

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb110-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Function 64-Pin TQFP 80-Pin TOFP 100-Pin TQFP 100-Pin TQFP 100-Pin TQFP Portage Description RC1 4 6 1/0 ST RC2 7 1/0 ST RC3 5 8 1/0 ST RC4 9 1/0 ST RC12 39 49 63 1/0 ST RC14 48 60 74 1/0 ST RC14 49 61 76 1/0 ST RD1 49 61 76 1/0 ST RD2 50 62 77 1/0 ST RD3 51 63 78 1/0 ST			Pin Number				
RC1 — 4 6 I/O ST PORTC Digital I/O. RC2 — - 7 I/O ST RC3 — 5 8 I/O ST RC4 — - 9 I/O ST RC12 39 49 63 I/O ST RC14 48 60 74 I/O ST RC14 48 60 74 I/O ST RC14 48 60 74 I/O ST RC14 48 62 77 I/O ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 <td< th=""><th>Function</th><th>64-Pin TQFP, QFN</th><th>80-Pin TQFP</th><th>100-Pin TQFP</th><th>I/O</th><th>Input Buffer</th><th>Description</th></td<>	Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
RC2 7 I/O ST RC3 5 8 I/O ST RC4 9 I/O ST RC12 39 49 63 I/O ST RC13 47 59 73 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD4 55 70 <td>RC1</td> <td>_</td> <td>4</td> <td>6</td> <td>I/O</td> <td>ST</td> <td>PORTC Digital I/O.</td>	RC1	_	4	6	I/O	ST	PORTC Digital I/O.
RC3 5 8 I/O ST RC4 - 9 I/O ST RC12 39 49 63 I/O ST RC13 47 59 73 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RCV 18 22 27 I ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD4 52 66 81 I/O ST RD5 53 67 V/O ST RD4 55 77 I/O	RC2	_	_	7	I/O	ST	
RC4 9 I/O ST RC12 39 49 63 I/O ST RC13 47 59 73 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RCV 18 22 27 I ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD4 52 67 91 I/O ST RD10 44 56 70 </td <td>RC3</td> <td>_</td> <td>5</td> <td>8</td> <td>I/O</td> <td>ST</td> <td></td>	RC3	_	5	8	I/O	ST	
RC123949631/0STRC134759731/0STRC144860741/0STRC154050641/0STRCV1822271STRD04658721/0STRD14961761/0STRD25062771/0STRD35163781/0STRD45266811/0STRD55367821/0STRD65468831/0STRD75569841/0STRD84254681/0STRD104456701/0STRD104456701/0STRD104456701/0STRD114557711/0STRD12-64791/0STRD14-37471/0STRE16177941/0STRE26278981/0STRE36379991/0STRE464801001/0STRE51131/0STRE62241/0STRE622 <td>RC4</td> <td>_</td> <td> </td> <td>9</td> <td>I/O</td> <td>ST</td> <td></td>	RC4	_		9	I/O	ST	
RC13 47 59 73 I/O ST RC14 48 60 74 I/O ST RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RCV 18 22 27 I ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD14 64 79 I/O ST RD14 37 </td <td>RC12</td> <td>39</td> <td>49</td> <td>63</td> <td>I/O</td> <td>ST</td> <td></td>	RC12	39	49	63	I/O	ST	
RC14 48 60 74 I/O ST RC15 40 50 64 I/O ST RCV 18 22 27 1 ST USB Receive Input (from external transceiver). RD0 46 58 72 I/O ST PORTD Digital I/O. RD1 49 61 76 I/O ST PORTD Digital I/O. RD2 50 62 77 I/O ST PORTD Digital I/O. RD4 52 66 81 I/O ST PORTD Digital I/O. RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST	RC13	47	59	73	I/O	ST	
RC15 40 50 64 I/O ST RCV 18 22 27 I ST RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD1 43 55 69 I/O ST RD1 44 56 70 I/O ST RD1 45 57 71 I/O ST RD14 37 47 I/O ST RD15 38	RC14	48	60	74	I/O	ST	
RCV 18 22 27 I ST USB Receive Input (from external transceiver). RD0 46 58 72 I/O ST RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST <t< td=""><td>RC15</td><td>40</td><td>50</td><td>64</td><td>I/O</td><td>ST</td><td></td></t<>	RC15	40	50	64	I/O	ST	
RD0 46 58 72 I/O ST PORTD Digital I/O. RD1 49 61 76 I/O ST RD2 50 62 77 I/O ST RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE2	RCV	18	22	27	I	ST	USB Receive Input (from external transceiver).
RD1496176I/OSTRD2506277I/OSTRD3516378I/OSTRD4526681I/OSTRD5536782I/OSTRD6546883I/OSTRD7556984I/OSTRD8425468I/OSTRD9435569I/OSTRD10445670I/OSTRD126479I/OSTRD136580I/OSTRD143747I/OSTRD153848I/OSTRE1617794I/OSTRE2627898I/OSTRE3637999I/OSTRE46480100I/OSTRE5113I/OSTRE6224I/ORE7335I/ORE81318I/ORE9-1419I/OREFO303644OReference Clock Output.	RD0	46	58	72	I/O	ST	PORTD Digital I/O.
