

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb110t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCI R

Vss

Vdd

C1

C6⁽²⁾-

Ī

2.0 **GUIDELINES FOR GETTING STARTED WITH 16-BIT** MICROCONTROLLERS

2.1 **Basic Connection Requirements**

Getting started with the PIC24FJ256GB110 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVSS pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG/DISVREG and VCAP/VDDCORE pins (PIC24FJ devices only) (see Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- · OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for analog modules is implemented

The AVDD and AVSS pins must always be Note: connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

RECOMMENDED FIGURE 2-1: MINIMUM CONNECTIONS C2⁽²⁾ Vdd ŹR1 20 /ss (1) (1) R2 (EN/DIS)VREG

PIC24FXXXX

VCAP/VDDCORE

20/

C4⁽²⁾

VDD

Vss

/SS

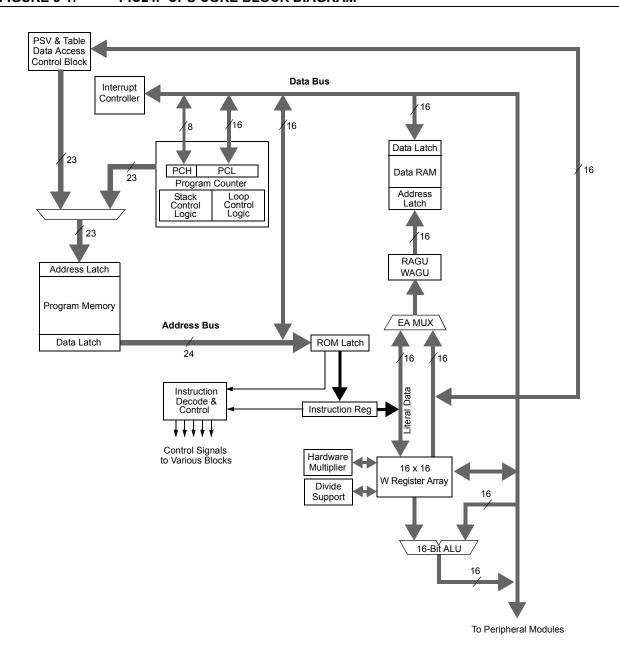
C7

C3(2)

Key (all values are recommendations):

AVDD

AVSS


C1 through C6: 0.1 µF, 20V ceramic

C7: 10 $\mu\text{F},\,6.3\text{V}$ or greater, tantalum or ceramic

C5⁽²⁾

R1: 10 kΩ

- R2: 100Ω to 470Ω
- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)" for explanation of ENVREG/DISVREG pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

TABLE 4-10: UART REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	—		—	—	—	—					Trar	smit Regist	er				xxxx
U1RXREG	0226	_		_	—	_	—					Rec	eive Regist	er				0000
U1BRG	0228							Baud Ra	ate Genera	tor Prescaler	Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	—		—	—	—	—					Trar	smit Regist	er				xxxx
U2RXREG	0236	—	_	Receive Register							0000							
U2BRG	0238							Baud Ra	ate Genera	tor Prescaler	Register							0000
U3MODE	0250	UARTEN		USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	_		_	—	_	—					Trar	smit Regist	ter				xxxx
U3RXREG	0256	—		—	—	—	—					Rec	eive Regist	er				0000
U3BRG	0258							Baud Ra	ate Genera	tor Prescaler	Register							0000
U4MODE	02B0	UARTEN		USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	—		—	—	—	—					Trar	smit Regist	er				xxxx
U4RXREG	02B6	— — — — — — — Receive Register								0000								
U4BRG	02B8							Baud Ra	ate Genera	tor Prescaler	Register							0000
Legend:	= un	implementer	read as 'n	. Reset valu	les are sh	own in hey:	decimal											

d. read as 0. Reset values are snown in nexadecimal

TABLE 4-11: SPI REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	-	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI1BUF	0248		Transmit and Receive Buffer										0000					
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	_	_	—	—	_	_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI2BUF	0268							Tra	ansmit and I	Receive Bu	ffer							0000
SPI3STAT	0280	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	0282	_		_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	0284	FRMEN	SPIFSD	SPIFPOL	_	_	—	—	_	_	_	_	—	—	—	SPIFE	SPIBEN	0000
SPI3BUF	0288		Transmit and Receive Buffer 0									0000						
Legend:																		

© 2009 Microchip Technology Inc.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, it 1. maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.

