

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                       |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                            |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 32MHz                                                                          |
| Connectivity               | I²C, SPI, UART/USART, USB OTG                                                  |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                     |
| Number of I/O              | 83                                                                             |
| Program Memory Size        | 64KB (22K x 24)                                                                |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 16K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                      |
| Data Converters            | A/D 16x10b                                                                     |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 100-TQFP                                                                       |
| Supplier Device Package    | 100-TQFP (14x14)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb110t-i-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **Table of Contents**

| 1.0   | Device Overview                                             | 11    |  |  |  |  |
|-------|-------------------------------------------------------------|-------|--|--|--|--|
| 2.0   | Guidelines for Getting Started with 16-bit Microcontrollers | 27    |  |  |  |  |
| 3.0   | CPU                                                         | 33    |  |  |  |  |
| 4.0   | Memory Organization                                         | 39    |  |  |  |  |
| 5.0   | Flash Program Memory                                        | 63    |  |  |  |  |
| 6.0   | Resets                                                      | 71    |  |  |  |  |
| 7.0   | Interrupt Controller                                        | 77    |  |  |  |  |
| 8.0   | Oscillator Configuration                                    | 121   |  |  |  |  |
| 9.0   | Power-Saving Features                                       | 131   |  |  |  |  |
| 10.0  | I/O Ports                                                   | 133   |  |  |  |  |
| 11.0  | Timer1                                                      | 161   |  |  |  |  |
| 12.0  | Timer2/3 and Timer4/5                                       | 163   |  |  |  |  |
| 13.0  | Input Capture with Dedicated Timers                         | 169   |  |  |  |  |
| 14.0  | Output Compare with Dedicated Timers                        | 173   |  |  |  |  |
| 15.0  | Serial Peripheral Interface (SPI)                           | 181   |  |  |  |  |
| 16.0  | Inter-Integrated Circuit (I <sup>2</sup> C™)                | 191   |  |  |  |  |
| 17.0  | Universal Asynchronous Receiver Transmitter (UART)          | 199   |  |  |  |  |
| 18.0  | Universal Serial Bus with On-The-Go Support (USB OTG)       | 207   |  |  |  |  |
| 19.0  | Parallel Master Port (PMP)                                  | 241   |  |  |  |  |
| 20.0  | Real-Time Clock and Calendar (RTCC)                         | 251   |  |  |  |  |
| 21.0  | Programmable Cyclic Redundancy Check (CRC) Generator        | 263   |  |  |  |  |
| 22.0  | 10-Bit High-Speed A/D Converter                             | 267   |  |  |  |  |
| 23.0  | Triple Comparator Module                                    | 277   |  |  |  |  |
| 24.0  | Comparator Voltage Reference                                | 281   |  |  |  |  |
| 25.0  | Charge Time Measurement Unit (CTMU)                         | 283   |  |  |  |  |
| 26.0  | Special Features                                            | 287   |  |  |  |  |
| 27.0  | Development Support                                         | 299   |  |  |  |  |
| 28.0  | Instruction Set Summary                                     | 303   |  |  |  |  |
| 29.0  | Electrical Characteristics                                  | 311   |  |  |  |  |
| 30.0  | Packaging Information                                       | 327   |  |  |  |  |
| Appe  | ndix A: Revision History                                    | 341   |  |  |  |  |
| Index |                                                             | . 343 |  |  |  |  |
| The I | /icrochip Web Site                                          | 349   |  |  |  |  |
| Custo | stomer Change Notification Service                          |       |  |  |  |  |
| Custo | mer Support                                                 | 349   |  |  |  |  |
| Read  | er Response                                                 | 350   |  |  |  |  |
| Produ | Ict Identification System                                   | 351   |  |  |  |  |

