

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	65
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb108t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number			_	
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
PMD0	60	76	93	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	61	77	94	I/O	ST/TTL	Address/Data (Multiplexed Master modes).
PMD2	62	78	98	I/O	ST/TTL	
PMD3	63	79	99	I/O	ST/TTL	
PMD4	64	80	100	I/O	ST/TTL	
PMD5	1	1	3	I/O	ST/TTL	
PMD6	2	2	4	I/O	ST/TTL	
PMD7	3	3	5	I/O	ST/TTL	
PMRD	53	67	82	0		Parallel Master Port Read Strobe.
PMWR	52	66	81	0	_	Parallel Master Port Write Strobe.
RA0	_		17	I/O	ST	PORTA Digital I/O.
RA1	_	_	38	I/O	ST	
RA2	_	_	58	I/O	ST	
RA3	_	_	59	I/O	ST	
RA4	—	_	60	I/O	ST	
RA5	_	_	61	I/O	ST	
RA6	_	_	91	I/O	ST	
RA7	—	_	92	I/O	ST	
RA9	_	23	28	I/O	ST	
RA10	_	24	29	I/O	ST	
RA14	—	52	66	I/O	ST	
RA15	—	53	67	I/O	ST	
RB0	16	20	25	I/O	ST	PORTB Digital I/O.
RB1	15	19	24	I/O	ST	
RB2	14	18	23	I/O	ST	
RB3	13	17	22	I/O	ST	
RB4	12	16	21	I/O	ST	
RB5	11	15	20	I/O	ST	
RB6	17	21	26	I/O	ST	
RB7	18	22	27	I/O	ST	
RB8	21	27	32	I/O	ST	
RB9	22	28	33	I/O	ST	
RB10	23	29	34	I/O	ST	
RB11	24	30	35	I/O	ST	
RB12	27	33	41	I/O	ST	
RB13	28	34	42	I/O	ST	
RB14	29	35	43	I/O	ST	
RB15	30	36	44	I/O	ST	

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

		Pin Number				
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
RF0	58	72	87	I/O	ST	PORTF Digital I/O.
RF1	59	73	88	I/O	ST	
RF2	_	42	52	I/O	ST	
RF3	33	41	51	I/O	ST	
RF4	31	39	49	I/O	ST	
RF5	32	40	50	I/O	ST	
RF8	—	43	53	I/O	ST	
RF12	—	_	40	I/O	ST	
RF13	—	_	39	I/O	ST	
RG0	—	75	90	I/O	ST	PORTG Digital I/O.
RG1	—	74	89	I/O	ST	
RG2	37	47	57	I	ST	
RG3	36	46	56	I	ST	
RG6	4	6	10	I/O	ST	
RG7	5	7	11	I/O	ST	
RG8	6	8	12	I/O	ST	
RG9	8	10	14	I/O	ST	
RG12			96	I/O	ST	
RG13	—	_	97	I/O	ST	
RG14			95	I/O	ST	
RG15	—	_	1	I/O	ST	
RP0	16	20	25	I/O	ST	Remappable Peripheral (input or output).
RP1	15	19	24	I/O	ST	
RP2	42	54	68	I/O	ST	
RP3	44	56	70	I/O	ST	
RP4	43	55	69	I/O	ST	
RP5	—	38	48	I/O	ST	
RP6	17	21	26	I/O	ST	
RP7	18	22	27	I/O	ST	
RP8	21	27	32	I/O	ST	
RP9	22	28	33	I/O	ST	
RP10	31	39	49	I/O	ST	
RP11	46	58	72	I/O	ST	
RP12	45	57	71	I/O	ST	
RP13	14	18	23	I/O	ST	
RP14	29	35	43	I/O	ST	
RP15	—	43	53	I/O	ST	
RP16	33	41	51	I/O	ST	
RP17	32	40	50	I/O	ST	
RP18	11	15	20	I/O	ST	
RP19	6	8	12	I/O	ST	

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

2.4 Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This	section	applies	only	to	PIC24FJ
	devic	es with a	n on-chi	o volta	ige	regulator.