RD2506277I/OSTRD3516378I/OSTRD4526681I/OSTRD5536782I/OSTRD6546883I/OSTRD75556984I/OSTRD8425466I/OSTRD9435569I/OSTRD10445670I/OSTRD11455771I/OSTRD126479I/OSTRD136580I/OSTRD143747I/OSTRD153848I/OSTRE2627898I/OSTRE3637999I/OSTRE46480100I/OSTRE5113I/OSTRE5113I/OSTRE6224I/OSTRE5113I/OSTRE6224I/OSTRE7335I/OSTRE81318I/OSTRE91419I/OSTREFO303644O	RD1	49	61	76	I/O	ST	
RD3 51 63 78 I/O ST RD4 52 66 81 I/O ST RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD13 - 65 80 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE4 64 80 <td>RD2</td> <td>50</td> <td>62</td> <td>77</td> <td>I/O</td> <td>ST</td> <td></td>	RD2	50	62	77	I/O	ST	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RD3	51	63	78	I/O	ST	
RD5 53 67 82 I/O ST RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 - 64 79 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1	RD4	52	66	81	I/O	ST	
RD6 54 68 83 I/O ST RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 - 64 79 I/O ST RD13 - 65 80 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2	RD5	53	67	82	I/O	ST	
RD7 55 69 84 I/O ST RD8 42 54 68 I/O ST RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 - 64 79 I/O ST RD13 - 65 80 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2	RD6	54	68	83	I/O	ST	
RD8 42 54 68 I/O ST RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD13 65 80 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 <td>RD7</td> <td>55</td> <td>69</td> <td>84</td> <td>I/O</td> <td>ST</td> <td></td>	RD7	55	69	84	I/O	ST	
RD9 43 55 69 I/O ST RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 - 64 79 I/O ST RD13 - 65 80 I/O ST RD14 - 37 47 I/O ST RD15 - 38 48 I/O ST RD15 - 38 48 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE8 13	RD8	42	54	68	I/O	ST	
RD10 44 56 70 I/O ST RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD13 65 80 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE8 13 18 I/O ST RE9 - 14	RD9	43	55	69	I/O	ST	
RD11 45 57 71 I/O ST RD12 64 79 I/O ST RD13 65 80 I/O ST RD14 37 47 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE8 13 18 I/O ST RE9 - 14	RD10	44	56	70	I/O	ST	
RD12 64 79 I/O ST RD13 65 80 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36	RD11	45	57	71	I/O	ST	
RD13 65 80 I/O ST RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RD12	_	64	79	I/O	ST	
RD14 37 47 I/O ST RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RD13	—	65	80	I/O	ST	
RD15 38 48 I/O ST RE0 60 76 93 I/O ST RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RD14	_	37	47	I/O	ST	
RE0 60 76 93 I/O ST PORTE Digital I/O. RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RD15	_	38	48	I/O	ST	
RE1 61 77 94 I/O ST RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE0	60	76	93	I/O	ST	PORTE Digital I/O.
RE2 62 78 98 I/O ST RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE1	61	77	94	I/O	ST	
RE3 63 79 99 I/O ST RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE2	62	78	98	I/O	ST	
RE4 64 80 100 I/O ST RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE3	63	79	99	I/O	ST	
RE5 1 1 3 I/O ST RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE4	64	80	100	I/O	ST	
RE6 2 2 4 I/O ST RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE5	1	1	3	I/O	ST	
RE7 3 3 5 I/O ST RE8 13 18 I/O ST RE9 14 19 I/O ST REFO 30 36 44 O Reference Clock Output.	RE6	2	2	4	I/O	ST	
RE8 — 13 18 I/O ST RE9 — 14 19 I/O ST REFO 30 36 44 O — Reference Clock Output.	RE7	3	3	5	I/O	ST	
RE9 — 14 19 I/O ST REFO 30 36 44 O — Reference Clock Output.	RE8	_	13	18	I/O	ST]
REFO 30 36 44 O — Reference Clock Output.	RE9	_	14	19	I/O	ST	
	REFO	30	36	44	0	_	Reference Clock Output.