|          |                     | Pin Number     |                 |     |                 |                                      |  |
|----------|---------------------|----------------|-----------------|-----|-----------------|--------------------------------------|--|
| Function | 64-Pin<br>TQFP, QFN | 80-Pin<br>TQFP | 100-Pin<br>TQFP | I/O | Input<br>Buffer | Description                          |  |
| CN43     | _                   | 52             | 66              | I   | ST              | Interrupt-on-Change Inputs.          |  |
| CN44     | _                   | 53             | 67              | I   | ST              |                                      |  |
| CN45     | _                   | 4              | 6               | I   | ST              |                                      |  |
| CN46     | _                   |                | 7               | I   | ST              |                                      |  |
| CN47     | _                   | 5              | 8               | I   | ST              |                                      |  |
| CN48     | _                   | _              | 9               | I   | ST              |                                      |  |
| CN49     | 46                  | 58             | 72              | I   | ST              |                                      |  |
| CN50     | 49                  | 61             | 76              | I   | ST              |                                      |  |
| CN51     | 50                  | 62             | 77              | -   | ST              |                                      |  |
| CN52     | 51                  | 63             | 78              | -   | ST              |                                      |  |
| CN53     | 42                  | 54             | 68              | Ι   | ST              |                                      |  |
| CN54     | 43                  | 55             | 69              | Ι   | ST              |                                      |  |
| CN55     | 44                  | 56             | 70              | Ι   | ST              |                                      |  |
| CN56     | 45                  | 57             | 71              | Ι   | ST              |                                      |  |
| CN57     | —                   | 64             | 79              | Ι   | ST              |                                      |  |
| CN58     | 60                  | 76             | 93              | Ι   | ST              |                                      |  |
| CN59     | 61                  | 77             | 94              | I   | ST              |                                      |  |
| CN60     | 62                  | 78             | 98              | I   | ST              |                                      |  |
| CN61     | 63                  | 79             | 99              | I   | ST              |                                      |  |
| CN62     | 64                  | 80             | 100             | I   | ST              |                                      |  |
| CN63     | 1                   | 1              | 3               | Ι   | ST              |                                      |  |
| CN64     | 2                   | 2              | 4               | Ι   | ST              |                                      |  |
| CN65     | 3                   | 3              | 5               | Ι   | ST              |                                      |  |
| CN66     | _                   | 13             | 18              | Ι   | ST              |                                      |  |
| CN67     | —                   | 14             | 19              | I   | ST              |                                      |  |
| CN68     | 58                  | 72             | 87              | I   | ST              |                                      |  |
| CN69     | 59                  | 73             | 88              | I   | ST              |                                      |  |
| CN70     | —                   | 42             | 52              | I   | ST              |                                      |  |
| CN71     | 33                  | 41             | 51              | I   | ST              |                                      |  |
| CN74     | —                   | 43             | 53              | I   | ST              |                                      |  |
| CN75     | —                   | —              | 40              | I   | ST              |                                      |  |
| CN76     | —                   | —              | 39              | I   | ST              |                                      |  |
| CN77     | —                   | 75             | 90              | I   | ST              |                                      |  |
| CN78     | —                   | 74             | 89              | I   | ST              |                                      |  |
| CN79     | —                   | —              | 96              | I   | ST              |                                      |  |
| CN80     | —                   | —              | 97              |     | ST              |                                      |  |
| CN81     | —                   | —              | 95              |     | ST              |                                      |  |
| CN82     |                     | _              | 1               |     | ST              |                                      |  |
| CTED1    | 28                  | 34             | 42              |     | ANA             | CTMU External Edge Input 1.          |  |
| CTED2    | 27                  | 33             | 41              |     | ANA             | CTMU External Edge Input 2.          |  |
| CTPLS    | 29                  | 35             | 43              | 0   | —               | CTMU Pulse Output.                   |  |
| CVREF    | 23                  | 29             | 34              | 0   | —               | Comparator Voltage Reference Output. |  |

### TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TT

TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$  input buffer

|          |                     | Pin Number     |                 |     |        |                                                                                            |
|----------|---------------------|----------------|-----------------|-----|--------|--------------------------------------------------------------------------------------------|
| Function | 64-Pin<br>TQFP, QFN | 80-Pin<br>TQFP | 100-Pin<br>TQFP | I/O | Buffer | Description                                                                                |
| D+       | 37                  | 47             | 57              | I/O | _      | USB Differential Plus line (internal transceiver).                                         |
| D-       | 36                  | 46             | 56              | I/O | —      | USB Differential Minus line (internal transceiver).                                        |
| DMH      | 46                  | 58             | 72              | 0   | _      | D- External Pull-up Control Output.                                                        |
| DMLN     | 42                  | 54             | 68              | 0   | _      | D- External Pull-down Control Output.                                                      |
| DPH      | 50                  | 62             | 77              | 0   |        | D+ External Pull-up Control Output.                                                        |
| DPLN     | 43                  | 55             | 69              | 0   | _      | D+ External Pull-down Control Output.                                                      |
| ENVREG   | 57                  | 71             | 86              | I   | ST     | Voltage Regulator Enable.                                                                  |
| INT0     | 46                  | 58             | 72              | I   | ST     | External Interrupt Input.                                                                  |
| MCLR     | 7                   | 9              | 13              | I   | ST     | Master Clear (device Reset) Input. This line is brought low to cause a Reset.              |
| OSCI     | 39                  | 49             | 63              | I   | ANA    | Main Oscillator Input Connection.                                                          |
| OSCO     | 40                  | 50             | 64              | 0   | ANA    | Main Oscillator Output Connection.                                                         |
| PGEC1    | 15                  | 19             | 24              | I/O | ST     | In-Circuit Debugger/Emulator/ICSP™ Programming Clock.                                      |
| PGED1    | 16                  | 20             | 25              | I/O | ST     | In-Circuit Debugger/Emulator/ICSP Programming Data.                                        |
| PGEC2    | 17                  | 21             | 26              | I/O | ST     | In-Circuit Debugger/Emulator/ICSP Programming Clock.                                       |
| PGED2    | 18                  | 22             | 27              | I/O | ST     | In-Circuit Debugger/Emulator/ICSP Programming Data.                                        |
| PGEC3    | 11                  | 15             | 20              | I/O | ST     | In-Circuit Debugger/Emulator/ICSP Programming Clock.                                       |
| PGED3    | 12                  | 16             | 21              | I/O | ST     | In-Circuit Debugger/Emulator/ICSP Programming Data.                                        |
| PMA0     | 30                  | 36             | 44              | I/O | ST     | Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes). |
| PMA1     | 29                  | 35             | 43              | I/O | ST     | Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes). |
| PMA2     | 8                   | 10             | 14              | 0   | —      | Parallel Master Port Address (Demultiplexed Master                                         |
| PMA3     | 6                   | 8              | 12              | 0   | —      | modes).                                                                                    |
| PMA4     | 5                   | 7              | 11              | 0   | _      |                                                                                            |
| PMA5     | 4                   | 6              | 10              | 0   | —      |                                                                                            |
| PMA6     | 16                  | 24             | 29              | 0   | —      |                                                                                            |
| PMA7     | 22                  | 23             | 28              | 0   | _      |                                                                                            |
| PMA8     | 32                  | 40             | 50              | 0   | —      |                                                                                            |
| PMA9     | 31                  | 39             | 49              | 0   | —      |                                                                                            |
| PMA10    | 28                  | 34             | 42              | 0   | _      |                                                                                            |
| PMA11    | 27                  | 33             | 41              | 0   | —      |                                                                                            |
| PMA12    | 24                  | 30             | 35              | 0   | —      |                                                                                            |
| PMA13    | 23                  | 29             | 34              | 0   | _      |                                                                                            |
| PMCS1    | 45                  | 57             | 71              | I/O | ST/TTL | Parallel Master Port Chip Select 1 Strobe/Address Bit 15.                                  |
| PMCS2    | 44                  | 56             | 70              | 0   | ST     | Parallel Master Port Chip Select 2 Strobe/Address Bit 14.                                  |
| PMBE     | 51                  | 63             | 78              | 0   | —      | Parallel Master Port Byte Enable Strobe.                                                   |

### TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer  $I^2C^{TM} = I^2C/SMBus$  input buffer

| Function         64-Pin<br>TQFP         80-Pin<br>TOFP         100-Pin<br>TQFP         100-Pin<br>TQFP         100-Pin<br>TQFP         Portage         Description           RC1          4         6         1/0         ST           RC2          7         1/0         ST           RC3          5         8         1/0         ST           RC4           9         1/0         ST           RC12         39         49         63         1/0         ST           RC14         48         60         74         1/0         ST           RC14         49         61         76         1/0         ST           RD1         49         61         76         1/0         ST           RD2         50         62         77         1/0         ST           RD3         51         63         78         1/0         ST                                                                                                                                                                   |          | Pin Number          |                |                 |     |                 |                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|----------------|-----------------|-----|-----------------|------------------------------------------------|
| RC1         —         4         6         I/O         ST         PORTC Digital I/O.           RC2         —         -         7         I/O         ST           RC3         —         5         8         I/O         ST           RC4         —         -         9         I/O         ST           RC12         39         49         63         I/O         ST           RC14         48         60         74         I/O         ST           RC14         48         60         74         I/O         ST           RC14         48         60         74         I/O         ST           RC14         48         62         77         I/O         ST           RD0         46         58         72         I/O         ST           RD1         49         61         76         I/O         ST           RD2         50         62         77         I/O         ST           RD3         51         63         78         I/O         ST           RD4         52         66         81         I/O         ST           RD5 <td< th=""><th>Function</th><th>64-Pin<br/>TQFP, QFN</th><th>80-Pin<br/>TQFP</th><th>100-Pin<br/>TQFP</th><th>I/O</th><th>Input<br/>Buffer</th><th>Description</th></td<> | Function | 64-Pin<br>TQFP, QFN | 80-Pin<br>TQFP | 100-Pin<br>TQFP | I/O | Input<br>Buffer | Description                                    |
| RC2           7         I/O         ST           RC3          5         8         I/O         ST           RC4           9         I/O         ST           RC12         39         49         63         I/O         ST           RC13         47         59         73         I/O         ST           RC14         48         60         74         I/O         ST           RC15         40         50         64         I/O         ST           RC14         48         60         74         I/O         ST           RC15         40         50         64         I/O         ST           RD0         46         58         72         I/O         ST           RD1         49         61         76         I/O         ST           RD2         50         62         77         I/O         ST           RD4         52         66         81         I/O         ST           RD5         53         67         82         I/O         ST           RD4         55         70 <td>RC1</td> <td>_</td> <td>4</td> <td>6</td> <td>I/O</td> <td>ST</td> <td>PORTC Digital I/O.</td>                                                                                                                      | RC1      | _                   | 4              | 6               | I/O | ST              | PORTC Digital I/O.                             |
| RC3          5         8         I/O         ST           RC4          -         9         I/O         ST           RC12         39         49         63         I/O         ST           RC13         47         59         73         I/O         ST           RC14         48         60         74         I/O         ST           RC15         40         50         64         I/O         ST           RC14         48         60         74         I/O         ST           RC15         40         50         64         I/O         ST           RCV         18         22         27         I         ST           RD0         46         58         72         I/O         ST           RD1         49         61         76         I/O         ST           RD2         50         62         77         I/O         ST           RD4         52         66         81         I/O         ST           RD5         53         67         V/O         ST           RD4         55         77         I/O                                                                                                                                                                                            | RC2      | _                   | _              | 7               | I/O | ST              |                                                |
| RC4          9         I/O         ST           RC12         39         49         63         I/O         ST           RC13         47         59         73         I/O         ST           RC14         48         60         74         I/O         ST           RC15         40         50         64         I/O         ST           RC14         48         60         74         I/O         ST           RC15         40         50         64         I/O         ST           RCV         18         22         27         I         ST           RD0         46         58         72         I/O         ST           RD1         49         61         76         I/O         ST           RD2         50         62         77         I/O         ST           RD4         52         66         81         I/O         ST           RD5         53         67         82         I/O         ST           RD4         52         67         91         I/O         ST           RD10         44         56         70 </td <td>RC3</td> <td>_</td> <td>5</td> <td>8</td> <td>I/O</td> <td>ST</td> <td></td>                                                                                         | RC3      | _                   | 5              | 8               | I/O | ST              |                                                |
| RC123949631/0STRC134759731/0STRC144860741/0STRC154050641/0STRCV1822271STRD04658721/0STRD14961761/0STRD25062771/0STRD35163781/0STRD45266811/0STRD55367821/0STRD65468831/0STRD75569841/0STRD84254681/0STRD104456701/0STRD104456701/0STRD104456701/0STRD114557711/0STRD12-64791/0STRD14-37471/0STRE16177941/0STRE26278981/0STRE36379991/0STRE464801001/0STRE51131/0STRE62241/0STRE622 <td>RC4</td> <td>_</td> <td> </td> <td>9</td> <td>I/O</td> <td>ST</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RC4      | _                   |                | 9               | I/O | ST              |                                                |
| RC13         47         59         73         I/O         ST           RC14         48         60         74         I/O         ST           RC14         48         60         74         I/O         ST           RC15         40         50         64         I/O         ST           RCV         18         22         27         I         ST           RD0         46         58         72         I/O         ST           RD1         49         61         76         I/O         ST           RD2         50         62         77         I/O         ST           RD3         51         63         78         I/O         ST           RD4         52         66         81         I/O         ST           RD5         53         67         82         I/O         ST           RD6         54         68         83         I/O         ST           RD7         55         69         84         I/O         ST           RD14          64         79         I/O         ST           RD14          37 </td <td>RC12</td> <td>39</td> <td>49</td> <td>63</td> <td>I/O</td> <td>ST</td> <td></td>                                                                                               | RC12     | 39                  | 49             | 63              | I/O | ST              |                                                |
| RC14         48         60         74         I/O         ST           RC15         40         50         64         I/O         ST           RCV         18         22         27         1         ST         USB Receive Input (from external transceiver).           RD0         46         58         72         I/O         ST         PORTD Digital I/O.           RD1         49         61         76         I/O         ST         PORTD Digital I/O.           RD2         50         62         77         I/O         ST         PORTD Digital I/O.           RD4         52         66         81         I/O         ST         PORTD Digital I/O.           RD5         53         67         82         I/O         ST           RD6         54         68         83         I/O         ST           RD7         55         69         84         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12          64         79         I/O         ST                                                                                                                       | RC13     | 47                  | 59             | 73              | I/O | ST              |                                                |