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:

- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator

Refer to **Section 26.2** "**On-Chip Voltage Regulator**" for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (<5 Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. A suitable example is the Murata GRM21BF50J106ZE01 (10 μ F, 6.3V) or equivalent. Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 29.0 "Electrical Characteristics"** for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to **Section 29.0 "Electrical Characteristics"** for information on VDD and VDDCORE.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 27.0 "Development Support"**.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin-to-PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
DAMO		DAMA		DAMA		DAMO	
		R/W-U	0-0				
bit 7	OCZIL	IUZIL			OCTIL	ICTL	bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	014/2
-n = value at	PUR	I = DILIS SEL			areu		own
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	AD1IE: A/D C	Conversion Cor	nplete Interrup	t Enable bit			
	1 = Interrupt r	equest enable	d abled				
bit 12	U1TXIE: UAR	RT1 Transmitte	r Interrupt Enal	ole bit			
	1 = Interrupt r	equest enable	d				
h:+ 44	0 = Interrupt r	equest not ena	abled	. L .:4			
DICTI	1 = Interrupt r	request enable	d				
	0 = Interrupt r	equest not ena	abled				
bit 10	SPI1IE: SPI1	Transfer Com	olete Interrupt E	Enable bit			
	1 = Interrupt r 0 = Interrupt r	equest enable request not ena	abled				
bit 9	SPF1IE: SPI1	Fault Interrup	t Enable bit				
	1 = Interrupt r	equest enable	d				
bit 8	T3IF: Timer3	Interrupt Enab	le bit				
bit o	1 = Interrupt r	equest enable	d				
	0 = Interrupt r	equest not ena	abled				
bit /	1 = Interrupt r	Interrupt Enab	le bit d				
	0 = Interrupt r	equest not ena	abled				
bit 6	OC2IE: Outpu	ut Compare Ch	annel 2 Interru	pt Enable bit			
	1 = Interrupt r 0 = Interrupt r	equest enable	d abled				
bit 5	IC2IE: Input C	Capture Chann	el 2 Interrupt E	nable bit			
	1 = Interrupt r	equest enable	d				
hit 4	0 = Interrupt r	equest not ena	n'				
bit 3	T1IE: Timer1	Interrupt Fnab	le bit				
	1 = Interrupt r	equest enable	d				
1.1.0	0 = Interrupt r	equest not ena	abled				
DIT 2	1 = Interrupt r	ut Compare Ch request enable	annei 1 Interru d	pt Enable bit			
	0 = Interrupt r	equest not ena	abled				
bit 1	IC1IE: Input C	Capture Chann	el 1 Interrupt E	nable bit			
	⊥ = Interrupt r 0 = Interrupt r	equest enable request not ena	u abled				
bit 0	INTOIE: Exter	nal Interrupt 0	Enable bit				
	1 = Interrupt r	equest enable	d In India				
	0 = Interrupt r	equest not ena	abled				

REGISTER 7-19: IF	PC2: INTERRUPT PRIORITY	CONTROL REGISTER 2
-------------------	-------------------------	---------------------------

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0
bit 15		1					bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0
bit 7							bit 0
Legend:	- L:L		.:4			l (0)	
R = Readable		VV = VVritable t	DIT	U = Unimplem	nented bit, read	as 'U'	
-n = value at	PUR	I = DILIS SEL			areu	X - DILISUIIKI	IOWIT
bit 15	Unimplemen	ted: Read as '0	,				
bit 14-12	U1RXIP<2:0>	: UART1 Recei	iver Interrupt F	Prioritv bits			
	111 = Interru	pt is priority 7 (h	ighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 11	Unimplemen	ted: Read as '0	,				
bit 10-8	SPI1IP<2:0>:	SPI1 Event Int	errupt Priority	bits			
	111 = Interru	pt is priority 7 (h	ighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 7	Unimplemen	ted: Read as '0	,				
bit 6-4	SPF1IP<2:0>	: SPI1 Fault Int	errupt Priority	bits			
		pt is priority 7 (n	lignest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1 ot source is disa	abled				
bit 3	Unimplemen	ted: Read as '0	,				
bit 2-0	T3IP<2:0>: T	imer3 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (h	ighest priority	interrupt)			
	•		0 1 9	. ,			
	•						
	- 001 = Interrui	pt is prioritv 1					
	000 = Interru	pt source is disa	abled				