2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas such as the Device ID. Table write operations are not allowed.

FIGURE 4-6:	ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS
	Program Space
782, <i>894%</i> (82	
	23 15 6 6000000 23 16 8 0 0200000 00000000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 00000000 0200000 00000000 00000000 00000000 00000000 0000000 0200000 00000000 00000000 00000000 00000000 0000000 0200000 0000000 0000000 0000000 0000000 0000000 0200000 0000000 0000000 0000000 0000000 0000000 0200000 0000000 00000000 00000000 0000000 0000000 02000000 00000000 000000000 00000000 00000000 0000000 02000000 0000000 000000000 </th

© 2009 Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0
oit 15							bit
						DAVO	
U-0	U-0	U-0	U-0	U-0	R/W-1 INT1IP2	R/W-0 INT1IP1	R/W-0 INT1IP0
 bit 7		_		_	INT IF2		bit
Legend:							
R = Readat		W = Writable		•	nented bit, read		
-n = Value a	at POR	'1' = Bit is set	i .	'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	-			rupt Priority bits	s		
510 TT 12		pt is priority 7 (
	•		ingricer priority	interrupt)			
	•						
	•						
	001 = Interru						
	-	pt source is dis					
bit 11	-	ted: Read as '					
bit 10-8				rupt Priority bits	S		
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is dis	abled				
bit 7-3		ted: Read as '					
bit 2-0	-	External Inter		oits			
		pt is priority 7 (
	•						
	•						
	•						
	001 = Interru	pt is priority 1 pt source is dis					

REGISTER 7-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	U1ERIP2	U1ERIP1	U1ERIP0				
bit 7							bit 0
[
Legend:							
R = Readab		W = Writable		-	nented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	-	ted: Read as '					
bit 14-12	CRCIP<2:0>:	CRC Generate	or Error Interru	upt Priority bits			
	111 = Interru	pt is priority 7 (I	highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	o'				
bit 10-8	U2ERIP<2:0>	: UART2 Error	Interrupt Prio	rity bits			
	111 = Interru	pt is priority 7 (I	highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	o'				
bit 6-4	U1ERIP<2:0>	-: UART1 Error	Interrupt Prio	rity bits			
	111 = Interru	pt is priority 7 (l	highest priority	/ interrupt)			
	•						
	•						
	• 001 = Interru	nt is priority 1					
		pt is priority i pt source is dis	abled				
bit 3-0	-	ted: Read as '					
	•						

REGISTER 7-32: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0				
CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0				
bit 15							bit 8				
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0				
bit 7							bit 0				
Legend:											
R = Readable		W = Writable	DIt	•	nented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 15	 CPUIRQ: Interrupt Request from Interrupt Controller CPU bit 1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority 0 = No interrupt request is unacknowledged 										
bit 14	Unimplemente	ed: Read as '0'									
bit 13	VHOLD: Vect	or Number Cap	oture Configura	ation bit							
	0 = VECNUM	1 contains the	value of the la	hest priority pe st Acknowledg PU, even if oth	ed interrupt (i.	e., the last inte	errupt that has				
bit 12	Unimplemente	ed: Read as '0'	-		·						
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Leve	l bits							
	1111 = CPU •	Interrupt Priorit	y Level is 15								
	•										
		Interrupt Priorit									
bit 7	Unimplemente	ed: Read as '0'									
bit 6-0		D>: Pending Int terrupt vector p		D bits (pending ber 135	vector number	r is VECNUM +	- 8)				
		terrupt vector p terrupt vector p									

REGISTER 7-39: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾

Peripheral output number n is assigned to pin, RP31 (see Table 10-3 for peripheral function numbers)bit 7-6 Unimplemented: Read as '0'

Dil 7-6 Unimplemented: Read as 0

bit 5-0 RP30R<5:0>: RP30 Output Pin Mapping bits⁽²⁾

Peripheral output number n is assigned to pin, RP30 (see Table 10-3 for peripheral function numbers)

Note 1: Unimplemented on 64-pin and 80-pin devices; read as '0'.