| RC15         40         50         64         I/O         ST           RCV         18         22         27         I         ST           RD0         46         58         72         I/O         ST           RD1         49         61         76         I/O         ST           RD2         50         62         77         I/O         ST           RD3         51         63         78         I/O         ST           RD4         52         66         81         I/O         ST           RD5         53         67         82         I/O         ST           RD6         54         68         83         I/O         ST           RD7         55         69         84         I/O         ST           RD1         43         55         69         I/O         ST           RD1         44         56         70         I/O         ST           RD1         45         57         71         I/O         ST           RD14          37         47         I/O         ST           RD15          38                                                                                                                                                                                            | RC14     | 48                  | 60             | 74              | I/O | ST              |                                                |
| RCV         18         22         27         I         ST         USB Receive Input (from external transceiver).           RD0         46         58         72         I/O         ST           RD1         49         61         76         I/O         ST           RD2         50         62         77         I/O         ST           RD3         51         63         78         I/O         ST           RD4         52         66         81         I/O         ST           RD5         53         67         82         I/O         ST           RD6         54         68         83         I/O         ST           RD7         55         69         84         I/O         ST           RD8         42         54         68         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD14         -         37         47         I/O         ST           RD15         -         38         48         I/O         ST <t< td=""><td>RC15</td><td>40</td><td>50</td><td>64</td><td>I/O</td><td>ST</td><td></td></t<>                                                        | RC15     | 40                  | 50             | 64              | I/O | ST              |                                                |
| RD0         46         58         72         I/O         ST         PORTD Digital I/O.           RD1         49         61         76         I/O         ST           RD2         50         62         77         I/O         ST           RD3         51         63         78         I/O         ST           RD4         52         66         81         I/O         ST           RD5         53         67         82         I/O         ST           RD6         54         68         83         I/O         ST           RD7         55         69         84         I/O         ST           RD8         42         54         68         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12          64         79         I/O         ST           RD14          37         47         I/O         ST           RD15          38         48         I/O         ST           RE2                                                                                                                                                                                             | RCV      | 18                  | 22             | 27              | I   | ST              | USB Receive Input (from external transceiver). |
| RD1496176I/OSTRD2506277I/OSTRD3516378I/OSTRD4526681I/OSTRD5536782I/OSTRD6546883I/OSTRD7556984I/OSTRD8425468I/OSTRD9435569I/OSTRD10445670I/OSTRD126479I/OSTRD136580I/OSTRD143747I/OSTRD153848I/OSTRE1617794I/OSTRE2627898I/OSTRE3637999I/OSTRE46480100I/OSTRE5113I/OSTRE6224I/ORE7335I/ORE81318I/ORE9-1419I/OREFO303644OReference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD0      | 46                  | 58             | 72              | I/O | ST              | PORTD Digital I/O.                             |
| RD2506277I/OSTRD3516378I/OSTRD4526681I/OSTRD5536782I/OSTRD6546883I/OSTRD75556984I/OSTRD8425466I/OSTRD9435569I/OSTRD10445670I/OSTRD11455771I/OSTRD126479I/OSTRD136580I/OSTRD143747I/OSTRD153848I/OSTRE2627898I/OSTRE3637999I/OSTRE46480100I/OSTRE5113I/OSTRE5113I/OSTRE6224I/OSTRE5113I/OSTRE6224I/OSTRE7335I/OSTRE81318I/OSTRE91419I/OSTREFO303644O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RD1      | 49                  | 61             | 76              | I/O | ST              |                                                |
| RD3         51         63         78         I/O         ST           RD4         52         66         81         I/O         ST           RD5         53         67         82         I/O         ST           RD6         54         68         83         I/O         ST           RD7         55         69         84         I/O         ST           RD8         42         54         68         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12          64         79         I/O         ST           RD13         -         65         80         I/O         ST           RD14         -         37         47         I/O         ST           RD15         -         38         48         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE4         64         80 <td>RD2</td> <td>50</td> <td>62</td> <td>77</td> <td>I/O</td> <td>ST</td> <td></td>                                                                                            | RD2      | 50                  | 62             | 77              | I/O | ST              |                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD3      | 51                  | 63             | 78              | I/O | ST              |                                                |
| RD5         53         67         82         I/O         ST           RD6         54         68         83         I/O         ST           RD7         55         69         84         I/O         ST           RD8         42         54         68         I/O         ST           RD9         43         55         69         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12         -         64         79         I/O         ST           RD14         -         37         47         I/O         ST           RD15         -         38         48         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1                                                                                                                                                                        | RD4      | 52                  | 66             | 81              | I/O | ST              |                                                |
| RD6         54         68         83         I/O         ST           RD7         55         69         84         I/O         ST           RD8         42         54         68         I/O         ST           RD9         43         55         69         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12         -         64         79         I/O         ST           RD13         -         65         80         I/O         ST           RD14         -         37         47         I/O         ST           RD15         -         38         48         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2                                                                                                                                                                           | RD5      | 53                  | 67             | 82              | I/O | ST              |                                                |
| RD7         55         69         84         I/O         ST           RD8         42         54         68         I/O         ST           RD9         43         55         69         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12         -         64         79         I/O         ST           RD13         -         65         80         I/O         ST           RD14         -         37         47         I/O         ST           RD15         -         38         48         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2                                                                                                                                                                           | RD6      | 54                  | 68             | 83              | I/O | ST              |                                                |
