

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb106t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	64GB106	128GB106	192GB106	256GB106	
Operating Frequency		DC – 3	32 MHz	-	
Program Memory (bytes)	64K	128K	192K	256K	
Program Memory (instructions)	22,016	44,032	67,072	87,552	
Data Memory (bytes)		16,	384	•	
Interrupt Sources (soft vectors/NMI traps)		66 (62/4)		
I/O Ports		Ports B, C	, D, E, F, G		
Total I/O Pins		5	51		
Remappable Pins		29 (28 I/O,	1 Input only)		
Timers:					
Total Number (16-bit)		5	(1)		
32-Bit (from paired 16-bit timers)		:	2		
Input Capture Channels		9	(1)		
Output Compare/PWM Channels	9 ⁽¹⁾				
Input Change Notification Interrupt	49				
Serial Communications:					
UART		4	(1)		
SPI (3-wire/4-wire)		3	(1)		
I ² C™	3				
Parallel Communications (PMP/PSP)	Yes				
JTAG Boundary Scan/Programming	Yes				
10-Bit Analog-to-Digital Module (input channels)		1	6		
Analog Comparators		:	3		
CTMU Interface	Yes				
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT; Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatcl (PWRT, OST, PLL Lock)				
Instruction Set	76 Base In	structions, Multiple	e Addressing Mod	le Variations	
Packages		64-Pin	TQFP		

TABLE 1-1:DEVICE FEATURES FOR THE PIC24FJ256GB110 FAMILY: 64-PIN DEVICES

Note 1: Peripherals are accessible through remappable pins.

	Vector	IVT Address	AIVT	Interrupt Bit Locations		
Interrupt Source	Number		Address	Flag	Enable	Priority
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
UART3 Error	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>
UART3 Receiver	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>
UART3 Transmitter	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>
UART4 Error	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>
UART4 Receiver	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>
UART4 Transmitter	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>
USB Interrupt	86	0000C0h	0001C0h	IFS5<6>	IEC5<6>	IPC21<10:8>

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

7.3 Interrupt Control and Status Registers

The PIC24FJ256GB110 family of devices implements a total of 37 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS5
- IEC0 through IEC5
- IPC0 through IPC23 (except IPC14 and IPC17)
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit which is set by the respective peripherals, or an external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU interrupt priority level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All interrupt registers are described in Register 7-1 through Register 7-39, in the following pages.

REGISTER 7-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T4IP2	T4IP1	T4IP0		OC4IP2	OC4IP1	OC4IP0
bit 15		•		·		•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	OC3IP2	OC3IP1	OC3IP0	—	_	—	—
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as 'o)'				
bit 14-12	T4IP<2:0>: ⊺	Timer4 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is dis	abled				
bit 11	Unimplemer	nted: Read as 'd)'				
bit 10-8	OC4IP<2:0>	: Output Compa	re Channel 4	Interrupt Priorit	y bits		
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)			
	•						
	•						
		int is priority 1					
	001 = Interru						
	001 = Interru 000 = Interru	ipt is priority i ipt source is dis	abled				
bit 7	000 = Interru						
bit 7 bit 6-4	000 = Interru Unimplemer	pt source is dis)'	Interrupt Priorit	y bits		
	000 = Interru Unimplemer OC3IP<2:0>	ipt source is dis ited: Read as '()' re Channel 3	•	y bits		
	000 = Interru Unimplemer OC3IP<2:0>	ipt source is dis ited: Read as '(: Output Compa)' re Channel 3	•	y bits		
	000 = Interru Unimplemer OC3IP<2:0>	ipt source is dis ited: Read as '(: Output Compa)' re Channel 3	•	y bits		
	000 = Interru Unimplemer OC3IP<2:0> 111 = Interru • •	ipt source is dis ited: Read as '(: Output Compa)' re Channel 3	•	y bits		
	000 = Interru Unimplemen OC3IP<2:0> 111 = Interru • • 001 = Interru	ipt source is dis ited: Read as '(: Output Compa ipt is priority 7 (H	₎ , re Channel 3 highest priority	•	y bits		

