		
bit 12-11	Unimplemen	ted: Read as 'd)'				
bit 10-8	SPIBEC<2:0	>: SPIx Buffer E	Element Count	bits (valid in Ei	nhanced Buffer	r mode)	
	Master mode: Number of SF	<u>:</u> PI transfers pen	ding.				
	Slave mode: Number of SF	PI transfers unre	ead.				
bit 7	SRMPT: Shift	Register (SPIx	SR) Empty bit	(valid in Enhar	nced Buffer mo	de)	
	1 = SPIx Shit 0 = SPIx Shit	ft register is em ft register is not	pty and ready empty	to send or rece	ive		
bit 6	SPIROV: Red	eive Overflow I	-lag bit				
	1 = A new by data in th	te/word is comp e SPIxBUF regi	letely received ster.	l and discarded.	. The user softv	vare has not rea	ad the previous
hit 5			u atv hit (valid in		for mode)		
DIUD	1 = Receive	EIFO is empty	pty bit (valiu il		lei mode)		
	0 = Receive	FIFO is not emp	oty				
bit 4-2	SISEL<2:0>:	SPIx Buffer Inte	errupt Mode bi	its (valid in Enh	anced Buffer n	node)	
	111 = Interru	pt when SPIx tr	ansmit buffer	is full (SPITBF	bit is set)	,	
	110 = Interru	pt when last bit	is shifted into	SPIxSR, as a r	esult, the TX F	IFO is empty	
	101 = Interru	pt when the las	t bit is shifted in	out of SPIXSR,	now the transr	TX FIFO has	one onen snot
	011 = Interru	pt when SPIx re	eceive buffer is	s full (SPIRBF b	bit set)		one open spot
	010 = Interru	pt when SPIx re	eceive buffer is	s 3/4 or more fu	, III		
	001 = Interru	pt when data is	available in re	eceive buffer (S	RMPT bit is se	et) a roquit tha h	uffor in omet
	(SRXN) = Interru	IPT bit set)	ist data in the	e receive du∏e	i is read, as a	a result, the D	uller is empty
Note 1: If	SPIEN = 1, the	se functions mu	st be assigned	d to available R	Pn pins before	use. See Sect	tion 10.4

REGISTER 15-1 SDIVETATI SDIV STATUS AND CONTROL DEGISTED

REGISTER 15-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - ... 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** If DISSCK = 0, SCKx must be configured to an available RPn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.
 - 2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select" for more information.
 - **3:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - **4:** If SSEN = 1, SSx must be configured to an available RPn pin. See **Section 10.4** "**Peripheral Pin Select**" for more information.

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	SPIFPOL	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SPIFE	SPIBEN
bit 7							bit 0

Legend:					
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 15	FRMEN: Fran	ned SPIx Support bit			
	1 = Framed S 0 = Framed S	Plx support enabled Plx support disabled			
bit 14	SPIFSD: Fran	me Sync Pulse Direction Con	trol on SSx pin bit		
	1 = Frame sy 0 = Frame sy	nc pulse input (slave) nc pulse output (master)			
bit 13	SPIFPOL: Fra	ame Sync Pulse Polarity bit (I	Frame mode only)		
	1 = Frame sy 0 = Frame sy	nc pulse is active-high nc pulse is active-low			
bit 12-2	Unimplemen	ted: Read as '0'			
bit 1	SPIFE: Frame	e Sync Pulse Edge Select bit			
	1 = Frame sy 0 = Frame sy	nc pulse coincides with first b nc pulse precedes first bit clo	it clock ck		
bit 0	SPIBEN: Enh	anced Buffer Enable bit			
	1 = Enhanced 0 = Enhanced	d Buffer enabled d Buffer disabled (Legacy mo	de)		

REGISTER '	18-6: U1ST	AT: USB STA	TUS REGIS	TER				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	—	—	_	—	—	—	
bit 15							bit 8	
R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	
ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI ⁽¹⁾	<u> </u>	<u> </u>	
bit 7							bit 0	
Legend:		U = Unimplen	nented bit, read	d as '0'				
R = Readable bit		W = Writable bit		HSC = Hardware Settable/Clearable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-8	Unimplemen	ted: Read as '	כי					
bit 7-4	ENDPT<3:0>: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer). 1111 = Endpoint 15 1110 = Endpoint 14 0001 = Endpoint 1							
hit 3	DIR · Last RD	Direction India	ator hit					
	1 = The last to $0 = The last to$	transaction was	a transmit tra a receive tran	nsfer (Tx) isfer (Rx)				

- bit 2 **PPBI:** Ping-Pong BD Pointer Indicator bit⁽¹⁾
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'
- Note 1: This bit is only valid for endpoints with available EVEN and ODD BD registers.