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 4-10: UART REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	-	-	_	_				Trar	nsmit Regis	ter				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				Rec	eive Regist	er				0000
U1BRG	0228							Baud R	ate Genera	tor Prescaler	Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				Trar	nsmit Regis	ter				xxxx
U2RXREG	0236	_	_	-	-	-	_	_				Rec	eive Regist	er				0000
U2BRG	0238							Baud R	ate Genera	tor Prescaler	Register							0000
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	—	—	—	_	_	_	_				Trar	nsmit Regis	ter				xxxx
U3RXREG	0256	—	—	—	_	_	_	_				Rec	eive Regist	ter				0000
U3BRG	0258							Baud R	ate Genera	tor Prescaler	Register							0000
U4MODE	02B0	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	—	—	—	—	_	—	—				Trar	nsmit Regis	ter				xxxx
U4RXREG	02B6	_	_	_	_	_	_					Rec	eive Regist	er				0000
U4BRG	02B8							Baud R	ate Genera	tor Prescaler	Register							0000
Logondi		implomente	d road oo '(' Booot valu	ion are ab	own in how	adaaimal											

d. read as 0. Reset values are snown in nexadecimal

TABLE 4-11: SPI REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI1BUF	0248		Transmit and Receive Buffer 00											0000				
SPI2STAT	0260	SPIEN		SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_		—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL			_	_	_	_	_	_	_		_	SPIFE	SPIBEN	0000
SPI2BUF	0268							Tra	ansmit and F	Receive Bu	ffer							0000
SPI3STAT	0280	SPIEN		SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	0282	_		_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	0284	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_		_	_	_	_	SPIFE	SPIBEN	0000
SPI3BUF	0288							Tra	ansmit and I	Receive Bu	ffer							0000
Legend:	— = un	implemente	d, read as '	0'. Reset va	alues are sh	nown in hex	adecimal.											

© 2009 Microchip Technology Inc.

4.2.5 SOFTWARE STACK

In addition to its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-4: CALL STACK FRAME

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (program space visibility)

Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-31 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 8.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC Configuration bits
BOR	(CW2<10:8>)
MCLR	COSC Control bits
WDTO	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3, 6
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	TLOCK	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Tost	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	_	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3, 6
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	Тьоск	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Tost	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_	_	_

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if regulator is disabled (ENVREG tied to Vss).
- 3: TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL lock time.

5: TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing oscillator clock to the system.

6: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 29.0 "Electrical Characteristics".

	Vector		AIVT	Inte	Interrupt Bit Locations				
	Number	IVI Address	Address	Flag	Enable	Priority			
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>			
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>			
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>			
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>			
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>			
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>			
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>			
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>			
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>			
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>			
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>			
UART3 Error	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>			
UART3 Receiver	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>			
UART3 Transmitter	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>			
UART4 Error	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>			
UART4 Receiver	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>			
UART4 Transmitter	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>			
USB Interrupt	86	0000C0h	0001C0h	IFS5<6>	IEC5<6>	IPC21<10:8>			

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

7.3 Interrupt Control and Status Registers

The PIC24FJ256GB110 family of devices implements a total of 37 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS5
- IEC0 through IEC5
- IPC0 through IPC23 (except IPC14 and IPC17)
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit which is set by the respective peripherals, or an external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU interrupt priority level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All interrupt registers are described in Register 7-1 through Register 7-39, in the following pages.