2: Unimplemented on 64-pin devices; read as '0'.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC					
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10					
bit 15	11.01/1				DOL	0001/11	bit 8					
							bit o					
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC					
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF					
bit 7					I	I	bit 0					
Legend:		C = Clearal	ole bit	HS = Hardwar	e Settable bit	HSC = Hardware S	ettable/Clearable bit					
R = Reada	ble bit	W = Writab	le bit	U = Unimplen	nented bit, read	l as '0'						
-n = Value	at POR	'1' = Bit is s	set	'0' = Bit is clea	ared	x = Bit is unknown						
bit 15 bit 14	ACKSTAT: Acknowledge Status bit 1 = NACK was detected last 0 = ACK was detected last Hardware set or clear at end of Acknowledge. TRSTAT: Transmit Status bit (When operating as I ² C master. Applicable to master transmit operation.) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.											
		-	-	r transmission.	Hardware clea	ar at end of slave Ac	knowledge.					
bit 13-11 bit 10	-	ented: Rea	a as ^r 0 ^r sion Detect bi	:4								
	1 = A bus o 0 = No coll Hardware s	collision has ision set at detect	been detecte	ed during a ma	ster operation							
bit 9	1 = Genera 0 = Genera	al call addres	ss was receiv ss was not re	ceived	address. Hardv	vare clear at Stop de	etection.					
bit 8	1 = 10-bit a 0 = 10-bit a		matched not matched		bit address. Ha	irdware clear at Stop	o detection.					
bit 7	 Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection. IWCOL: Write Collision Detect bit 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy 0 = No collision Hardware set at occurrence of write to I2CxTRN while busy (cleared by software). 											
bit 6	I2COV: Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).											
bit 5	D/A: Data/ 1 = Indicate 0 = Indicate	Address bit es that the la es that the la	(when operat ast byte recei ast byte recei	ing as I ² C slav ved was data ved was device	e) e address		s, or by reception of					

18.1.2.3 VBUS Voltage Generation with External Devices

When operating as a USB host, either as an A-device in an OTG configuration or as an embedded host, VBUS must be supplied to the attached device. PIC24FJ256GB110 family devices have an internal VBUS boost assist to help generate the required 5V VBUS from the available voltages on the board. This is comprised of a simple PWM output to control a Switch mode power supply, and built-in comparators to monitor output voltage and limit current.

To enable voltage generation:

- Verify that the USB module is powered (U1PWRC<0> = 1) and that the VBUS discharge is disabled (U1OTGCON<0> = 0).
- 2. Set the PWM period (U1PWMRRS<7:0>) and duty cycle (U1PWMRRS<15:8>) as required.
- 3. Select the required polarity of the output signal based on the configuration of the external circuit with the PWMPOL bit (U1PWMCON<9>).
- 4. Select the desired target voltage using the VBUSCHG bit (U1OTGCON<1>).
- 5. Enable the PWM counter by setting the CNTEN bit to '1' (U1PWMCON<8>).
- 6. Enable the PWM module by setting the PWMEN bit to '1' (U1PWMCON<15>).
- 7. Enable the VBUS generation circuit (U10TGCON<3> = 1).
 - Note: This section describes the general process for VBUS voltage generation and control. Please refer to the "*PIC24F Family Reference Manual*" for additional examples.

18.1.3 USING AN EXTERNAL INTERFACE

Some applications may require the USB interface to be isolated from the rest of the system. PIC24FJ256GB110 family devices include a complete interface to communicate with and control an external USB transceiver, including the control of data line pull-ups and pull-downs. The VBUS voltage generation control circuit can also be configured for different VBUS generation topologies.

