

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

| Product Status             | Active                                                                        |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                           |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 32MHz                                                                         |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART, USB OTG                                    |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                    |
| Number of I/O              | 51                                                                            |
| Program Memory Size        | 64KB (22K x 24)                                                               |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                |                                                                               |
| RAM Size                   | 16K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                     |
| Data Converters            | A/D 16x10b                                                                    |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 64-TQFP                                                                       |
| Supplier Device Package    | 64-TQFP (10x10)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb106-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Peripheral Features:**

- Peripheral Pin Select (PPS):
  - Allows independent I/O mapping of many peripherals at run time
  - Continuous hardware integrity checking and safety interlocks prevent unintentional configuration changes
  - Up to 44 available pins (100-pin devices)
- Three 3-Wire/4-Wire SPI modules (supports 4 Frame modes) with 8-Level FIFO Buffer
- Three I<sup>2</sup>C<sup>™</sup> modules support Multi-Master/Slave modes and 7-Bit/10-Bit Addressing
- Four UART modules:
  - Supports RS-485, RS-232, LIN/J2602 protocols and  $\text{IrDA}^{\textcircled{R}}$
  - On-chip hardware encoder/decoder for IrDA
  - Auto-wake-up and Auto-Baud Detect (ABD)
  - 4-level deep FIFO buffer
- Five 16-Bit Timers/Counters with Programmable Prescaler
- Nine 16-Bit Capture Inputs, each with a Dedicated Time Base
- Nine 16-Bit Compare/PWM Outputs, each with a Dedicated Time Base
- 8-Bit Parallel Master Port (PMP/PSP):
  - Up to 16 address pins
- Programmable polarity on control lines
- Hardware Real-Time Clock/Calendar (RTCC):
   Provides clock, calendar and alarm functions
- Programmable Cyclic Redundancy Check (CRC) Generator
- Up to 5 External Interrupt Sources

#### **Special Microcontroller Features:**

- Operating Voltage Range of 2.0V to 3.6V
- Self-Reprogrammable under Software Control
- 5.5V Tolerant Input (digital pins only)
- Configurable Open-Drain Outputs on Digital I/O
- High-Current Sink/Source (18 mA/18 mA) on all I/O
- Selectable Power Management modes:
- Sleep, Idle and Doze modes with fast wake-upFail-Safe Clock Monitor Operation:
- Detects clock failure and switches to on-chip, Low-Power RC Oscillator
- On-Chip LDO Regulator
- Power-on Reset (POR), Power-up Timer (PWRT), Low-Voltage Detect (LVD) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT) with On-Chip. Low-Power RC Oscillator for Reliable Operation
- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) and In-Circuit Debug (ICD) via 2 Pins
- · JTAG Boundary Scan and Programming Support
- Brown-out Reset (BOR)
- Flash Program Memory:
  - 10,000 erase/write cycle endurance (minimum)
  - 20-year data retention minimum
  - Selectable write protection boundary
  - Write protection option for Flash Configuration Words



|          |                     | Pin Number     |                 |     | Input           |                                      |
|----------|---------------------|----------------|-----------------|-----|-----------------|--------------------------------------|
| Function | 64-Pin<br>TQFP, QFN | 80-Pin<br>TQFP | 100-Pin<br>TQFP | I/O | Input<br>Buffer | Description                          |
| AN0      | 16                  | 20             | 25              | Ι   | ANA             | A/D Analog Inputs.                   |
| AN1      | 15                  | 19             | 24              | I   | ANA             |                                      |
| AN2      | 14                  | 18             | 23              | I   | ANA             |                                      |
| AN3      | 13                  | 17             | 22              | I   | ANA             |                                      |
| AN4      | 12                  | 16             | 21              | I   | ANA             |                                      |
| AN5      | 11                  | 15             | 20              | I   | ANA             |                                      |
| AN6      | 17                  | 21             | 26              | I   | ANA             |                                      |
| AN7      | 18                  | 22             | 27              | I   | ANA             |                                      |
| AN8      | 21                  | 27             | 32              | I   | ANA             |                                      |
| AN9      | 22                  | 28             | 33              | I   | ANA             |                                      |
| AN10     | 23                  | 29             | 34              | I   | ANA             |                                      |
| AN11     | 24                  | 30             | 35              | I   | ANA             |                                      |
| AN12     | 27                  | 33             | 41              | I   | ANA             |                                      |
| AN13     | 28                  | 34             | 42              | I   | ANA             |                                      |
| AN14     | 29                  | 35             | 43              | I   | ANA             |                                      |
| AN15     | 30                  | 36             | 44              | I   | ANA             |                                      |
| AVDD     | 19                  | 25             | 30              | Р   | _               | Positive Supply for Analog modules.  |
| AVss     | 20                  | 26             | 31              | Р   | —               | Ground Reference for Analog modules. |
| C1INA    | 11                  | 15             | 20              | I   | ANA             | Comparator 1 Input A.                |
| C1INB    | 12                  | 16             | 21              | I   | ANA             | Comparator 1 Input B.                |
| C1INC    | 5                   | 7              | 11              | I   | ANA             | Comparator 1 Input C.                |
| C1IND    | 4                   | 6              | 10              | I   | ANA             | Comparator 1 Input D.                |
| C2INA    | 13                  | 17             | 22              | I   | ANA             | Comparator 2 Input A.                |
| C2INB    | 14                  | 18             | 23              | I   | ANA             | Comparator 2 Input B.                |
| C2INC    | 8                   | 10             | 14              | I   | ANA             | Comparator 2 Input C.                |
| C2IND    | 6                   | 8              | 12              | I   | ANA             | Comparator 2 Input D.                |
| C3INA    | 55                  | 69             | 84              | I   | ANA             | Comparator 3 Input A.                |
| C3INB    | 54                  | 68             | 83              | I   | ANA             | Comparator 3 Input B.                |
| C3INC    | 48                  | 60             | 74              | I   | ANA             | Comparator 3 Input C.                |
| C3IND    | 47                  | 59             | 73              | I   | ANA             | Comparator 3 Input D.                |
| CLKI     | 39                  | 49             | 63              | Ι   | ANA             | Main Clock Input Connection.         |
| CLKO     | 40                  | 50             | 64              | 0   | _               | System Clock Output.                 |