| RD8         42         54         68         I/O         ST           RD9         43         55         69         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12          64         79         I/O         ST           RD13          65         80         I/O         ST           RD14          37         47         I/O         ST           RD15          38         48         I/O         ST           RE0         60         76         93         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2 <td>RD7</td> <td>55</td> <td>69</td> <td>84</td> <td>I/O</td> <td>ST</td> <td></td>                                                                                                                           | RD7      | 55                  | 69             | 84              | I/O | ST              |                                                |
| RD9         43         55         69         I/O         ST           RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12         -         64         79         I/O         ST           RD13         -         65         80         I/O         ST           RD14         -         37         47         I/O         ST           RD15         -         38         48         I/O         ST           RD15         -         38         48         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE8          13                                                                                                                                                                                      | RD8      | 42                  | 54             | 68              | I/O | ST              |                                                |
| RD10         44         56         70         I/O         ST           RD11         45         57         71         I/O         ST           RD12          64         79         I/O         ST           RD13          65         80         I/O         ST           RD14          37         47         I/O         ST           RD15          38         48         I/O         ST           RE0         60         76         93         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE8          13         18         I/O         ST           RE9         -         14                                                                                                                                                                                                                           | RD9      | 43                  | 55             | 69              | I/O | ST              |                                                |
| RD11         45         57         71         I/O         ST           RD12          64         79         I/O         ST           RD13          65         80         I/O         ST           RD14          37         47         I/O         ST           RD14          37         47         I/O         ST           RD15          38         48         I/O         ST           RE0         60         76         93         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE8          13         18         I/O         ST           RE9         -         14                                                                                                                                                                                                                                     | RD10     | 44                  | 56             | 70              | I/O | ST              |                                                |
| RD12          64         79         I/O         ST           RD13          65         80         I/O         ST           RD14          37         47         I/O         ST           RD15          38         48         I/O         ST           RE0         60         76         93         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36                                                                                                                                                                                                                                        | RD11     | 45                  | 57             | 71              | I/O | ST              |                                                |
| RD13        65       80       I/O       ST         RD14        37       47       I/O       ST         RD15        38       48       I/O       ST         RE0       60       76       93       I/O       ST         RE1       61       77       94       I/O       ST         RE2       62       78       98       I/O       ST         RE3       63       79       99       I/O       ST         RE4       64       80       100       I/O       ST         RE5       1       1       3       I/O       ST         RE6       2       2       4       I/O       ST         RE7       3       3       5       I/O       ST         RE8        13       18       I/O       ST         RE9        14       19       I/O       ST         REFO       30       36       44       O        Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                           | RD12     | _                   | 64             | 79              | I/O | ST              |                                                |
| RD14          37         47         I/O         ST           RD15          38         48         I/O         ST           RE0         60         76         93         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                            | RD13     | —                   | 65             | 80              | I/O | ST              |                                                |
| RD15          38         48         I/O         ST           RE0         60         76         93         I/O         ST           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                         | RD14     | _                   | 37             | 47              | I/O | ST              |                                                |
| RE0         60         76         93         I/O         ST         PORTE Digital I/O.           RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                           | RD15     | _                   | 38             | 48              | I/O | ST              |                                                |
| RE1         61         77         94         I/O         ST           RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RE0      | 60                  | 76             | 93              | I/O | ST              | PORTE Digital I/O.                             |
| RE2         62         78         98         I/O         ST           RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RE1      | 61                  | 77             | 94              | I/O | ST              |                                                |
| RE3         63         79         99         I/O         ST           RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RE2      | 62                  | 78             | 98              | I/O | ST              |                                                |
| RE4         64         80         100         I/O         ST           RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RE3      | 63                  | 79             | 99              | I/O | ST              |                                                |
| RE5         1         1         3         I/O         ST           RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RE4      | 64                  | 80             | 100             | I/O | ST              |                                                |
| RE6         2         2         4         I/O         ST           RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RE5      | 1                   | 1              | 3               | I/O | ST              |                                                |
| RE7         3         3         5         I/O         ST           RE8          13         18         I/O         ST           RE9          14         19         I/O         ST           REFO         30         36         44         O          Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RE6      | 2                   | 2              | 4               | I/O | ST              |                                                |
| RE8         —         13         18         I/O         ST           RE9         —         14         19         I/O         ST           REFO         30         36         44         O         —         Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RE7      | 3                   | 3              | 5               | I/O | ST              |                                                |
| RE9         —         14         19         I/O         ST           REFO         30         36         44         O         —         Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RE8      | _                   | 13             | 18              | I/O | ST              | ]                                              |
| REFO 30 36 44 O — Reference Clock Output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RE9      | _                   | 14             | 19              | I/O | ST              |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REFO     | 30                  | 36             | 44              | 0   | _               | Reference Clock Output.                        |