							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U3TXIP2	U3TXIP1	U3TXIP0	<u> </u>	U3RXIP2	U3RXIP1	U3RXIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	U3ERIP2	U3ERIP1	U3ERIP0	<u> </u>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	U3TXIP<2:0>	: UART3 Trans	smitter Interrup	ot Priority bits			
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	U3RXIP<2:0>	-: UART3 Rece	eiver Interrupt	Priority bits			
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)			
	•						
	•						
	• 001 = Interru	nt is priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	U3ERIP<2:0>	-: UART3 Error	Interrupt Prio	rity bits			
		pt is priority 7 (•	•			
	•						
	•						
	• 001 = Interru	nt is priority 1					
		pt is priority i pt source is dis	abled				
bit 3-0		ted: Read as '					
···· •			-				

REGISTER 7-35: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

8.5 Oscillator Modes and USB Operation

Because of the timing requirements imposed by USB, an internal clock of 48 MHz is required at all times while the USB module is enabled. Since this is well beyond the maximum CPU clock speed, a method is provided to internally generate both the USB and system clocks from a single oscillator source. PIC24FJ256GB110 family devices use the same clock structure as other PIC24FJ devices, but include a two-branch PLL system to generate the two clock signals.

The USB PLL block is shown in Figure 8-2. In this system, the input from the Primary Oscillator is divided down by a PLL prescaler to generate a 4 MHz output. This is used to drive an on-chip 96 MHz PLL frequency multiplier to drive the two clock branches. One branch uses a fixed divide-by-2 frequency divider to generate the 48 MHz USB clock. The other branch uses a fixed divide-by-3 frequency divider and configurable PLL prescaler/divider to generate a range of system clock frequencies. The CPDIV bits select the system clock speed; available clock options are listed in Table 8-2.

The USB PLL prescaler does not automatically sense the incoming oscillator frequency. The user must manually configure the PLL divider to generate the required 4 MHz output, using the PLLDIV<2:0> Configuration bits. This limits the choices for Primary Oscillator frequency to a total of 8 possibilities, shown in Table 8-3.

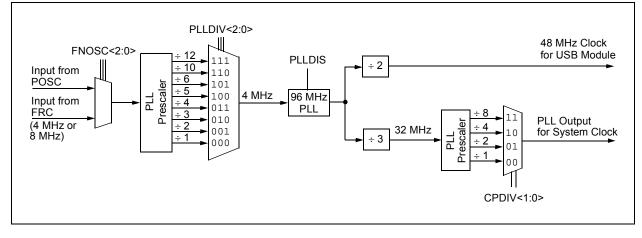

FIGURE 8-2: USB PLL BLOCK

TABLE 8-2:SYSTEM CLOCK OPTIONSDURING USB OPERATION

MCU Clock Division (CPDIV<1:0>)	Microcontroller Clock Frequency
None (00)	32 MHz
÷2(01)	16 MHz
÷4 (10)	8 MHz
÷8 (11)	4 MHz

TABLE 8-3 :	VALID PRIMARY OSCILLATOR
	CONFIGURATIONS FOR USB
	OPERATIONS

Input Oscillator Frequency	Clock Mode	PLL Division (PLLDIV<2:0>)
48 MHz	ECPLL	÷ 12 (111)
40 MHz	ECPLL	÷ 10 (110)
24 MHz	HSPLL, ECPLL	÷6 (101)
20 MHz	HSPLL, ECPLL	÷5 (100)
16 MHz	HSPLL, ECPLL	÷4(011)
12 MHz	HSPLL, ECPLL	÷3(010)
8 MHz	ECPLL, XTPLL	÷2(001)
4 MHz	ECPLL, XTPLL	÷1 (000)

10.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ256GB110 family of devices implements a total of 37 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (21)
- Output Remappable Peripheral Registers (16)

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—		—	—		—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits

			R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP15R<5:0>: RP15 Output Pin Mapping bits ⁽¹⁾
	Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP14R<5:0>: RP14 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP14 (see Table 10-3 for peripheral function numbers)

Note 1: Unimplemented on 64-pin devices; read as '0'.

REGISTER 10-30: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

1							
bit 15							bit 8
	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

 bit 15-14
 Unimplemented: Read as '0'

 bit 13-8
 RP17R<5:0>: RP17 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP17 (see Table 10-3 for peripheral function numbers)

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 RP16R<5:0>: RP16 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP16 (see Table 10-3 for peripheral function numbers)

© 2009 Microchip Technology Inc.