Please refer to the *"PIC24F Family Reference Manual"*, **Section 27. "USB On-The-Go (OTG)**" for information on using the external interface.

18.1.4 CALCULATING TRANSCEIVER POWER REQUIREMENTS

The USB transceiver consumes a variable amount of current depending on the characteristic impedance of the USB cable, the length of the cable, the VUSB supply voltage and the actual data patterns moving across the USB cable. Longer cables have larger capacitances and consume more total energy when switching output states. The total transceiver current consumption will be application-specific. Equation 18-1 can help estimate how much current actually may be required in full-speed applications.

Please refer to the *"PIC24F Family Reference Manual"*, **Section 27. "USB On-The-Go (OTG)"** for a complete discussion on transceiver power consumption.

EQUATION 18-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION

 $Ixcvr = \frac{(40 \text{ mA} \cdot \text{VUSB} \cdot \text{PZERO} \cdot \text{PIN} \cdot \text{LCABLE})}{(3.3V \cdot 5m)} + IPULLUP$

Legend: VUSB – Voltage applied to the VUSB pin in volts (3.0V to 3.6V).

PZERO - Percentage (in decimal) of the IN traffic bits sent by the $PIC^{\$}$ microcontroller that are a value of '0'.

PIN – Percentage (in decimal) of total bus bandwidth that is used for IN traffic.

LCABLE – Length (in meters) of the USB cable. The USB 2.0 Specification requires that full-speed applications use cables no longer than 5m.

IPULLUP – Current which the nominal, 1.5 k Ω pull-up resistor (when enabled) must supply to the USB cable.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 15							bit
R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
bit 7	3EU	TURBUST	USDRST	HUSTEN	RESUME	FFDROI	bit
Legend:		U = Unimplem	ented bit, read	1 as '0'			
R = Readab	le bit	W = Writable t	bit	HSC = Hardw	are Settable/C	learable bit	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	-	ited: Read as '0					
bit 7		e Differential Re		•			D
	1 = J state (0 0 = No J stat	differential '0' in te detected	low speed, dif	terential '1' in fi	ull speed) dete	cted on the US	В
oit 6	SE0: Live Sir	ngle-Ended Zero	Flag bit				
		nded zero active		ous			
	•	e-ended zero de					
bit 5		oken Busy Statu			• • •		
		eing executed by being executed		dule in On-The-	Go state		
bit 4		dule Reset bit	•				
		set has been ge	nerated; for so	oftware Reset,	application mu	st set this bit fo	or 50 ms, the
	clear it	Ū	,	,			,
		set terminated					
bit 3		st Mode Enable				·	
		t capability enal t capability disa		is on D+ and D	- are activated	in hardware	
bit 2		esume Signaling					
		signaling activat		ust set bit for 10) ms and then cl	ear to enable re	mote wake-u
	0 = Resume	signaling disabl	ed				
bit 1		ig-Pong Buffers					
		Il Ping-Pong But ng Buffer Pointe		the EVEN BD	banks		
bit 0							
bit 0	SOFEN: Star	t-Of-Frame Ena Frame token se	ble bit	millisecond			

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—				
pit 15		• •					bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—			PUVBUS	EXTI2CEN	UVBUSDIS ⁽¹⁾	UVCMPDIS ⁽¹⁾	UTRDIS ⁽¹⁾			
oit 7							bit (
_egend:										
R = Readab		W = Writable		•	nented bit, read					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
oit 15-5	-	nted: Read as '								
oit 4		BUS Pull-up Ena								
		on Veus pin ena on Veus pin disa								
oit 3	•	² C™ Interface I		odule Control F	- nable bit					
		module(s) cont								
		module(s) cont								
oit 2	UVBUSDIS:	On-Chip 5V Bo	ost Regulator I	Builder Disable	bit ⁽¹⁾					
		boost regulator		ed; digital outpu	t control interfa	ice enabled				
		boost regulator								
pit 1		On-Chip VBUS								
	1 = On-chip charge VBUS comparator disabled; digital input status interface enabled									
	0 = On-chip charge VBUs comparator active									
		•	•							
pit O	UTRDIS: On	charge VBUS co -Chip Transceiv transceiver disa	er Disable bit ⁽¹)						

REGISTER 18-13: U1CNFG2: USB CONFIGURATION REGISTER 2

Note 1: Never change these bits while the USBPWR bit is set (U1PWRC<0> = 1).