#### **TABLE 1-4:** PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$  input buffer

### 4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

### 4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two interrupt vector tables, located from 000004h to 0000FFh and 000100h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

### 4.1.3 FLASH CONFIGURATION WORDS

In PIC24FJ256GB110 family devices, the top three words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration registers. The addresses of the Flash Configuration Word for devices in the PIC24FJ256GB110 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words does not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in **Section 26.1** "Configuration Bits".

| TABLE 4-1: | FLASH CONFIGURATION    |
|------------|------------------------|
|            | WORDS FOR              |
|            | PIC24FJ256GB110 FAMILY |
|            | DEVICES                |

| Device       | Program<br>Memory<br>(Words) | Configuration<br>Word<br>Addresses |
|--------------|------------------------------|------------------------------------|
| PIC24FJ64GB  | 22,016                       | 00ABFAh:<br>00ABFEh                |
| PIC24FJ128GB | 44,032                       | 0157FAh:<br>0157FEh                |
| PIC24FJ192GB | 67,072                       | 020BFAh:<br>020BFEh                |
| PIC24FJ256GB | 87,552                       | 02ABFAh:<br>02ABFEh                |

### FIGURE 4-2: PROGRAM MEMORY ORGANIZATION



### EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK (C LANGUAGE CODE)

| <pre>// C example using MPLAB C30     unsigned long progAddr = 0xXXXXXX;     unsigned int offset;</pre> | // Address of row to write                                                        |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| //Set up pointer to the first memory location                                                           | on to be written                                                                  |
| TBLPAG = progAddr>>16;                                                                                  | // Initialize PM Page Boundary SFR                                                |
| offset = progAddr & 0xFFFF;                                                                             | // Initialize lower word of address                                               |
| <pre>builtin_tblwtl(offset, 0x0000);</pre>                                                              | <pre>// Set base address of erase block // with dummy latch write</pre>           |
| NVMCON = $0 \times 4042$ ;                                                                              | // Initialize NVMCON                                                              |
| asm("DISI #5");                                                                                         | <pre>// Block all interrupts with priority &lt;7 // for next 5 instructions</pre> |
| builtin_write_NVM();                                                                                    | // C30 function to perform unlock                                                 |
|                                                                                                         | // bequence and bee me                                                            |