Legend: TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$  input buffer

#### TABLE 4-7: INPUT CAPTURE REGISTER MAP 1

| 0          |
|------------|
| 2009       |
| Microchip  |
| Technology |
| Inc.       |

| File<br>Name | Addr  | Bit 15                                                                   | Bit 14                 | Bit 13 | Bit 12  | Bit 11  | Bit 10  | Bit 9 | Bit 8     | Bit 7        | Bit 6       | Bit 5 | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
|--------------|-------|--------------------------------------------------------------------------|------------------------|--------|---------|---------|---------|-------|-----------|--------------|-------------|-------|----------|----------|----------|----------|----------|---------------|
| IC1CON1      | 0140  | _                                                                        | —                      | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 |       |           | _            | ICI1        | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC1CON2      | 0142  | _                                                                        | —                      | —      | —       | _       | _       | —     | IC32      | ICTRIG       | TRIGSTAT    | —     | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC1BUF       | 0144  |                                                                          |                        |        |         |         |         |       | Input Cap | ture 1 Buffe | er Register |       |          |          |          |          |          | 0000          |
| IC1TMR       | 0146  |                                                                          |                        |        |         |         |         |       | Timer     | Value 1 Re   | egister     |       |          |          |          |          |          | xxxx          |
| IC2CON1      | 0148  | _                                                                        | —                      | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 | —     | —         | _            | ICI1        | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC2CON2      | 014A  | _                                                                        | —                      | —      | _       | _       | _       | _     | IC32      | ICTRIG       | TRIGSTAT    |       | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC2BUF       | 014C  |                                                                          |                        |        |         |         |         |       | Input Cap | ture 2 Buffe | er Register |       |          |          |          |          |          | 0000          |
| IC2TMR       | 014E  |                                                                          | Timer Value 2 Register |        |         |         |         |       |           |              |             |       |          | xxxx     |          |          |          |               |
| IC3CON1      | 0150  | _                                                                        | —                      | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 | —     | —         | _            | ICI1        | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC3CON2      | 0152  | _                                                                        | _                      | —      | _       | _       | _       | _     | IC32      | ICTRIG       | TRIGSTAT    | _     | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC3BUF       | 0154  |                                                                          |                        |        |         |         |         |       | Input Cap | ture 3 Buffe | er Register |       |          |          |          |          |          | 0000          |
| IC3TMR       | 0156  |                                                                          |                        |        |         |         |         |       | Timer     | Value 3 R    | egister     |       |          |          |          |          |          | xxxx          |
| IC4CON1      | 0158  | _                                                                        | _                      | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 | _     | _         | _            | ICI1        | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC4CON2      | 015A  | _                                                                        | —                      | —      | —       | _       | _       | —     | IC32      | ICTRIG       | TRIGSTAT    | —     | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC4BUF       | 015C  |                                                                          |                        |        |         |         |         |       | Input Cap | ture 4 Buffe | er Register |       |          |          |          |          |          | 0000          |
| IC4TMR       | 015E  |                                                                          | Timer Value 4 Register |        |         |         |         |       |           |              |             |       | xxxx     |          |          |          |          |               |
| IC5CON1      | 0160  | _                                                                        | —                      | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 | —     | —         | _            | ICI1        | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC5CON2      | 0162  | _                                                                        | —                      | —      | _       | _       | _       | —     | IC32      | ICTRIG       | TRIGSTAT    | —     | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC5BUF       | 0164  |                                                                          |                        |        |         |         |         |       | Input Cap | ture 5 Buffe | er Register |       |          |          |          |          |          | 0000          |
| IC5TMR       | 0166  |                                                                          |                        |        |         |         |         |       | Timer     | Value 5 R    | egister     |       |          |          |          |          |          | xxxx          |
| IC6CON1      | 0168  | _                                                                        | —                      | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 | —     | —         | _            | ICI1        | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC6CON2      | 016A  | _                                                                        | _                      | —      | _       | _       | _       | _     | IC32      | ICTRIG       | TRIGSTAT    | _     | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC6BUF       | 016C  |                                                                          |                        |        |         |         |         |       | Input Cap | ture 6 Buffe | er Register |       |          |          |          |          |          | 0000          |
| IC6TMR       | 016E  |                                                                          |                        |        |         |         |         |       | Timer     | Value 6 Re   | egister     |       |          |          |          |          |          | xxxx          |
| IC7CON1      | 0170  | _                                                                        | —                      | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 | —     | —         | _            | ICI1        | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC7CON2      | 0172  | _                                                                        | —                      | —      | —       | _       | _       | —     | IC32      | ICTRIG       | TRIGSTAT    |       | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC7BUF       | 0174  |                                                                          |                        |        |         |         |         |       | Input Cap | ture 7 Buffe | er Register |       |          |          |          |          |          | 0000          |
| IC7TMR       | 0176  |                                                                          |                        |        |         |         |         |       | Timer     | Value 7 R    | egister     |       |          |          |          |          |          | xxxx          |
| IC8CON1      | 0178  | _                                                                        | —                      | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 | —     | —         | _            | ICI1        | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC8CON2      | 017A  | _                                                                        | _                      | _      | _       | _       | _       | —     | IC32      | ICTRIG       | TRIGSTAT    | —     | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC8BUF       | 017C  |                                                                          |                        |        |         |         |         |       | Input Cap | ture 8 Buffe | er Register |       |          |          |          |          |          | 0000          |
| IC8TMR       | 017E  |                                                                          | Timer Value 8 Register |        |         |         |         |       |           |              |             | xxxx  |          |          |          |          |          |               |
| IC9CON1      | 0180  | ICSIDL ICTSEL2 ICTSEL1 ICTSEL0 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 000   |                        |        |         |         |         |       |           |              | 0000        |       |          |          |          |          |          |               |
| IC9CON2      | 0182  | IC32 ICTRIG TRIGSTAT - SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D |                        |        |         |         |         |       |           |              |             |       |          |          |          |          |          |               |
| IC9BUF       | 0184  | 184 Input Capture 9 Buffer Register 00                                   |                        |        |         |         |         |       |           |              | 0000        |       |          |          |          |          |          |               |
| IC9TMR       | 0186  | 0186 Timer Value 9 Register xxx                                          |                        |        |         |         |         |       |           |              | xxxx        |       |          |          |          |          |          |               |
| Legend:      | — = ı | — = unimplemented, read as '0'. Reset values are shown in hexadecimal.   |                        |        |         |         |         |       |           |              |             |       |          |          |          |          |          |               |