REGISTER 7-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T4IP2	T4IP1	T4IP0		OC4IP2	OC4IP1	OC4IP0
bit 15					•		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	OC3IP2	OC3IP1	OC3IP0	—	—	—	—
bit 7	it 7 bit						
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
			- 1				
bit 15	Unimplemen	ted: Read as					
bit 14-12	14IP<2:0>:	imer4 Interrupt	Priority bits				
	•	pt is priority 7 (nignest priority	interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is priority 1 pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	OC4IP<2:0>:	Output Compa	are Channel 4	Interrupt Priority	/ bits		
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	OC3IP<2:0>:	Output Compa	are Channel 3	Interrupt Priority	/ bits		
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				
	-						

8.5.1 CONSIDERATIONS FOR USB OPERATION

When using the USB On-The-Go module in PIC24FJ256GB110 family devices, users must always observe these rules in configuring the system clock:

- For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- The Primary Oscillator/PLL modes are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module.
- While the FRCPLL Oscillator mode is available in these devices, it should never be used for USB applications. FRCPLL mode is still available when the application is not using the USB module. However, the user must always ensure that the FRC source is configured to provide a frequency of 4 MHz or 8 MHz (RCDIV<2:0> = 001 or 000) and that the USB PLL prescaler is configured appropriately.
- All other oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is in Sleep and waiting for bus attachment).

8.6 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FJ256GB110 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 8-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the POSCEN bit is not also set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

FIGURE 14-2: OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

14.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[(PRy) + 1] \cdot TCY \cdot (Timer Prescale Value)$

where: PWM Frequency = 1/[PWM Period]

- **Note 1:** Based on TCY = TOSC * 2, Doze mode and PLL are disabled.
- Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register will yield a period consisting of 8 time base cycles.

14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS, and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32
bit 15							bit 8

R/W-0	R/W-0 HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:		HS = Hardware Settabl	e bit	
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	FLTMD: Fa	ult Mode Select bit		
	1 = Fault n cleared	node is maintained until the d in software	e Fault source is removed and	the corresponding OCFLT0 bit is
	0 = Fault n	node is maintained until the	Fault source is removed and	a new PWM period starts
bit 14	FLTOUT: F	ault Out bit		
	1 = PWM 0 0 = PWM 0	output is driven high on a F output is driven low on a Fa	ault ault	
bit 13	FLTTRIEN	Fault Output State Select	bit	
	1 = Pin is f 0 = Pin I/O	forced to an output on a Fa o condition is unaffected by	ult condition a Fault	
bit 12	OCINV: OC	CMP Invert bit		
	1 = OCx o	utput is inverted		
	0 = OCx o	utput is not inverted		
bit 11-9	Unimplem	ented: Read as '0'		
bit 8	OC32: Cas	cade Two OC Modules En	able bit (32-bit operation)	
	1 = Casca 0 = Casca	ade module operation enab ade module operation disat	bled	
bit 7	OCTRIG: (OCx Trigger/Sync Select bit	:	
	1 = Trigge 0 = Synch	er OCx from source designation of the source designation of the source design of the source d	ated by the SYNCSELx bits esignated by the SYNCSELx bits	its
bit 6	TRIGSTAT	Timer Trigger Status bit		
	1 = Timer 0 = Timer	source has been triggered source has not been trigge	l and is running ered and is being held clear	
bit 5	OCTRIS: C	OCx Output Pin Direction Se	elect bit	
	1 = OCx pir 0 = Output	n is tristated compare peripheral x conn	ected to OCx pin	
Note 1: N	Never use an C SYNCSEL sett	DC module as its own trigge ing.	er source, either by selecting th	nis mode or another equivalent
2 : L	Jse these inpu	ts as trigger sources only a	and never as sync sources.	