16.0 INTER-INTEGRATED CIRCUIT (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 24. "Inter-Integrated Circuit (I²C™)" (DS39702).

The Inter-Integrated Circuit (l^2C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications.
- Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 16-1.

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC					
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10					
bit 15	11.01/1				DOL	0001/11	bit 8					
							bit o					
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC					
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF					
bit 7	bit 0											
Legend:		C = Clearal	ole bit	HS = Hardwar	e Settable bit	HSC = Hardware S	ettable/Clearable bit					
R = Reada	ble bit	W = Writab	le bit	U = Unimplen	nented bit, read	l as '0'						
-n = Value	at POR	'1' = Bit is s	set	'0' = Bit is clea	ared	x = Bit is unknown						
bit 15 bit 14	1 = NACK w 0 = ACK w Hardware s TRSTAT: T (When ope 1 = Master 0 = Master	was detected as detected set or clear a ransmit Stat rating as I ² (transmit is i transmit is i	last at end of Ackr us bit C master. App n progress (8 not in progres	blicable to mass bits + ACK) ss	ter transmit ope							
		-	-	r transmission.	Hardware clea	ar at end of slave Ac	knowledge.					
bit 13-11 bit 10	-	ented: Rea	a as ^r 0 ^r sion Detect bi	:4								
	1 = A bus o 0 = No coll Hardware s	collision has ision set at detect	been detecte	ed during a ma	ster operation							
bit 9	1 = Genera 0 = Genera	al call addres	ss was receiv ss was not re	ceived	address. Hardv	vare clear at Stop de	etection.					
bit 8	1 = 10-bit a 0 = 10-bit a		matched not matched		bit address. Ha	irdware clear at Stop	o detection.					
bit 7	1 = An atte 0 = No coll	ision	the I2CxTRN			² C module is busy red by software).						
bit 6	12COV: Re 1 = A byte 0 = No ove											
bit 5	D/A: Data/ 1 = Indicate 0 = Indicate	 a) = No overflow b) = No overflow b) Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). b) A Diversion of the last byte received was data b) = Indicates that the last byte received was device address b) = Indicates that the last byte received was device address c) Hardware clear at device address match. Hardware set by after transmission finishes, or by reception of 										

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock

- frequency (Fosc/2).
 - **2:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH BRGH = $1^{(1,2)}$

		Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$
		$UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$
Note	1:	Fcy denotes the instruction cycle clock frequency.
	э.	Deced on Fox - Foco/2 Deza made

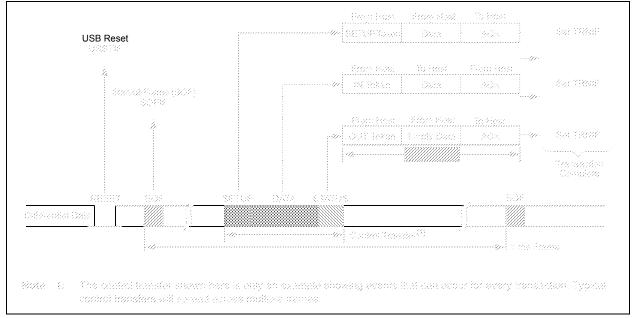
2: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (UxBRG + 1))Solving for UxBRG value: UxBRG = ((FCY/Desired Baud Rate)/16) - 1UxBRG = ((400000/9600)/16) - 1UxBRG = 2.5 Calculated Baud Rate= 4000000/(16 (25 + 1)) 9615 = Error (Calculated Baud Rate - Desired Baud Rate) = Desired Baud Rate = (9615 - 9600)/9600= 0.16%**Note 1:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.


18.3.1 CLEARING USB OTG INTERRUPTS

Unlike device level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in

software by writing a '1' to their locations (i.e., performing a MOV type instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a '1' to its location is referred to as "Write '1' to clear". In register descriptions, this function is indicated by the descriptor "K".

18.4 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

18.4.1 ENABLING DEVICE MODE

- Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit PPBRST (U1CON<1>).
- 2. Disable all interrupts (U1IE and U1EIE = 00h).
- 3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
- 4. Verify that VBUS is present (non OTG devices only).