DS39897C-page 47

#### TABLE 4-8: OUTPUT COMPARE REGISTER MAP

|           |      |                                                                        |                                     |                             | 1       |         |         |       |             |             |               |        |          | 1        |          | 1        |          | · · ·         |
|-----------|------|------------------------------------------------------------------------|-------------------------------------|-----------------------------|---------|---------|---------|-------|-------------|-------------|---------------|--------|----------|----------|----------|----------|----------|---------------|
| File Name | Addr | Bit 15                                                                 | Bit 14                              | Bit 13                      | Bit 12  | Bit 11  | Bit 10  | Bit 9 | Bit 8       | Bit 7       | Bit 6         | Bit 5  | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
| OC1CON1   | 0190 | —                                                                      | —                                   | OCSIDL                      | OCTSEL2 | OCTSEL1 | OCTSEL0 | —     | —           | ENFLT0      | —             | —      | OCFLT0   | TRIGMODE | OCM2     | OCM1     | OCM0     | 0000          |
| OC1CON2   | 0192 | FLTMD                                                                  | FLTOUT                              | FLTTRIEN                    | OCINV   | _       | _       |       | OC32        | OCTRIG      | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | ) 000C        |
| OC1RS     | 0194 |                                                                        |                                     |                             |         |         |         | C     | utput Compa | are 1 Secon | dary Register |        |          |          |          |          |          | 0000          |
| OC1R      | 0196 |                                                                        |                                     |                             |         |         |         |       | Output 0    | Compare 1 F | legister      |        |          |          |          |          |          | 0000          |
| OC1TMR    | 0198 |                                                                        |                                     |                             |         |         |         |       | Timer       | Value 1 Reg | jister        |        |          |          |          |          |          | xxxx          |
| OC2CON1   | 019A | —                                                                      | —                                   | OCSIDL                      | OCTSEL2 | OCTSEL1 | OCTSEL0 | _     | —           | ENFLT0      |               | —      | OCFLT0   | TRIGMODE | OCM2     | OCM1     | OCM0     | 0000          |
| OC2CON2   | 019C | FLTMD                                                                  | FLTOUT                              | FLTTRIEN                    | OCINV   | _       | —       | _     | OC32        | OCTRIG      | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C          |
| OC2RS     | 019E |                                                                        | Output Compare 2 Secondary Register |                             |         |         |         |       |             |             |               |        | 0000     |          |          |          |          |               |
| OC2R      | 01A0 |                                                                        | Output Compare 2 Register 00        |                             |         |         |         |       |             |             |               |        |          | 0000     |          |          |          |               |
| OC2TMR    | 01A2 |                                                                        |                                     |                             |         |         |         |       | Timer       | Value 2 Reg | jister        |        |          |          |          |          |          | xxxx          |
| OC3CON1   | 01A4 | —                                                                      | —                                   | OCSIDL                      | OCTSEL2 | OCTSEL1 | OCTSEL0 | —     | —           | ENFLT0      | —             | —      | OCFLT0   | TRIGMODE | OCM2     | OCM1     | OCM0     | 0000          |
| OC3CON2   | 01A6 | FLTMD                                                                  | FLTOUT                              | FLTTRIEN                    | OCINV   | _       | —       | _     | OC32        | OCTRIG      | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C          |
| OC3RS     | 01A8 |                                                                        |                                     |                             |         |         |         | С     | utput Compa | are 3 Secon | dary Register |        |          |          |          |          |          | 0000          |
| OC3R      | 01AA | Output Compare 3 Register 00                                           |                                     |                             |         |         |         |       |             |             |               |        | 0000     |          |          |          |          |               |
| OC3TMR    | 01AC |                                                                        |                                     |                             |         |         |         |       | Timer       | Value 3 Reg | jister        |        |          |          |          |          |          | xxxx          |
| OC4CON1   | 01AE | —                                                                      | —                                   | OCSIDL                      | OCTSEL2 | OCTSEL1 | OCTSEL0 | _     | —           | ENFLT0      |               | —      | OCFLT0   | TRIGMODE | OCM2     | OCM1     | OCM0     | 0000          |
| OC4CON2   | 01B0 | FLTMD                                                                  | FLTOUT                              | FLTTRIEN                    | OCINV   | —       | —       | —     | OC32        | OCTRIG      | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C          |
| OC4RS     | 01B2 |                                                                        |                                     |                             |         |         |         | С     | utput Compa | are 4 Secon | dary Register |        |          |          |          |          |          | 0000          |
| OC4R      | 01B4 |                                                                        |                                     |                             |         |         |         |       | Output C    | Compare 4 F | Register      |        |          |          |          |          |          | 0000          |
| OC4TMR    | 01B6 |                                                                        |                                     |                             |         |         |         |       | Timer       | Value 4 Reg | jister        |        |          |          |          |          |          | xxxx          |
| OC5CON1   | 01B8 | —                                                                      | —                                   | OCSIDL                      | OCTSEL2 | OCTSEL1 | OCTSEL0 | _     | —           | ENFLT0      | —             | —      | OCFLT0   | TRIGMODE | OCM2     | OCM1     | OCM0     | 0000          |
| OC5CON2   | 01BA | FLTMD                                                                  | FLTOUT                              | FLTTRIEN                    | OCINV   | _       | —       | _     | OC32        | OCTRIG      | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C          |
| OC5RS     | 01BC |                                                                        |                                     |                             |         |         |         | C     | utput Compa | are 5 Secon | dary Register |        |          |          |          |          |          | 0000          |
| OC5R      | 01BE |                                                                        |                                     |                             |         |         |         |       | Output 0    | Compare 5 F | Register      |        |          |          |          |          |          | 0000          |
| OC5TMR    | 01C0 |                                                                        |                                     |                             |         |         |         |       | Timer       | Value 5 Reg | jister        |        |          |          |          |          |          | xxxx          |
| OC6CON1   | 01C2 | —                                                                      | —                                   | OCSIDL                      | OCTSEL2 | OCTSEL1 | OCTSEL0 | _     | —           | ENFLT0      |               | —      | OCFLT0   | TRIGMODE | OCM2     | OCM1     | OCM0     | 0000          |
| OC6CON2   | 01C4 | FLTMD                                                                  | FLTOUT                              | FLTTRIEN                    | OCINV   | _       | —       | _     | OC32        | OCTRIG      | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C          |
| OC6RS     | 01C6 |                                                                        |                                     |                             |         |         |         | C     | utput Compa | are 6 Secon | dary Register |        |          |          |          |          |          | 0000          |
| OC6R      | 01C8 | Output Compare 6 Register 00                                           |                                     |                             |         |         |         |       |             |             | 0000          |        |          |          |          |          |          |               |
| OC6TMR    | 01CA | Timer Value 6 Register                                                 |                                     |                             |         |         |         |       |             |             | xxxx          |        |          |          |          |          |          |               |
| OC7CON1   | 01CC | OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLTO - OCFLTO TRIGMODE OCM2 OCM1 OCM0 |                                     |                             |         |         |         |       |             |             | 0000          |        |          |          |          |          |          |               |
| OC7CON2   | 01CE | FLTMD                                                                  | FLTOUT                              | FLTTRIEN                    | OCINV   | —       | _       | —     | OC32        | OCTRIG      | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSELO | ) 000C        |
| OC7RS     | 01D0 | 00 Output Compare 7 Secondary Register                                 |                                     |                             |         |         |         |       |             |             | 0000          |        |          |          |          |          |          |               |
| OC7R      | 01D2 | 000 Output Compare 7 Register                                          |                                     |                             |         |         |         |       |             |             | 0000          |        |          |          |          |          |          |               |
| OC7TMR    | 01D4 |                                                                        |                                     | Timer Value 7 Register xxxx |         |         |         |       |             |             |               |        | xxxx     |          |          |          |          |               |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-8: OUTPUT COMPARE REGISTER MAP (CONTINUED)