Г

18.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE

- 1. Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device.
- Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN, and EPHSHK bits).
- 3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the USB 2.0 specification for information on the device framework command set.
- Initialize the buffer descriptor (BD) for the current (EVEN or ODD) Tx EP0, to transfer the eight bytes of command data for a device framework command (i.e., a GET DEVICE DESCRIPTOR):
 - a) Set the BD data buffer address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command.
 - b) Write 8008h to BD0STAT (this sets the UOWN bit, and sets a byte count of 8).
- 5. Set the USB device address of the target device in the address register (U1ADDR<6:0>). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127.
- 6. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a transfer done interrupt is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction as referenced in chapter 9 of the USB specification.
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE descriptor command), set up a buffer in memory to store the received data.

- Initialize the current (EVEN or ODD) Rx or Tx (Rx for IN, Tx for OUT) EP0 BD to transfer the data.
 - a) Write C040h to BD0STAT. This sets the UOWN, configures Data Toggle (DTS) to DATA1, and sets the byte count to the length of the data buffer (64 or 40h, in this case).
 - b) Set BD0ADR to the starting address of the data buffer.
- 9. Write the token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus followed by a data packet from the device to the host. When the data packet completes, the BD0STAT is written and a transfer done interrupt is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction as referenced in chapter 9 of the USB specification. If more data needs to be transferred, return to step 8.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (even or odd) Tx EP0 BD to transfer the status data.:
 - a) Set the BDT buffer address field to the start address of the data buffer
 - b) Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0, and set byte count to 0).
- 12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the handshake from the device, and a transfer done interrupt is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction as described in Chapter 9 of the USB specification.

Note: Only one control transaction can be performed per frame.

18.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 18-3: U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—	—	_	—
bit 15							bit 8
R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	- LSTATE - SESVD SESEND - VBUSV						
bit 7							bit 0
Legend:				U = Unimplen	nented bit, read	l as '0'	
R = Readable	e bit	W = Writable I	pit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-8	Unimplemen	ted: Read as '0)'				
bit 7	ID: ID Pin Sta	te Indicator bit					
	1 = No plug i	s attached, or a	type B cable	has been plugg	jed into the US	B receptacle	
	0 = A type A	plug nas been	piuggea into ti	ne USB recepta	icie		
bit 6	Unimplemen	ted: Read as '0)´ 				
bit 5		e State Stable In	Idicator bit				
	1 = The USB 0 = The USB	line state (as o line state has l	NOT been sta	ble for the previ	nas been stabl	e for the previo	bus 1 ms
bit 4		ted: Read as '('				
bit 3	SESVD: Sess	sion Valid Indica	ntor bit				
bit o	1 = The VBU	s voltage is abo	ove VA SESS	VLD (as defined	in the USB O	TG Specificatio	on) on the A or
	B-device	0		Υ.			,
	0 = The VBUS	s voltage is belo	w VA_SESS_V	LD on the A or I	3-device		
bit 2	SESEND: B-S	Session End Ind	licator bit				
	1 = The VBU B-device	s voltage is be	elow VB_SESS	END (as defin	ed in the USE	3 OTG Specifi	ication) on the
	0 = The VBUS	s voltage is abo	ve VB_SESS_E	END on the B-de	vice		
bit 1	Unimplemen	ted: Read as '0)'				
bit 0	VBUSVD: A-V	VBUS Valid Indic	ator bit				
	1 = The VBU A-device	s voltage is at	ove VA_vBUS	S_VLD (as defin	ed in the USE	3 OTG Specifi	ication) on the
	0 = The VBUS	s voltage is belo	W VA_VBUS_V	LD on the A-dev	vice		