- 5. Enable the USB module by setting the USBEN bit (U1CON<0>).
- Set the OTGEN bit (U1OTGCON<2>) to enable OTG operation.
- Enable the endpoint zero buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1).
- 8. Power up the USB module by setting the USBPWR bit (U1PWRC<0>).
- 9. Enable the D+ pull-up resistor to signal an attach by setting DPPULUP (U10TGCON<7>).

REGISTER 18-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_									
pit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE		
pit 7					0_0_0_0		bit		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'			
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unl	known		
bit 7	IDIE: ID Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled								
oit 6	1 = Interrupt 0 = Interrupt	enabled	mor Interrunt [-nabla bit					
	1 = Interrupt 0 = Interrupt	enabled disabled							
bit 5	LSTATEIE: Li 1 = Interrupt 0 = Interrupt		Interrupt Ena	ble bit					
bit 4		Activity Interru	ot Enable bit						
bit 3	SESVDIE: Session Valid Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled								
bit 2	SESENDIE: E 1 = Interrupt 0 = Interrupt		on End Interru	pt Enable bit					
bit 1	-		,						
bit 0	Unimplemented: Read as '0' VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit 1 = Interrupt enabled								

0 = Interrupt disabled

REGISTER 18-18: U1IE: USB INTERRUPT ENABLE REGISTER (ALL USB MODES)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE
							DETACHIE
bit 7							bit 0

Legend:							
R = Readab	le bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15-8	-	mented: Read as '0'					
bit 7		: STALL Handshake Interrup	t Enable bit				
		rupt enabled					
L:1 0		rupt disabled	+ h :+ (1 + + + -)(1)				
bit 6		E: Peripheral Attach Interrup	of bit (Host mode only)				
1 = Interrupt enabled 0 = Interrupt disabled							
bit 5		IE: Resume Interrupt bit					
		rupt enabled					
		rupt disabled					
bit 4	IDLEIE: I	dle Detect Interrupt bit					
		rupt enabled					
	0 = Inter	rupt disabled					
bit 3	TRNIE: T	oken Processing Complete I	nterrupt bit				
		rupt enabled					
		rupt disabled	() · · ·				
bit 2		tart-of-Frame Token Interrup	t bit				
		rupt enabled rupt disabled					
bit 1		USB Error Condition Interru	nt hit				
		rupt enabled					
		rupt disabled					
bit 0	URSTIE Enable bi		Interrupt (Device mode) or U	SB Detach Interrupt (Host mode			
		rupt enabled					
	0 = Inter	rupt disabled					
Note 1: U	Inimplement	ed in Device mode, read as '	'n.'				

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAITB1 ⁽¹⁾	WAITB0 ⁽¹⁾	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1 ⁽¹⁾	WAITE0 ⁽¹⁾			
bit 7		•			•	•	bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	BUSY: Busy I	bit (Master mo	de onlv)							
	-	usy (not useful		essor stall is ac	tive)					
bit 14-13		Interrupt Requ	et Mode hite							
51(14-15				er 3 is read or V	Vrite Buffer 3 is	written (Buffere	ed PSP mode			
	or on a	11 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only)								
		 10 = No interrupt generated, processor stall activated 01 = Interrupt generated at the end of the read/write cycle 								
		rrupt generate		read/write cyci						
bit 12-11	INCM<1:0>: Increment Mode bits									
	11 = PSP read and write buffers auto-increment (Legacy PSP mode only)									
	 10 = Decrement ADDR<10:0> by 1 every read/write cycle 01 = Increment ADDR<10:0> by 1 every read/write cycle 									
	00 = No increment or decrement of address									
bit 10	MODE16: 8/1	6-Bit Mode bit								
						ter invokes two r invokes one 8				
bit 9-8		-	lode Select bit		C C					
	11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA <x:0> and PMD<7:0>)</x:0>									
	10 = Master mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA <x:0> and PMD<7:0>)</x:0>									
	01 = Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>) 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1 and PMD<7:0>)									
bit 7-6							,			
	11 = Data w	WAITB<1:0>: Data Setup to Read/Write Wait State Configuration bits ⁽¹⁾ 11 = Data wait of 4 Tcy; multiplexed address phase of 4 Tcy								
	 10 = Data wait of 3 Tcy; multiplexed address phase of 3 Tcy 01 = Data wait of 2 Tcy; multiplexed address phase of 2 Tcy 									
				ess phase of 2						
bit 5-2	WAITM<3:0>	: Read to Byte	Enable Strobe	Wait State Cor	nfiguration bits					
	1111 = Wait (1111 = Wait of additional 15 Tcy								
	 0001 = Wait (of additional 1	Тсү							
				n forced into on						
bit 1-0	WAITE<1:0>:	: Data Hold Aft	er Strobe Wait	State Configura	ation bits ⁽¹⁾					
	11 = Wait of									
	10 = Wait of 01 = Wait of									
	00 = Wait of									
Note 1: TI	he WAITB and V	NAITE bits are	ignored when	ever WAITM<3:	: 0> = 0000.					
			haturaan aanaa		d/on	- 4 ¹				