REGISTER 7	7-6: IFS1:	INTERRUPT	FLAG STAT	US REGISTE	R 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_
bit 15							bit 8
DAALO	DAMA			D 444 0	DANA		DAMA
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IC/IF	—	IN I 1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
DIT /							Dit U
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	U2TXIF: UAR 1 = Interrupt r 0 = Interrupt r	T2 Transmitter equest has occ equest has not	Interrupt Flag curred occurred	Status bit			
bit 14	U2RXIF: UAF 1 = Interrupt r 0 = Interrupt r	RT2 Receiver In request has occ request has not	terrupt Flag Si curred occurred	tatus bit			
bit 13	INT2IF: Exter 1 = Interrupt r 0 = Interrupt r	nal Interrupt 2 equest has occ equest has not	Flag Status bit surred occurred				
bit 12	T5IF: Timer5 1 = Interrupt r 0 = Interrupt r	Interrupt Flag S equest has occ equest has not	Status bit curred occurred				
bit 11	T4IF: Timer4 1 = Interrupt r 0 = Interrupt r	Interrupt Flag S equest has occ equest has not	Status bit surred occurred				
bit 10	OC4IF: Output 1 = Interrupt r 0 = Interrupt r	ut Compare Cha equest has occ equest has not	annel 4 Interru surred occurred	pt Flag Status t	Dit		
bit 9	OC3IF: Output 1 = Interrupt r 0 = Interrupt r	ut Compare Cha request has occ request has not	annel 3 Interru :urred occurred	pt Flag Status t	bit		
bit 8	Unimplemen	ted: Read as 'd)'				
bit 7	IC8IF: Input C 1 = Interrupt r 0 = Interrupt r	Capture Channe request has occ request has not	el 8 Interrupt F curred occurred	lag Status bit			
bit 6	IC7IF: Input C 1 = Interrupt r 0 = Interrupt r	Capture Channe request has occ request has not	el 7 Interrupt F curred occurred	lag Status bit			
bit 5	Unimplemen	ted: Read as 'd)'				
bit 4	INT1IF: Exter 1 = Interrupt r 0 = Interrupt r	nal Interrupt 1 equest has occ equest has not	Flag Status bit curred occurred				
bit 3	CNIF: Input C 1 = Interrupt r 0 = Interrupt r	hange Notifica equest has occ equest has not	tion Interrupt F curred occurred	lag Status bit			
bit 2	CMIF: Compa 1 = Interrupt r 0 = Interrupt r	arator Interrupt equest has occ equest has not	Flag Status bit curred occurred				
bit 1	MI2C1IF: Mas 1 = Interrupt r 0 = Interrupt r	ster I2C1 Event equest has occ equest has not	Interrupt Flag urred occurred	Status bit			
bit 0	SI2C1IF: Slav 1 = Interrupt r 0 = Interrupt r	ve I2C1 Event I equest has occ equest has not	nterrupt Flag S curred occurred	Status bit			

REGISTER	7-7: IFS2:	INTERRUPT	FLAG STA	IUS REGISTE	R 2		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15				•			bit 8
					11.0		
R/W-U	R/W-U		0-0	0-0	0-0	R/W-U	R/W-U
bit 7	IC4IF	ICSIF				SFIZIF	bit 0
Legend:	L- L-14		L :4			l (0)	
R = Readab		VV = VVritable	DIT	U = Unimplem	nented bit, read	as '0' x = Dit io unkr	2014/2
	IPUR				areu	X = DILIS UNKI	IOWII
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	PMPIF: Para	llel Master Port	Interrupt Flag	Status bit			
	1 = Interrupt	request has oc	curred				
hit 12		request nas no		unt Elaa Status k	sit		
DIL 12	1 = Interrupt	request has oc	curred	ipi Flay Status i	JIL		
	0 = Interrupt	request has no	t occurred				
bit 11	OC7IF: Outp	ut Compare Ch	annel 7 Interru	ipt Flag Status t	pit		
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 10	OC6IF: Outp	ut Compare Ch	annel 6 Interru	ipt Flag Status b	bit		
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 9	OC5IF: Outp	ut Compare Ch	annel 5 Interru	ipt Flag Status b	bit		
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 8	IC6IF: Input (Capture Chann	el 6 Interrupt F	lag Status bit			
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 7	IC5IF: Input (Capture Chann	el 5 Interrupt F	lag Status bit			
	1 = Interrupt	request has oc request has no	curred t occurred	Ū			
bit 6	IC4IF: Input (Capture Chann	el 4 Interrupt F	lag Status bit			
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 5	IC3IF: Input (Capture Chann	el 3 Interrupt F	lag Status bit			
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 4-2	Unimplemen	ted: Read as '	0'				
bit 1	SPI2IF: SPI2	Event Interrup	t Flag Status b	it			
	1 = Interrupt	request has oc	curred				
hit 0		request has no	t Eloa Status h	.i+			
	1 = nterrunt	request has oc	curred	ni (
	0 = Interrupt	request has no	t occurred				