18.7.2 USB INTERRUPT REGISTERS

REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state detected
	0 = No ID state change
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	 1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS detected
	0 = No activity on the D+/D- lines or VBUS detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	1 = VBUS change on B-device detected; VBUS has crossed VB_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB OTG Specification) ⁽¹⁾
	0 = No VBUS change on A-device detected
Note 1:	VBUS threshold crossings may be either rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

FIGURE 19-9: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION

FIGURE 19-10: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 8-BIT DATA)

FIGURE 19-11: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 16-BIT DATA)

FIGURE 19-12: LCD CONTROL EXAMPLE (BYTE MODE OPERATION)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit		nented bit, rea		
-n = Value at	POR	'1' = Bit is set		0° = Bit is clea	ared	x = Bit is unkr	nown
1.11.45							
bit 15		arm Enable bit	ad automatica	lly offer on ele	rm overt whe	nover ADDT-7	0 > -00b and
	CHIME =		eu automatica	ily aller all ala		nevel ARFISI	.07 – 0011 anu
	0 = Alarm is	disabled					
bit 14	CHIME: Chim	ne Enable bit					
	1 = Chime is	enabled; ARP	<pre>F<7:0> bits are</pre>	allowed to roll	over from 00h	to FFh	
	0 = Chime is	disabled; ARP	I <7:0> bits sto	p once they rea	ach 00h		
bit 13-10	AMASK<3:0	>: Alarm Mask	Configuration b	oits			
	0000 = Evel	ry half second					
	0001 = Even	ry 10 seconds					
	0011 = Eve	ry minute					
	0100 = Eve	ry 10 minutes					
	0101 = Eve	ry hour					
	0110 = Onc	e a day a a week					
	1000 = Onc	e a month					
	1001 = Onc	e a year (excep	t when configu	ired for Februa	ry 29th, once e	every 4 years)	
	101x = Res	erved – do not	use				
1 1 0 0	11xx = Res	erved – do not	use		.,		
bit 9-8	ALRMPIR<1	:0>: Alarm Valu	ue Register Wi	ndow Pointer b	Its Its DMV//		ALL registers:
	the ALRMPT	R<1:0> value de	crements on e	very read or wri	ite of ALRMVA	LH until it reach	ies '00'.
	ALRMVAL<1	<u>5:8>:</u>		5			
	00 = ALRMM	lin					
	01 = ALRMW	/D					
	10 = ALRIVIN11 = Unimple	IN I H mented					
	ALRMVAL<7	:0>:					
	00 = ALRMS	EC					
	01 = ALRMH	R					
	10 = ALRMD	AY					
			Counter Value	hita			
DIL 7-0	111111111 =	Alarm will rep	at 255 more ti	lines			
	····						
	00000000 =	Alarm will not	repeat				_
	The counter of		any alarm eve	ent. The counte	r is prevented	trom rolling ov	er trom 00h to
	FFIT unless C	$\neg \square \forall \square \Box = \bot$.					

REGISTER 20-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

20.1.5 ALRMVAL REGISTER MAPPINGS

REGISTER 20-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0	
bit 15							bit 8	
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-13	Unimplemented: Read as '0'							
bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit								
Contains a value of 0 or 1.								
bit 11-8	11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits							
	Contains a va	alue from 0 to 9.						
bit 7-6	Unimplemented: Read as '0'							
bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits								
	Contains a va	alue from 0 to 3.		-	•			
bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits								
	Contains a va	alue from 0 to 9.		,	5			
Note 1: A write to this register is only allowed when RTCWREN = 1.								

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2