18.7.2 USB INTERRUPT REGISTERS

REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_ /	—	—	—	_	—	_	_
bit 15	-	•			•		bit 8
DIL 15							Ľ

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state detected
	0 = No ID state change
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS detected
	0 = No activity on the D+/D- lines or VBUS detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	1 = VBUS change on B-device detected; VBUS has crossed VB_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB OTG Specification) ⁽¹⁾
	0 = No VBUS change on A-device detected
Note 1:	VBUS threshold crossings may be either rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

REGISTER 18-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		—	—			—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
BTSEF		DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
DISEF	—	DIVIAEF	BIUEF	DENGER	CRCIDEF	EOFEF	
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	BTSEF: Bit Stuff Error Flag bit
	 1 = Bit stuff error has been detected 0 = No bit stuff error
bit 6	Unimplemented: Read as '0'
bit 5	 DMAEF: DMA Error Flag bit 1 = A USB DMA error condition detected; the data size indicated by the BD byte count field is less than the number of received bytes. The received data is truncated. 0 = No DMA error
bit 4	BTOEF: Bus Turnaround Time-out Error Flag bit 1 = Bus turnaround time-out has occurred 0 = No bus turnaround time-out
bit 3	 DFN8EF: Data Field Size Error Flag bit 1 = Data field was not an integral number of bytes 0 = Data field was an integral number of bytes
bit 2	CRC16EF: CRC16 Failure Flag bit 1 = CRC16 failed 0 = CRC16 passed
bit 1	For Device mode: CRC5EF: CRC5 Host Error Flag bit
	 1 = Token packet rejected due to CRC5 error 0 = Token packet accepted (no CRC5 error) For Host mode: EOFEF: End-Of-Frame Error Flag bit 1 = End-Of-Frame error has occurred 0 = End-Of-Frame interrupt disabled
bit 0	 PIDEF: PID Check Failure Flag bit 1 = PID check failed 0 = PID check passed. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15	·	•				•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7	ARETO	AREIS	ARF14	ARFIJ	ARF12	ARFTI	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15 bit 14		disabled	ed automatica	lly after an ala	arm event whe	never ARPT<7	:0> = 00h and
	1 = Chime is	enabled; ARP				to FFh	
	0011 = Even 0100 = Even 0101 = Even 0110 = Onc 0111 = Onc 1000 = Onc 1001 = Onc 101x = Res	ry 10 seconds ry minute ry 10 minutes ry hour e a day e a week	use	red for Februa	ry 29th, once e	every 4 years)	
bit 9-8	Points to the the ALRMPT ALRMVAL<1: 00 = ALRMM 01 = ALRMM 10 = ALRMM 11 = Unimple ALRMVAL<7 00 = ALRMS 01 = ALRMM 10 = ALRMD	1IN VD INTH emented <u>:0>:</u> EC IR IR	Alarm Value reg	isters when re	ading ALRMVA		
bit 7-0	11111111 = 00000000 =	Alarm Repeat (Alarm will repo Alarm will not decrements on	eat 255 more ti repeat	mes	er is prevented	from rolling ov	er from 00h to

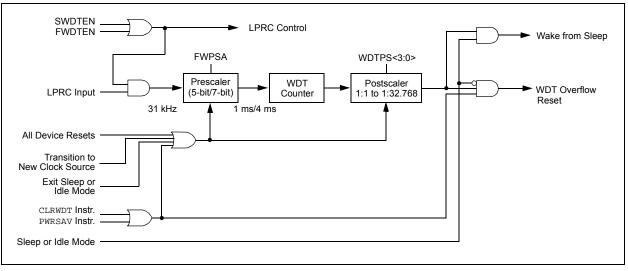
REGISTER 20-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