| File Name | Addr | Bit 15 | Bit 14                                   | Bit 13   | Bit 12  | Bit 11  | Bit 10  | Bit 9 | Bit 8       | Bit 7        | Bit 6         | Bit 5  | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
|-----------|------|--------|------------------------------------------|----------|---------|---------|---------|-------|-------------|--------------|---------------|--------|----------|----------|----------|----------|----------|---------------|
| OC8CON1   | 01D6 | _      | —                                        | OCSIDL   | OCTSEL2 | OCTSEL1 | OCTSEL0 | _     | _           | ENFLT0       | —             | —      | OCFLT0   | TRIGMODE | OCM2     | OCM1     | OCM0     | 0000          |
| OC8CON2   | 01D8 | FLTMD  | FLTOUT                                   | FLTTRIEN | OCINV   |         | —       | —     | OC32        | OCTRIG       | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C          |
| OC8RS     | 01DA |        |                                          |          |         |         |         | 0     | utput Compa | are 8 Second | lary Register |        |          |          |          |          |          | 0000          |
| OC8R      | 01DC |        | Output Compare 8 Register 0000           |          |         |         |         |       |             |              |               |        |          |          |          |          |          |               |
| OC8TMR    | 01DE |        |                                          |          |         |         |         |       | Timer       | Value 8 Reg  | ister         |        |          |          |          |          |          | xxxx          |
| OC9CON1   | 01E0 |        | _                                        | OCSIDL   | OCTSEL2 | OCTSEL1 | OCTSEL0 | _     | _           | ENFLT0       |               |        | OCFLT0   | TRIGMODE | OCM2     | OCM1     | OCM0     | 0000          |
| OC9CON2   | 01E2 | FLTMD  | FLTOUT                                   | FLTTRIEN | OCINV   | -       | —       | —     | OC32        | OCTRIG       | TRIGSTAT      | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C          |
| OC9RS     | 01E4 |        | Output Compare 9 Secondary Register 0000 |          |         |         |         |       |             | 0000         |               |        |          |          |          |          |          |               |
| OC9R      | 01E6 |        | Output Compare 9 Register 0000           |          |         |         |         |       |             |              | 0000          |        |          |          |          |          |          |               |
| OC9TMR    | 01E8 |        | Timer Value 9 Register xxxx              |          |         |         |         |       |             |              |               |        |          |          |          |          |          |               |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-9: I<sup>2</sup>C<sup>™</sup> REGISTER MAP

| File Name | Addr | Bit 15  | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9                   | Bit 8                                               | Bit 7 | Bit 6 | Bit 5      | Bit 4       | Bit 3      | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|------|---------|--------|---------|--------|--------|--------|-------------------------|-----------------------------------------------------|-------|-------|------------|-------------|------------|-------|-------|-------|---------------|
| I2C1RCV   | 0200 | _       | _      | —       | _      | —      | _      | —                       | Receive Register                                    |       |       |            |             |            |       | 0000  |       |               |
| I2C1TRN   | 0202 | _       | _      | _       | _      | _      | _      | _                       | _                                                   |       |       |            | Transmit    | Register   |       |       |       | OOFF          |
| I2C1BRG   | 0204 | _       | _      | —       | _      | —      | —      | _                       |                                                     |       |       | Baud Rat   | e Generato  | r Register |       |       |       | 0000          |
| I2C1CON   | 0206 | I2CEN   | _      | I2CSIDL | SCLREL | IPMIEN | A10M   | DISSLW                  | SMEN                                                | GCEN  | STREN | ACKDT      | ACKEN       | RCEN       | PEN   | RSEN  | SEN   | 1000          |
| I2C1STAT  | 0208 | ACKSTAT | TRSTAT | _       | _      | _      | BCL    | GCSTAT                  | ADD10                                               | IWCOL | I2COV | D/A        | Р           | S          | R/W   | RBF   | TBF   | 0000          |
| I2C1ADD   | 020A | _       | _      | —       | _      | -      | _      |                         |                                                     |       |       | Address    | Register    |            |       |       |       | 0000          |
| I2C1MSK   | 020C | _       | _      | —       | _      | —      | —      |                         |                                                     |       |       | Address Ma | ask Registe | r          |       |       |       | 0000          |
| I2C2RCV   | 0210 | _       | _      | _       | _      | _      | _      | _                       | _                                                   |       |       |            | Receive     | Register   |       |       |       | 0000          |
| I2C2TRN   | 0212 | —       | _      | —       | _      | —      | —      | —                       | —                                                   |       |       |            | Transmit    | Register   |       |       |       | 00FF          |
| I2C2BRG   | 0214 |         | _      | —       | _      | —      | —      | —                       |                                                     |       |       | Baud Rat   | e Generato  | r Register |       |       |       | 0000          |
| I2C2CON   | 0216 | I2CEN   | _      | I2CSIDL | SCLREL | IPMIEN | A10M   | DISSLW                  | SMEN                                                | GCEN  | STREN | ACKDT      | ACKEN       | RCEN       | PEN   | RSEN  | SEN   | 1000          |
| I2C2STAT  | 0218 | ACKSTAT | TRSTAT | —       | _      | _      | BCL    | GCSTAT                  | ADD10                                               | IWCOL | I2COV | D/A        | Р           | S          | R/W   | RBF   | TBF   | 0000          |
| I2C2ADD   | 021A | _       | _      | —       | _      | -      | _      |                         |                                                     |       |       | Address    | Register    |            |       |       |       | 0000          |
| I2C2MSK   | 021C | _       | _      | —       | _      | —      | —      |                         |                                                     |       |       | Address Ma | ask Registe | r          |       |       |       | 0000          |
| I2C3RCV   | 0270 | _       | _      | _       | _      | _      | _      | _                       | _                                                   |       |       |            | Receive     | Register   |       |       |       | 0000          |
| I2C3TRN   | 0272 | _       | —      | _       | —      | _      | —      | —                       | —                                                   |       |       |            | Transmit    | Register   |       |       |       | 00FF          |
| I2C3BRG   | 0274 | _       | _      | —       | _      | —      | —      | _                       | Baud Rate Generator Register 0                      |       |       |            |             |            | 0000  |       |       |               |
| I2C3CON   | 0276 | I2CEN   | _      | I2CSIDL | SCLREL | IPMIEN | A10M   | DISSLW                  | SLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN : |       |       |            |             |            | 1000  |       |       |               |
| I2C3STAT  | 0278 | ACKSTAT | TRSTAT | _       | _      | _      | BCL    | GCSTAT                  | CSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF or      |       |       |            |             |            | 0000  |       |       |               |
| I2C3ADD   | 027A | _       | —      | —       | _      | —      | —      | Address Register 00     |                                                     |       |       |            |             | 0000       |       |       |       |               |
| I2C3MSK   | 027C | _       |        | —       |        | —      | _      | Address Mask Register 0 |                                                     |       |       |            |             |            | 0000  |       |       |               |
|           |      |         |        |         |        |        |        |                         |                                                     |       |       |            |             |            |       |       |       |               |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### 8.0 OSCILLATOR CONFIGURATION