REGISTER 7-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_	T4IP2	T4IP1	T4IP0		OC4IP2	OC4IP1	OC4IP0						
bit 15					•		bit 8						
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0						
—	OC3IP2	OC3IP1	OC3IP0	—	—	—	—						
bit 7							bit 0						
Legend:													
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
			- 1										
bit 15	Unimplemen	ted: Read as											
bit 14-12	14IP<2:0>:	T4IP<2:0>: Timer4 Interrupt Priority bits											
	•	pt is priority 7 (nignest priority	interrupt)									
	•												
	•												
	001 = Interru 000 = Interru	pt is priority 1 pt source is dis	abled										
bit 11	Unimplemen	ted: Read as '	0'										
bit 10-8	OC4IP<2:0>:	Output Compa	are Channel 4	Interrupt Priority	/ bits								
	111 = Interru	pt is priority 7 (highest priority	interrupt)									
	•												
	•												
	001 = Interru	pt is priority 1											
	000 = Interru	pt source is dis	abled										
bit 7	Unimplemen	ted: Read as '	0'										
bit 6-4	OC3IP<2:0>:	Output Compa	are Channel 3	Interrupt Priority	/ bits								
	111 = Interru	pt is priority 7 (highest priority	interrupt)									
	•												
	•												
	001 = Interru	pt is priority 1											
	000 = Interru	pt source is dis	abled										
bit 3-0	Unimplemen	ted: Read as '	0'										
	-												

REGISTER 10-33: RPOR11: PERIPHER	AL PIN SELECT OUTPUT REGISTER 11
----------------------------------	----------------------------------

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		DDOOD5			DDOODO		

0-0	0-0	R/W-U	R/W-U	R/W-U	R/W-U	R/W-U	R/W-U
—	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

- bit 13-8
 RP23R<5:0>: RP23 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP23 (see Table 10-3 for peripheral function numbers)

 bit 7-6
 Unimplemented: Read as '0'
- bit 5-0 **RP22R<5:0>:** RP22 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP22 (see Table 10-3 for peripheral function numbers)

REGISTER 10-34: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

11.0	11.0						
0-0	0-0	N/W-0	N/W-0	N/W-0	F\/ VV-U	N/ VV-0	FV/VV-0
—	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP25R<5:0>:** RP25 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP25 (see Table 10-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP24R<5:0>:** RP24 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP24 (see Table 10-3 for peripheral function numbers)

FIGURE 12-3: TIMER3 AND TIMER5 (16-BIT ASYNCHRONOUS) BLOCK DIAGRAM

REGISTER 14-1:	OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1
----------------	--

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_
bit 15							bit 8
R/W-0	<u>U-0</u>	0-0	R/W-0, HCS	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT(0 —	—	OCFLT0	TRIGMODE	OCM2(")	OCM1 ⁽¹⁾	OCM0(")
DIT /							Dit U
Leaend:				HCS = Hardw	are Clearable/	Settable bit	
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	Unimplemen	nted: Read as '	0' 				
bit 13	OCSIDL: Sto	op Output Comp	are x in Idle Mo	ode Control bit			
	1 = Output C 0 = Output C	Compare x naits	nues to operate	ode e in CPU Idle m	node		
bit 12-10	OCTSEL<2:	0>: Output Com	pare x Timer S	elect bits			
	111 = Syste r	m Clock					
	110 = Reser	ved					
	101 = Reser 100 = Timer	vea 1					
	011 = Timer	5					
	010 = Timer	4					
	001 = 11mer	3 2					
bit 9-8	Unimplemer	nted: Read as '	0'				
bit 7	ENFLT0: Fai	ult 0 Input Enab	le bit				
	1 = Fault0i	input is enabled	I				
bit 6-5	Unimplemer	nted: Read as '	0'				
bit 4	OCFLT0: PV	VM Fault Condit	ion Status bit				
	1 = PWM Fa	ault condition ha	s occurred (cle	ared in HW onl	y)		
	0 = No PWN	A Fault condition	has occurred	(this bit is only	used when OC	CM<2:0> = 111)
bit 3	TRIGMODE:	Trigger Status	Mode Select bi	t L OO DO	00 740	~	
	1 = TRIGST 0 = TRIGST	AT (OCxCON2< AT is only clear	<6>) is cleared ed by software	when OCXRS =	= OCXTMR or I	n software	
bit 2-0	OCM<2:0>:	Output Compar	e x Mode Selec	t bits ⁽¹⁾			
	111 = Cer	nter-aligned PW	M mode on OC	(2) (2)			
	110 = Edg	e-aligned PWN	Mode on OCx	(2) o model laitielii			
		tinuously on alte	ontinuous Puis ernate matches	e mode: Initializ	ZE OCX pin low	, toggle OCX si	late
	100 = Dou	Ible Compare S	ingle-Shot mod	le: Initialize OC	x pin low, togg	le OCx state or	n matches of
	011 = Sing	gle Compare Co	ntinuous Pulse	e mode: Compa	re events cont	inuously toggle	OCx pin
	010 = Sing	gle Compare Si	ngle-Shot mode	: Initialize OCx	pin high, comp	pare event force	es OCx pin low
	001 = Sing 000 = Out	gie Compare Sii put compare ch	ngie-Shot mode annel is disable	e: initialize OCx	pin low, compa	are event forces	s OCx pin high
Note 1:	The OCx output	must also be co	nfigured to an a	available RPn p	in. For more in	formation, see	Section 10.4
2:	OCFA pin contro	Is the OC1-OC4	t channels: OC	FB pin controls	the OC5-OC9	channels OC	xR and
	OCxRS are doub	ple-buffered only	/ in PWM mode	S.		0.10111010101000	