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHONE	3	_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾
bit 15							bit 8
·							
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHONA	· _	_	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15 bit 14-13	CH0NB: Cha 1 = Channel (0 = Channel (Unimplemen	nnel 0 Negative 0 negative inpu 0 negative inpu 1 ted: Read as '	e Input Select f t is AN1 t is VR- 0'	or MUX B Mult	iplexer Setting	bit	
bit 12-8	CH0SB<4:0>	: Channel 0 Po	sitive Input Sel	lect for MUX B	Multiplexer Se	tting bits ⁽¹⁾	
	10001 = Channel 0 positive input is internal band gap reference (VBG) ⁽²⁾ 10000 = Channel 0 positive input is VBG/2 ⁽²⁾ 01111 = Channel 0 positive input is AN15 01100 = Channel 0 positive input is AN14 01101 = Channel 0 positive input is AN13 01100 = Channel 0 positive input is AN12 01011 = Channel 0 positive input is AN11 01010 = Channel 0 positive input is AN10 01001 = Channel 0 positive input is AN9 01000 = Channel 0 positive input is AN8 00111 = Channel 0 positive input is AN8 00101 = Channel 0 positive input is AN4 0011 = Channel 0 positive input is AN4 0011 = Channel 0 positive input is AN3 0010 = Channel 0 positive input is AN3 0010 = Channel 0 positive input is AN3 0010 = Channel 0 positive input is AN3						
bit 7	CH0NA: Cha	nnel 0 Negative	e Input Select f	or MUX A Mult	iplexer Setting	bit	
	1 = Channel (0 = Channel (0 negative inpu 0 negative inpu	t is AN1 t is VR-				
bit 6-5	Unimplemen	ted: Read as '	0'				
bit 4-0	CH0SA<4:0>	: Channel 0 Po	sitive Input Se	lect for MUX A	Multiplexer Se	tting bits	
	Implemented	combinations a	are identical to	those for CHO	SB<4:0> (abov	e).	
Note 1: 2:	Combinations, '10010' through '11111', are unimplemented; do not use. Band gap reference must be allowed to stabilize (parameter TBG) before using these channels for a conversion. See Section 29.1 "DC Characteristics" for more information.						

REGISTER 22-4: AD1CHS: A/D INPUT SELECT REGISTER

REGISTER 22-7: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0
bit 7							bit 0
Legend:							

L ogonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSSL<15:0>: A/D Input Pin Scan Selection bits

1 = Corresponding analog channel selected for input scan

0 = Analog channel omitted from input scan

EQUATION 22-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$ADCS = \frac{TAD}{TCY} - 1$$

 $TAD = TCY \bullet (ADCS + 1)$

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 3-2
 EDG1SEL<1:0>: Edge 1 Source Select bits

 11 = CTED1 pin
 10 = CTED2 pin

 01 = OC1 module
 00 = Timer1 module

 bit 1
 EDG2STAT: Edge 2 Status bit

 1 = Edge 2 event has occurred
 0 = Edge 2 event has not occurred

 bit 0
 EDG1STAT: Edge 1 Status bit

 1 = Edge 1 event has occurred
 0 = Edge 1 event has not occurred
- **Note 1:** If TGEN = 1, the CTEDGx inputs and CTPLS outputs must be assigned to available RPn pins before use. See **Section 10.4 "Peripheral Pin Select"** for more information.