| Note: | This data sheet summarizes the features    |
|-------|--------------------------------------------|
|       | of this group of PIC24F devices. It is not |
|       | intended to be a comprehensive reference   |
|       | source. For more information, refer to the |
|       | "PIC24F Family Reference Manual",          |
|       | Section 6. "Oscillator" (DS39700).         |

The oscillator system for PIC24FJ256GB110 family devices has the following features:

• A total of four external and internal oscillator options as clock sources, providing 11 different clock modes

- An on-chip USB PLL block to provide a stable, 48 MHz clock for the USB module as well as a range of frequency options for the system clock
- Software-controllable switching between various clock sources
- Software-controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- A separate and independently configurable system clock output for synchronizing external hardware

A simplified diagram of the oscillator system is shown in Figure 8-1.



### FIGURE 8-1: PIC24FJ256GB110 FAMILY CLOCK DIAGRAM

#### 9.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

#### 9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

#### 9.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:256, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

#### 9.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling their associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

#### REGISTER 10-5: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

| U-0    | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| _      | —   | T5CKR5 | T5CKR4 | T5CKR3 | T5CKR2 | T5CKR1 | T5CKR0 |
| bit 15 |     |        |        |        |        |        | bit 8  |
|        |     |        |        |        |        |        |        |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | T4CKR5 | T4CKR4 | T4CKR3 | T4CKR2 | T4CKR1 | T4CKR0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                            |
|-----------|---------------------------------------------------------------------------------------|
| bit 13-8  | T5CKR<5:0>: Assign Timer5 External Clock (T5CK) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                            |
| bit 5-0   | T4CKR<5:0>: Assign Timer4 External Clock (T4CK) to Corresponding RPn or RPIn Pin bits |

#### REGISTER 10-6: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

| U-0    | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|--------|-----|-------|-------|-------|-------|-------|-------|
| —      | —   | IC2R5 | IC2R4 | IC2R3 | IC2R2 | IC2R1 | IC2R0 |
| bit 15 |     |       |       |       |       |       | bit 8 |

| U-0   | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|-----|-------|-------|-------|-------|-------|-------|
| —     | —   | IC1R5 | IC1R4 | IC1R3 | IC1R2 | IC1R1 | IC1R0 |
| bit 7 |     |       |       |       |       |       | bit 0 |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

#### REGISTER 10-11: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| U-0                                                                | U-0 | R/W-1           | R/W-1 | R/W-1                              | R/W-1 | R/W-1 | R/W-1 |
|--------------------------------------------------------------------|-----|-----------------|-------|------------------------------------|-------|-------|-------|
| —                                                                  | —   | IC9R5           | IC9R4 | IC9R3                              | IC9R2 | IC9R1 | IC9R0 |
| bit 15                                                             |     |                 |       |                                    |       |       | bit 8 |
|                                                                    |     |                 |       |                                    |       |       |       |
| U-0                                                                | U-0 | U-0             | U-0   | U-0                                | U-0   | U-0   | U-0   |
| _                                                                  |     | —               | —     | —                                  |       |       | —     |
| bit 7                                                              |     |                 |       |                                    |       |       | bit 0 |
|                                                                    |     |                 |       |                                    |       |       |       |
| Legend:                                                            |     |                 |       |                                    |       |       |       |
| R = Readable bit W = Writable bit                                  |     |                 | oit   | U = Unimplemented bit, read as '0' |       |       |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is |     | x = Bit is unkn | iown  |                                    |       |       |       |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC9R<5:0>: Assign Input Capture 9 (IC9) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

#### REGISTER 10-12: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

| U-0                                | U-0 | R/W-1  | R/W-1                                   | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|------------------------------------|-----|--------|-----------------------------------------|--------|--------|--------|--------|
| —                                  | —   | U3RXR5 | U3RXR4                                  | U3RXR3 | U3RXR2 | U3RXR1 | U3RXR0 |
| bit 15                             |     |        |                                         |        |        |        | bit 8  |
|                                    |     |        |                                         |        |        |        |        |
| U-0                                | U-0 | U-0    | U-0                                     | U-0    | U-0    | U-0    | U-0    |
| —                                  | —   | —      | —                                       | —      | —      | —      | —      |
| bit 7                              |     |        |                                         |        |        |        | bit 0  |
|                                    |     |        |                                         |        |        |        |        |
| Legend:                            |     |        |                                         |        |        |        |        |
| R = Readable bit W = Writable bit  |     | oit    | U = Unimplemented bit, read as '0'      |        |        |        |        |
| -n = Value at POR '1' = Bit is set |     |        | '0' = Bit is cleared x = Bit is unknown |        |        | iown   |        |
|                                    |     |        |                                         |        |        |        |        |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

| REGISTER 10-29: | <b>RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7</b> |
|-----------------|-------------------------------------------------------|
|-----------------|-------------------------------------------------------|

| U-0    | U-0 | R/W-0                 | R/W-0                 | R/W-0                 | R/W-0                 | R/W-0                 | R/W-0                 |
|--------|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|        | —   | RP15R5 <sup>(1)</sup> | RP15R4 <sup>(1)</sup> | RP15R3 <sup>(1)</sup> | RP15R2 <sup>(1)</sup> | RP15R1 <sup>(1)</sup> | RP15R0 <sup>(1)</sup> |
| bit 15 |     |                       |                       |                       |                       |                       | bit 8                 |
|        |     |                       |                       |                       |                       |                       |                       |

| U-0   | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | RP14R5 | RP14R4 | RP14R3 | RP14R2 | RP14R1 | RP14R0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                                    |                    |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |

| bit 15-14 | Unimplemented: Read as '0'                                                                           |
|-----------|------------------------------------------------------------------------------------------------------|
| bit 13-8  | RP15R<5:0>: RP15 Output Pin Mapping bits <sup>(1)</sup>                                              |
|           | Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers)  |
| bit 7-6   | Unimplemented: Read as '0'                                                                           |
| bit 5-0   | RP14R<5:0>: RP14 Output Pin Mapping bits                                                             |
|           | Peripheral output number n is assigned to pin, RP14 (see Table 10-3 for peripheral function numbers) |

Note 1: Unimplemented on 64-pin devices; read as '0'.