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock

- frequency (Fosc/2).
 - **2:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH BRGH = $1^{(1,2)}$

		Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$
		$UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$
Note	1:	Fcy denotes the instruction cycle clock frequency.

2: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (UxBRG + 1))Solving for UxBRG value: UxBRG = ((FCY/Desired Baud Rate)/16) - 1UxBRG = ((400000/9600)/16) - 1UxBRG = 2.5 Calculated Baud Rate= 4000000/(16 (25 + 1)) 9615 = Error (Calculated Baud Rate - Desired Baud Rate) = Desired Baud Rate = (9615 - 9600)/9600= 0.16%**Note 1:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.

REGISTER 17-2: UxSTA: UARTX STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1		
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	_	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT		
bit 15						•	bit 8		
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0		
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		
bit 7							bit 0		
Legend: C = Clearable		bit	HC = Hardware Clearable bit						
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15,13	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)								
bit 14	UTXINV: IrDA	A ^w Encoder Trar	nsmit Polarity	Inversion bit ⁽¹⁾					

1 = UxTX Idle '0' 0 = UxTX Idle '1' **IREN =** 1: 1 = UxTX Idle '1' 0 = UxTX Idle '0'bit 12 Unimplemented: Read as '0' bit 11 UTXBRK: Transmit Break bit 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed bit 10 UTXEN: Transmit Enable bit⁽²⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port. bit 9 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer. Receive buffer has one or more characters. Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select" for more information.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0
bit 15							bit 8
R/VV-U		K/VV-U				R/VV-U	
bit 7	WAITED.	WAITINIS	VVALLIVIZ	VVALLIVLI	VVALLIVIU	WAITER	bit 0
bit i							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15 bit 14-13	BUSY: Busy b 1 = Port is bu 0 = Port is no IRQM<1:0>: I	bit (Master moo sy (not useful v t busy nterrupt Reque	le only) when the proce est Mode bits	essor stall is ac	tive)		
	 11 = Interrup or on a 10 = No inter 01 = Interrup 00 = No inter 	t generated wh read or write o rupt generated t generated at rupt generated	nen Read Buffe peration when I, processor sta the end of the I	er 3 is read or V PMA<1:0> = 1 all activated read/write cycl	Vrite Buffer 3 is 1 (Addressable e	written (Buffere PSP mode on	ed PSP mode) ly)
bit 12-11	INCM<1:0>: In 11 = PSP rea	ncrement Mode ad and write bu	e bits Iffers auto-incr	ement (Legacy	PSP mode on	ly)	
	01 = Increme 00 = No incre	ent ADDR<10: ement or decre	 by 1 every r by 1 every r ment of addre 	ead/write cycle ss			
bit 10	MODE16: 8/1	6-Bit Mode bit					
	1 = 16-bit mo 0 = 8-bit mod	de: Data regist e: Data registe	er is 16 bits, a r is 8 bits, a re	read or write to ad or write to th	the Data registe	ter invokes two r invokes one 8	8-bit transfers -bit transfer
bit 9-8	MODE<1:0>:	Parallel Port N	lode Select bit	s			
	11 = Master 10 = Master 01 = Enhanc 00 = Legacy	mode 1 (PMCS mode 2 (PMCS ed PSP, contro Parallel Slave	61, PMRD/PM 61, PMRD, PM ol signals (PMF Port, control s	WR, PMENB, F IWR, PMBE, Pl RD, PMWR, PM ignals (PMRD,	PMBE, PMA <x: MA<x:0> and F ICS1, PMD<7:0 PMWR, PMCS</x:0></x: 	0> and PMD<7 2MD<7:0>) 2> and PMA<1: 31 and PMD<7:0	:0>) 0>) 0>)