REGISTER 19-2: PMMODE: PARALLEL PORT MODE REGISTER

2: A single-cycle delay is required between consecutive read and/or write operations.

20.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- · Alarm Value Registers

20.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 20-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 20-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window				
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11		YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 20-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

EXAMPLE 20-1: SETTING THE RTCWREN BIT

__builtin_write_RTCWEN(); //set the RTCWREN bit

TABLE 20-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	_	_			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

20.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 20-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the unlock sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 20-1. For applications written in C, the unlock sequence should be implemented using in-line assembly.

FIGURE 20-2: ALARM MA	SK SETTINGS				
Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours	Minutes	Seconds
0000 – Every half second 0001 – Every second				:	:
0010 - Every 10 seconds				:	: s
0011 – Every minute				:	s s
0100 – Every 10 minutes				: m	s s
0101 – Every hour				: m m	s s
0110 – Every day			hh	m m	s s
0111 – Every week	d		h h	: m m	s s
1000 – Every month		/ d_ d	hh	: m m	s s
1001 – Every year ⁽¹⁾		m m / d d	hh	: m m	s s

Note 1: Annually, except when configured for February 29.

21.3 Registers

There are four registers used to control programmable CRC operation:

- CRCCON
- CRCXOR
- CRCDAT
- CRCWDAT

REGISTER 21-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
—	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7, or 16 when PLEN<3:0> \leq 7.
bit 7	CRCFUL: FIFO Full bit
	1 = FIFO is full
	0 = FIFO is not full
bit 6	CRCMPT: FIFO Empty Bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: Start CRC bit
	1 = Start CRC serial shifter
	0 = CRC serial shifter turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

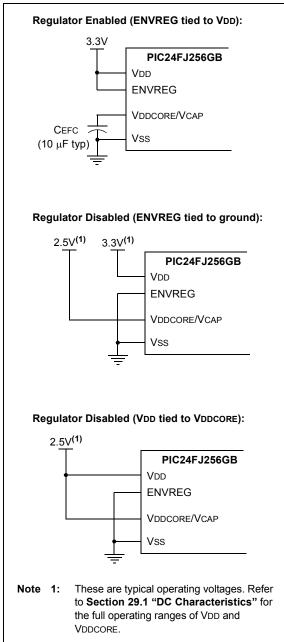
26.2 On-Chip Voltage Regulator

All PIC24FJ256GB110 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GB110 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VDDCORE/VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 29.1 "DC Characteristics"**.

If ENVREG is tied to Vss, the regulator is disabled. In this case, separate power for the core logic, at a nominal 2.5V, must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 26-1 for possible configurations.

26.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION


When it is enabled, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. In order to prevent "brown out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD, with a typical voltage drop of 100 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, Low-Voltage Detect circuit. When VDD drops below full-speed operating voltage, the circuit sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a low-power operational mode, or trigger an orderly shutdown.

Low-Voltage Detection (LVD) is only available when the regulator is enabled.

FIGURE 26-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

TABLE 29-10: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operati	Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
	Vrgout	Regulator Output Voltage	_	2.5	_	V			
	Vbg	Internal Band Gap Reference	_	1.2	_	V			
	CEFC	External Filter Capacitor Value	4.7	10		μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.		
	TVREG	Regulator Start-up Time							
			—	10	—	μS	PMSLP = 1, or any POR or BOR		
			_	190	_	μS	Wake for sleep when PMSLP = 0		
	Твg	Band Gap Reference Start-up Time		_	1	ms			