#### REGISTER 10-30: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

| bit 15 |          |        |        |        |        |        | bit 8  |
|--------|----------|--------|--------|--------|--------|--------|--------|
|        | <u> </u> | RP17R5 | RP17R4 | RP17R3 | RP17R2 | RP17R1 | RP17R0 |
| U-0    | U-0      | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |

| 0-0   | 0-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | RP16R5 | RP16R4 | RP16R3 | RP16R2 | RP16R1 | RP16R0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

 

 bit 15-14
 Unimplemented: Read as '0'

 bit 13-8
 RP17R<5:0>: RP17 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP17 (see Table 10-3 for peripheral function numbers)

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 RP16R<5:0>: RP16 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP16 (see Table 10-3 for peripheral function numbers)

#### EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION<sup>(1)</sup>

Maximum PWM Resolution (bits) =  $\frac{\log_{10} \left( \frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}{\log_{10} \left( \frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}$ 

 $\log_{10}(2)$ 

**Note 1:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.

#### EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS<sup>(1)</sup>

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
 TCY = 2 \* TOSC = 62.5 ns
 PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 µs
 PWM Period = (PR2 + 1) • TCY • (Timer 2 Prescale Value)
 19.2 µs = (PR2 + 1) • 62.5 ns • 1
 PR2 = 306

 Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
 PWM Resolution = log<sub>10</sub>(FCY/FPWM)/log<sub>10</sub>2) bits
 = (log<sub>10</sub>(16 MHz/52.08 kHz)/log<sub>10</sub>2) bits
 = 8.3 bits

Note 1: Based on TCY = 2 \* Tosc; Doze mode and PLL are disabled.

#### TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)<sup>(1)</sup>

| PWM Frequency         | 7.6 Hz | 61 Hz | 122 Hz | 977 Hz | 3.9 kHz | 31.3 kHz | 125 kHz |
|-----------------------|--------|-------|--------|--------|---------|----------|---------|
| Timer Prescaler Ratio | 8      | 1     | 1      | 1      | 1       | 1        | 1       |
| Period Register Value | FFFFh  | FFFFh | 7FFFh  | 0FFFh  | 03FFh   | 007Fh    | 001Fh   |
| Resolution (bits)     | 16     | 16    | 15     | 12     | 10      | 7        | 5       |

**Note 1:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.

#### TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)<sup>(1)</sup>

| PWM Frequency         | 30.5 Hz | 244 Hz | 488 Hz | 3.9 kHz | 15.6 kHz | 125 kHz | 500 kHz |
|-----------------------|---------|--------|--------|---------|----------|---------|---------|
| Timer Prescaler Ratio | 8       | 1      | 1      | 1       | 1        | 1       | 1       |
| Period Register Value | FFFFh   | FFFFh  | 7FFFh  | 0FFFh   | 03FFh    | 007Fh   | 001Fh   |
| Resolution (bits)     | 16      | 16     | 15     | 12      | 10       | 7       | 5       |

**Note 1:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.

#### 18.7.1 USB OTG MODULE CONTROL REGISTERS

#### REGISTER 18-3: U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

| U-0           | U-0                                                       | U-0                                  | U-0             | U-0               | U-0              | U-0              | U-0             |  |
|---------------|-----------------------------------------------------------|--------------------------------------|-----------------|-------------------|------------------|------------------|-----------------|--|
|               | —                                                         | —                                    |                 | —                 | —                | _                | —               |  |
| bit 15        |                                                           |                                      |                 |                   |                  |                  | bit 8           |  |
|               |                                                           |                                      |                 |                   |                  |                  |                 |  |
| R-0, HSC      | U-0                                                       | R-0, HSC                             | U-0             | R-0, HSC          | R-0, HSC         | U-0              | R-0, HSC        |  |
| ID            | —                                                         | LSTATE                               | —               | SESVD             | SESEND           | —                | VBUSVD          |  |
| bit 7         |                                                           |                                      |                 |                   |                  |                  | bit 0           |  |
|               |                                                           |                                      |                 |                   |                  |                  |                 |  |
| Legend:       |                                                           |                                      |                 | U = Unimplen      | nented bit, read | l as '0'         |                 |  |
| R = Readable  | e bit                                                     | W = Writable I                       | pit             | HSC = Hardw       | are Settable/C   | learable bit     |                 |  |
| -n = Value at | POR                                                       | '1' = Bit is set                     |                 | '0' = Bit is clea | ared             | x = Bit is unk   | nown            |  |
|               |                                                           |                                      |                 |                   |                  |                  |                 |  |
| bit 15-8      | Unimplemen                                                | ted: Read as '0                      | )'              |                   |                  |                  |                 |  |
| bit 7         | ID: ID Pin Sta                                            | te Indicator bit                     |                 |                   |                  |                  |                 |  |
|               | 1 = No plug i                                             | s attached, or a                     | type B cable    | has been plugg    | jed into the US  | B receptacle     |                 |  |
|               | 0 = A type A                                              | plug nas been                        | piuggea into ti | ne USB recepta    | icie             |                  |                 |  |
| bit 6         | Unimplemen                                                | ted: Read as '0                      | )´<br>          |                   |                  |                  |                 |  |
| bit 5         |                                                           | e State Stable In                    | Idicator bit    |                   |                  |                  |                 |  |
|               | 1 = The USB<br>0 = The USB                                | line state (as o<br>line state has l | NOT been sta    | ble for the previ | nas been stabl   | e for the previo | bus 1 ms        |  |
| bit 4         |                                                           | ted: Read as '(                      | '               |                   |                  |                  |                 |  |
| bit 3         | SESVD: Sess                                               | sion Valid Indica                    | ntor bit        |                   |                  |                  |                 |  |
| bit o         | 1 = The VBU                                               | s voltage is abo                     | ove VA SESS     | VLD (as defined   | in the USB O     | TG Specificatio  | on) on the A or |  |
|               | B-device                                                  | 0                                    |                 | Υ.                |                  |                  | ,               |  |
|               | 0 = The VBUS                                              | s voltage is belo                    | w VA_SESS_V     | LD on the A or I  | 3-device         |                  |                 |  |
| bit 2         | SESEND: B-S                                               | Session End Ind                      | licator bit     |                   |                  |                  |                 |  |
|               | 1 = The VBU<br>B-device                                   | s voltage is be                      | elow VB_SESS    | END (as defin     | ed in the USE    | 3 OTG Specifi    | ication) on the |  |
|               | 0 = The VBUS                                              | s voltage is abo                     | ve VB_SESS_E    | END on the B-de   | vice             |                  |                 |  |
| bit 1         | Unimplemen                                                | ted: Read as '0                      | )'              |                   |                  |                  |                 |  |
| bit 0         | VBUSVD: A-V                                               | VBUS Valid Indic                     | ator bit        |                   |                  |                  |                 |  |
|               | 1 = The VBU<br>A-device                                   | s voltage is at                      | ove VA_vBUS     | S_VLD (as defin   | ed in the USE    | 3 OTG Specifi    | ication) on the |  |
|               | 0 = The VBUS voltage is below VA_VBUS_VLD on the A-device |                                      |                 |                   |                  |                  |                 |  |
|               |                                                           |                                      |                 |                   |                  |                  |                 |  |