bit 7-6	WAITB<1:0>:	Data Setup to	Read/Write W	ait State Config	guration bits ⁽¹⁾		
	11 = Data wa 10 = Data wa 01 = Data wa 00 = Data wa	ait of 4 Tcy; mu ait of 3 Tcy; mu ait of 2 Tcy; mu ait of 1 Tcy; mu	Itiplexed addre Itiplexed addre Itiplexed addre Itiplexed addre	ess phase of 4 ess phase of 3 ess phase of 2 ess phase of 1	Тсү Тсү Тсү Тсү		
bit 5-2	WAITM<3:0>:	Read to Byte	Enable Strobe	Wait State Cor	nfiguration bits		
	1111 = Wait c	of additional 15	Тсү				
	 0001 = Wait o 0000 = No ad	of additional 1 T ditional wait cy	TCY cles (operation	n forced into on	е Тсү) ⁽²⁾		
bit 1-0	WAITE<1:0>:	Data Hold Afte	er Strobe Wait	State Configura	ation bits ⁽¹⁾		
	11 = Wait of 4	4 TCY					
	10 = Wait of 3	3 ICY 2 Toy					
	00 = Wait of	1 TCY					
Note 1: T	he WAITB and V	VAITE bits are	ignored whene	ever WAITM<3:	0> = 0000.		

REGISTER 19-2: PMMODE: PARALLEL PORT MODE REGISTER

2: A single-cycle delay is required between consecutive read and/or write operations.

REGISTER 20-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x		
_	_		_		WDAY2	WDAY1	WDAY0		
bit 15	·				•	•	bit 8		
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0		
bit 7					•		bit 0		
Legend:									
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown				
bit 15-11	Unimplemented: Read as '0'								
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.								
bit 7-6	Unimplement	ted: Read as '0'							
bit 5-4	HRTEN<1:0>	: Binary Coded	Decimal Value	e of Hour's Ten	s Digit bits				
	Contains a va	lue from 0 to 2							
bit 3-0	HRONE<3:0>	Binary Code	d Decimal Valu	e of Hour's One	es Digit bits				
	Contains a value from 0 to 9.								

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x R/W-x		R/W-x	R/W-x
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	VINONE3 MINONE2		MINONE0
bit 15							bit 8

U-0	R/W-x	R/W-x	R/W-x	R/W-x R/W-x		R/W-x	R/W-x
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

© 2009 Microchip Technology Inc.

REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 **CREF:** Comparator Reference Select bits (non-inverting input)
 - 1 = Non-inverting input connects to internal CVREF voltage
 - 0 = Non-inverting input connects to CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of comparator connects to VBG/2
 - 10 = Inverting input of comparator connects to CxIND pin
 - 01 = Inverting input of comparator connects to CXINC pin
 - 00 = Inverting input of comparator connects to CxINB pin

REGISTER 23-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
CMIDL		—	—	— C3EVT		C2EVT	C1EVT
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
—	—	—	—	—	– C3OUT		C1OUT
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15	 CMIDL: Comparator Stop in Idle Mode bit 1 = Module does not generate interrupts in Idle mode, but is otherwise operational 0 = Module continues normal operation in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

TABLE 29-10: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)									
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
	Vrgout	Regulator Output Voltage	—	2.5	_	V			
	Vbg	Internal Band Gap Reference		1.2		V			
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.		
	TVREG	EG Regulator Start-up Time							
			—	10	—	μs	PMSLP = 1, or any POR or BOR		
			—	190		μS	Wake for sleep when PMSLP = 0		
	ТвG	Band Gap Reference Start-up Time	_	_	1	ms			

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com