FIGURE 20-2: ALARM MA	SK SETTINGS				
Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours	Minutes	Seconds
0000 – Every half second 0001 – Every second				:	:
0010 - Every 10 seconds				:	: s
0011 – Every minute				:	s s
0100 – Every 10 minutes				: m	s s
0101 – Every hour				: m m	s s
0110 – Every day			hh	m m	s s
0111 – Every week	d		h h	: m m	s s
1000 – Every month		/ d_ d	hh	: m m	s s
1001 – Every year ⁽¹⁾		m m / d d	hh	: m m	s s

Note 1: Annually, except when configured for February 29.

NOTES:

26.3.1 WINDOWED OPERATION


The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<6>) to '0'.

26.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

FIGURE 26-2: WDT BLOCK DIAGRAM

26.4 Program Verification and Code Protection

PIC24FJ256GB110 family devices provide two complimentary methods to protect application code from overwrites and erasures. These also help to protect the device from inadvertent configuration changes during run time.

26.4.1 GENERAL SEGMENT PROTECTION

For all devices in the PIC24FJ256GB110 family, the on-chip program memory space is treated as a single block, known as the General Segment (GS). Code protection for this block is controlled by one Configuration bit, GCP. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

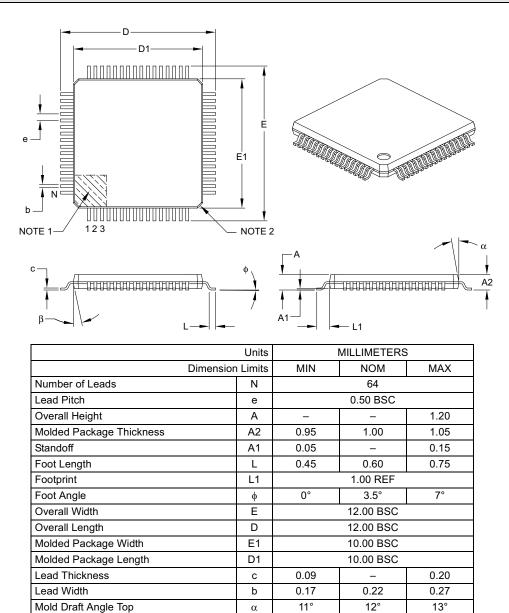
Write protection is controlled by the GWRP bit in the Configuration Word. When GWRP is programmed to '0', internal write and erase operations to program memory are blocked.

26.4.2 CODE SEGMENT PROTECTION

In addition to global General Segment protection, a separate subrange of the program memory space can be individually protected against writes and erases. This area can be used for many purposes where a separate block of write and erase protected code is needed, such as bootloader applications. Unlike common boot block implementations, the specially protected segment in PIC24FJ256GB110 family devices can be located by the user anywhere in the program space, and configured in a wide range of sizes.

Code segment protection provides an added level of protection to a designated area of program memory, by disabling the NVM safety interlock whenever a write or erase address falls within a specified range. They do not override General Segment protection controlled by the GCP or GWRP bits. For example, if GCP and GWRP are enabled, enabling segmented code protection for the bottom half of program memory does not undo General Segment protection for the top half.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
СОМ	СОМ	f	$f = \overline{f}$	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
			Wd = Ws	1	1	N, Z
GD	COM	Ws,Wd f	Compare f with WREG	1	1	,
CP	CP			1	1	C, DC, N, OV, Z
	-	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
CP0	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
	CP0	f	Compare f with 0x0000			C, DC, N, OV, Z
СРВ	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - C)$	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.b	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	с
FF1R	FF1R	Ws, Wnd	Find First One from Right (LSb) Side	1	1	C


TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

30.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.

Mold Draft Angle Bottom

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

β

11°

12°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

13°