#### REGISTER 18-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| R/K-0, HS | U-0 | R/K-0, HS | R/K-0, HS | R/K-0, HS | R/K-0, HS | R-0    | R/K-0, HS |
|-----------|-----|-----------|-----------|-----------|-----------|--------|-----------|
| STALLIF   | —   | RESUMEIF  | IDLEIF    | TRNIF     | SOFIF     | UERRIF | URSTIF    |
| bit 7     |     |           |           | •         | •         |        | bit 0     |

| Legend:           | U = Unimplemented bit, read as '0' |                            |                    |  |  |  |
|-------------------|------------------------------------|----------------------------|--------------------|--|--|--|
| R = Readable bit  | K = Write '1' to clear bit         | HS = Hardware Settable bit |                    |  |  |  |
| -n = Value at POR | '1' = Bit is set                   | '0' = Bit is cleared       | x = Bit is unknown |  |  |  |

| bit 15-8 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 7    | STALLIF: STALL Handshake Interrupt bit                                                                                                                                                                                                                                                                                                |
|          | <ul> <li>1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in<br/>Device mode</li> </ul>                                                                                                                                                                                                 |
|          | 0 = A STALL handshake has not been sent                                                                                                                                                                                                                                                                                               |
| bit 6    | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                            |
| bit 5    | RESUMEIF: Resume Interrupt bit                                                                                                                                                                                                                                                                                                        |
|          | <ul> <li>1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed)</li> <li>0 = No K state observed</li> </ul>                                                                                                                                                       |
| hi+ 1    | 0 - NO K-side Observed                                                                                                                                                                                                                                                                                                                |
| DIL 4    | <ul> <li>1 = Idle condition detected (constant Idle state of 3 ms or more)</li> <li>0 = No Idle condition detected</li> </ul>                                                                                                                                                                                                         |
| bit 3    | TRNIF: Token Processing Complete Interrupt bit                                                                                                                                                                                                                                                                                        |
|          | <ul> <li>1 = Processing of current token is complete; read U1STAT register for endpoint information</li> <li>0 = Processing of current token not complete; clear U1STAT register or load next token from STAT (clearing this bit causes the STAT FIFO to advance)</li> </ul>                                                          |
| bit 2    | SOFIF: Start-Of-Frame Token Interrupt bit                                                                                                                                                                                                                                                                                             |
|          | 1 = A Start-Of-Frame token received by the peripheral or the Start-Of-Frame threshold reached by the<br>host                                                                                                                                                                                                                          |
|          | 0 = No Start-Of-Frame token received or threshold reached                                                                                                                                                                                                                                                                             |
| bit 1    | <b>UERRIF</b> : USB Error Condition Interrupt bit (read-only)                                                                                                                                                                                                                                                                         |
|          | <ul> <li>1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set<br/>this bit</li> </ul>                                                                                                                                                                                                |
|          | 0 = No unmasked error condition has occurred                                                                                                                                                                                                                                                                                          |
| bit 0    | URSTIF: USB Reset Interrupt bit                                                                                                                                                                                                                                                                                                       |
|          | <ul> <li>1 = Valid USB Reset has occurred for at least 2.5 μs; Reset state must be cleared before this bit can<br/>be reasserted</li> </ul>                                                                                                                                                                                           |
|          | 0 = No USB Reset has occurred. Individual bits can only be cleared by writing a '1' to the bit position<br>as part of a word write operation on the entire register. Using Boolean instructions or bitwise oper-<br>ations to write to a single bit position will cause all set bits at the moment of the write to become<br>cleared. |
| Note:    | Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.                                           |

NOTES:

#### 29.1 DC Characteristics

#### FIGURE 29-1: PIC24FJ256GB110 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)



#### TABLE 29-1: THERMAL OPERATING CONDITIONS

| Rating                                                                                                                                                                                  | Symbol | Min           | Тур         | Мах  | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|-------------|------|------|
| PIC24FJ256GB110 Family:                                                                                                                                                                 |        |               |             |      |      |
| Operating Junction Temperature Range                                                                                                                                                    | TJ     | -40           |             | +125 | °C   |
| Operating Ambient Temperature Range                                                                                                                                                     | TA     | -40           |             | +85  | °C   |
| Power Dissipation:<br>Internal Chip Power Dissipation:<br>$PINT = VDD x (IDD - \Sigma IOH)$<br>I/O Pin Power Dissipation:<br>$PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$ | PD     |               | PINT + PI/C | )    | W    |
| Maximum Allowed Power Dissipation                                                                                                                                                       | Pdmax  | (TJ – TA)/θJA |             |      | W    |

#### TABLE 29-2: THERMAL PACKAGING CHARACTERISTICS

| Characteristic                              | Symbol | Тур  | Мах | Unit | Notes    |
|---------------------------------------------|--------|------|-----|------|----------|
| Package Thermal Resistance, 14x14x1 mm TQFP | θJA    | 50.0 |     | °C/W | (Note 1) |
| Package Thermal Resistance, 12x12x1 mm TQFP | θJA    | 69.4 | -   | °C/W | (Note 1) |
| Package Thermal Resistance, 10x10x1 mm TQFP | θJA    | 76.6 | _   | °C/W | (Note 1) |
| Package Thermal Resistance, 9x9x0.9 mm QFN  | θJA    | 28.0 | _   | °C/W | (Note 1) |