REGISTER 25-2: CTMUICON: CTMU CURRENT CONTROL REGIST
--

	-						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-10	ITRIM<5:0>:	Current Source	e Trim bits				
	011111 = Ma 011110	aximum positive	e change from	nominal current	t		
	000001 = Mil	nimum positive	change from r	10minal current			
	111111 = Mi	nimum negative	e change from	nominal curren	t		
	100010 100001 = Ma	aximum negativ	e change from	nominal currer	nt		
bit 9-8	IRNG<1.0>.	Current Source	Range Select	hits			
	$11 = 100 \times B_{2}$	ase current	Tange Coloor	510			
	10 = 10 × Bas	se current					
	01 = Base cu	rrent level (0.5	5 μA nominal)				
	00 = Current	source disable	b				
bit 7-0	Unimplemented: Read as '0'						

REGISTER 26-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1
r	JTAGEN ⁽¹⁾	GCP	GWRP	DEBUG	r	ICS1	ICS0
bit 15							bit 8

R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	WINDIS	—	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	r = Reserved bit				
R = Readable bit	PO = Program Once bit U = Unimplemented bit, read as '0'				
-n = Value when device is ur	programmed	'1' = Bit is set	'0' = Bit is cleared		

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit ⁽¹⁾
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	1 = Code protection is disabled0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	1 = Device resets into Operational mode0 = Device resets into Debug mode
bit 10	Reserved: Always maintain as '1'
bit 9-8	ICS1:ICS0: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	1 = Watchdog Timer is enabled0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	1 = Standard Watchdog Timer enabled0 = Windowed Watchdog Timer enabled; FWDTEN must be '1'
bit 5	Unimplemented: Read as '1'
bit 4	FWPSA: WDT Prescaler Ratio Select bit 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32

Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming[™] (ICSP[™]). It cannot be modified while programming the device through the JTAG interface.

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

TABLE 29-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions		
Operating Cur	rent (IDD) ⁽²⁾					
DC20	0.83	1.2	mA	-40°C		
DC20a	0.83	1.2	mA	+25°C	2.0V ⁽³⁾	
DC20b	0.83	1.2	mA	+85°C		
DC20d	1.1	1.7	mA	-40°C		
DC20e	1.1	1.7	mA	+25°C	3.3∨ ⁽⁴⁾	
DC20f	1.1	1.7	mA	+85°C		
DC23	3.3	4.5	mA	-40°C		
DC23a	3.3	4.5	mA	+25°C	2.0V ⁽³⁾	
DC23b	3.3	4.5	mA	+85°C		
DC23d	4.3	6	mA	-40°C	3.3∨ ⁽⁴⁾	4 Will G
DC23e	4.3	6	mA	+25°C		
DC23f	4.3	6	mA	+85°C		
DC24	18.2	24	mA	-40°C		
DC24a	18.2	24	mA	+25°C	2.5∨ ⁽³⁾	
DC24b	18.2	24	mA	+85°C		
DC24d	18.2	24	mA	-40°C		
DC24e	18.2	24	mA	+25°C	3.3∨ ⁽⁴⁾	
DC24f	18.2	24	mA	+85°C		
DC31	15.0	54	μΑ	-40°C		
DC31a	15.0	54	μA	+25°C	2.0V ⁽³⁾	
DC31b	20.0	69	μA	+85°C		
DC31d	57.0	96	μΑ	-40°C		
DC31e	57.0	96	μA	+25°C	3.3√ ⁽⁴⁾	
DC31f	95.0	145	μA	+85°C		

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

- 3: On-chip voltage regulator disabled (ENVREG tied to Vss).
- 4: On-chip voltage regulator enabled (ENVREG tied to VDD). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fla Temperature Ran Package — Pattern —	PIC 24 FJ 256 GB1 10 T - I / PT - XXX nark	 Examples: a) PIC24FJ64GB106-I/PT: PIC24F device with USB On-The-Go, 64-Kbyte program memory, 64-pin, Industrial temp.,TQFP package. b) PIC24FJ256GB110-I/PT: PIC24F device with USB On-The-Go, 256-Kbyte program memory, 100-pin, Industrial temp.,TQFP package.
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	FJ = Flash program memory	
Product Group	GB1 = General purpose microcontrollers with USB On-The-Go	
Pin Count	06 = 64-pin 08 = 80-pin 10 = 100-pin	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package	PF = 100-lead (14x14x1 mm) TQFP (Thin Quad Flatpack) PT = 64-lead, 80-lead, 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack No Leads)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	