**Note 1:** Junction to ambient thermal resistance, Theta-JA ( $\theta$ JA) numbers are achieved by package simulations.

#### TABLE 29-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

| DC CHARACTERISTICS |                            |      | Standard O<br>Operating te | perating Cor | nditions: 2.0\<br>-40°C ≤ TA ≤ | / to 3.6V (unless otherwise stated)<br>+85°C for Industrial |  |  |
|--------------------|----------------------------|------|----------------------------|--------------|--------------------------------|-------------------------------------------------------------|--|--|
| Parameter<br>No.   | Typical <sup>(1)</sup>     | Мах  | Units                      | Conditions   |                                |                                                             |  |  |
| Power-Down         | Current (IPD) <sup>(</sup> | 2)   |                            |              |                                |                                                             |  |  |
| DC60               | 0.1                        | 1    | μA                         | -40°C        |                                |                                                             |  |  |
| DC60a              | 0.15                       | 1    | μA                         | +25°C        | 2 01/(3)                       |                                                             |  |  |
| DC60m              | 2.25                       | 11   | μA                         | +60°C        | 2.00                           |                                                             |  |  |
| DC60b              | 3.7                        | 18   | μA                         | +85°C        |                                |                                                             |  |  |
| DC60c              | 0.2                        | 1.4  | μA                         | -40°C        |                                |                                                             |  |  |
| DC60d              | 0.25                       | 1.4  | μA                         | +25°C        | 2 51/(3)                       | Race Rower Down Current(5)                                  |  |  |
| DC60n              | 2.6                        | 16.5 | μA                         | +60°C        | 2.30(*)                        | Base Power-Down Current                                     |  |  |
| DC60e              | 4.2                        | 27   | μA                         | +85°C        |                                |                                                             |  |  |
| DC60f              | 3.6                        | 10   | μA                         | -40°C        |                                |                                                             |  |  |
| DC60g              | 4.0                        | 10   | μA                         | +25°C        | 2 2\/( <b>4</b> )              |                                                             |  |  |
| DC60p              | 8.1                        | 25.2 | μA                         | +60°C        | 3.3017                         |                                                             |  |  |
| DC60h              | 11.0                       | 36   | μA                         | +85°C        |                                |                                                             |  |  |
| DC61               | 1.75                       | 3    | μA                         | -40°C        |                                |                                                             |  |  |
| DC61a              | 1.75                       | 3    | μA                         | +25°C        | 2 ov (3)                       |                                                             |  |  |
| DC61m              | 1.75                       | 3    | μA                         | +60°C        | 2.00                           |                                                             |  |  |
| DC61b              | 1.75                       | 3    | μA                         | +85°C        |                                |                                                             |  |  |
| DC61c              | 2.4                        | 4    | μA                         | -40°C        |                                |                                                             |  |  |
| DC61d              | 2.4                        | 4    | μA                         | +25°C        | o ∈v(3)                        | Motobdog Timor Current: Alwor(5)                            |  |  |
| DC61n              | 2.4                        | 4    | μA                         | +60°C        | 2.30(*)                        |                                                             |  |  |
| DC61e              | 2.4                        | 4    | μA                         | +85°C        |                                |                                                             |  |  |
| DC61f              | 2.8                        | 5    | μA                         | -40°C        |                                |                                                             |  |  |
| DC61g              | 2.8                        | 5    | μA                         | +25°C        | 2 2) (4)                       |                                                             |  |  |
| DC61p              | 2.8                        | 5    | μA                         | +60°C        | 3.30                           |                                                             |  |  |
| DC61b              | 2.8                        | 5    | μA                         | +85°C        |                                |                                                             |  |  |

**Note 1:** Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear, and the Peripheral Module Disable (PMD) bits for all unused peripherals are set.

3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

**5:** The  $\Delta$  current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

#### 80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Units                    |           | MILLIMETERS |      |      |
|--------------------------|-----------|-------------|------|------|
| Dimensio                 | on Limits | MIN         | NOM  | MAX  |
| Number of Leads          | Ν         | 80          |      |      |
| Lead Pitch               | е         | 0.50 BSC    |      |      |
| Overall Height           | А         | -           | -    | 1.20 |
| Molded Package Thickness | A2        | 0.95        | 1.00 | 1.05 |
| Standoff                 | A1        | 0.05        | _    | 0.15 |
| Foot Length              | L         | 0.45        | 0.60 | 0.75 |
| Footprint                | L1        | 1.00 REF    |      |      |
| Foot Angle               | ф         | 0°          | 3.5° | 7°   |
| Overall Width            | Е         | 14.00 BSC   |      |      |
| Overall Length           | D         | 14.00 BSC   |      |      |
| Molded Package Width     | E1        | 12.00 BSC   |      |      |
| Molded Package Length    | D1        | 12.00 BSC   |      |      |
| Lead Thickness           | С         | 0.09        | -    | 0.20 |
| Lead Width               | b         | 0.17        | 0.22 | 0.27 |
| Mold Draft Angle Top     | α         | 11°         | 12°  | 13°  |
| Mold Draft Angle Bottom  | β         | 11°         | 12°  | 13°  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

#### 100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
  - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

### **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

| Microchip Trader<br>Architecture —<br>Flash Memory Fa<br>Program Memory<br>Product Group<br>Pin Count —<br>Tape and Reel Fla<br>Temperature Ran<br>Package —<br>Pattern — | PIC 24 FJ 256 GB1 10 T - I / PT - XXX<br>nark                                                                                                                                               | <ul> <li>Examples:</li> <li>a) PIC24FJ64GB106-I/PT:<br/>PIC24F device with USB On-The-Go, 64-Kbyte<br/>program memory, 64-pin, Industrial<br/>temp.,TQFP package.</li> <li>b) PIC24FJ256GB110-I/PT:<br/>PIC24F device with USB On-The-Go,<br/>256-Kbyte program memory, 100-pin, Industrial<br/>temp.,TQFP package.</li> </ul> |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Architecture                                                                                                                                                              | 24 = 16-bit modified Harvard without DSP                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                |  |  |
| Flash Memory Family FJ = Flash program memory                                                                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                |  |  |
| Product Group                                                                                                                                                             | oduct Group GB1 = General purpose microcontrollers with<br>USB On-The-Go                                                                                                                    |                                                                                                                                                                                                                                                                                                                                |  |  |
| Pin Count                                                                                                                                                                 | 06 = 64-pin<br>08 = 80-pin<br>10 = 100-pin                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |  |  |
| Temperature Range                                                                                                                                                         | e Range I = -40°C to +85°C (Industrial)                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                |  |  |
| Package                                                                                                                                                                   | PF = 100-lead (14x14x1 mm) TQFP (Thin Quad Flatpack)<br>PT = 64-lead, 80-lead, 100-lead (12x12x1 mm)<br>TQFP (Thin Quad Flatpack)<br>MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack No Leads) |                                                                                                                                                                                                                                                                                                                                |  |  |
| Pattern Three-digit QTP, SQTP, Code or Special Requirements<br>(blank otherwise)<br>ES = Engineering Sample                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                |  |  |