### EXAMPLE 5-3: LOADING THE WRITE BUFFERS (ASSEMBLY LANGUAGE CODE)

| ; | Set up NVMCON | I for row programming operatior | ıs  |                                       |
|---|---------------|---------------------------------|-----|---------------------------------------|
|   | MOV           | #0x4001, W0                     | ;   |                                       |
|   | MOV           | W0, NVMCON                      | ;   | Initialize NVMCON                     |
| ; | Set up a poin | ter to the first program memor  | ſУ  | location to be written                |
| ; | program memor | ry selected, and writes enabled | ł   |                                       |
|   | MOV           | #0x0000, W0                     | ;   |                                       |
|   | MOV           | W0, TBLPAG                      | ;   | Initialize PM Page Boundary SFR       |
|   | MOV           | #0x6000, W0                     | ;   | An example program memory address     |
| ; | Perform the I | BLWT instructions to write the  | e 1 | latches                               |
| ; | 0th_program_w | ord                             |     |                                       |
|   | MOV           | #LOW_WORD_0, W2                 | ;   |                                       |
|   | MOV           | <pre>#HIGH_BYTE_0, W3</pre>     | ;   |                                       |
|   | TBLWTL        | W2, [W0]                        | ;   | Write PM low word into program latch  |
|   | TBLWTH        | W3, [W0++]                      | ;   | Write PM high byte into program latch |
| ; | lst_program_w | vord                            |     |                                       |
|   | MOV           | #LOW_WORD_1, W2                 | ;   |                                       |
|   | MOV           | #HIGH_BYTE_1, W3                | ;   | Weite DM les and international let a  |
|   | TBLWTL        | W2, [W0]                        | ,   | Write PM low word into program latch  |
|   | Jud program   | W3, [W0++]                      | i   | Write PM nigh byte into program latch |
| ' | Znu_program_  | HION NODD 2 N2                  |     |                                       |
|   | MOV           | HLOW_WORD_2, W2                 | ΄.  |                                       |
|   |               | #niGn_Biik_2, W5                |     | Write DM low word into program latch  |
|   | TBLWTH        | W2, [W0]<br>W3 [W0++]           | ;   | Write DM high byte into program latch |
|   | •             |                                 | '   | write in high byte into program raten |
|   | •             |                                 |     |                                       |
|   | •             |                                 |     |                                       |
| ; | 63rd program  | word                            |     |                                       |
|   | MOV           | #LOW_WORD_31, W2                | ;   |                                       |
|   | MOV           | #HIGH_BYTE_31, W3               | ;   |                                       |
|   | TBLWTL        | W2, [W0]                        | ;   | Write PM low word into program latch  |
|   | TBLWTH        | W3, [W0]                        | ;   | Write PM high byte into program latch |
|   |               |                                 |     |                                       |

| U-0          | U-0                                                                          | R/W-0                              | U-0               | U-0               | U-0              | U-0             | R/W-0 |
|--------------|------------------------------------------------------------------------------|------------------------------------|-------------------|-------------------|------------------|-----------------|-------|
| _            | _                                                                            | CTMUIF                             | —                 | _                 |                  | —               | LVDIF |
| bit 15       |                                                                              |                                    |                   |                   |                  |                 | bit 8 |
|              |                                                                              |                                    |                   |                   |                  |                 |       |
| U-0          | U-0                                                                          | U-0                                | U-0               | R/W-0             | R/W-0            | R/W-0           | U-0   |
|              | —                                                                            | —                                  |                   | CRCIF             | U2ERIF           | U1ERIF          |       |
| bit 7        |                                                                              |                                    |                   |                   |                  |                 | bit 0 |
|              |                                                                              |                                    |                   |                   |                  |                 |       |
| Legend:      |                                                                              |                                    |                   |                   |                  |                 |       |
| R = Readab   | le bit                                                                       | W = Writable                       | oit               | U = Unimplen      | nented bit, read | d as '0'        |       |
| -n = Value a | t POR                                                                        | '1' = Bit is set                   |                   | '0' = Bit is clea | ared             | x = Bit is unkn | iown  |
|              |                                                                              |                                    |                   |                   |                  |                 |       |
| bit 15-14    | Unimplemen                                                                   | ted: Read as '0                    | )'                |                   |                  |                 |       |
| bit 13       | CTMUIF: CTM                                                                  | MU Interrupt Fla                   | ag Status bit     |                   |                  |                 |       |
|              | 1 = Interrupt r<br>0 = Interrupt r                                           | request has occ<br>request has not | urred<br>occurred |                   |                  |                 |       |
| bit 12-9     | Unimplemen                                                                   | ted: Read as 'd                    | )'                |                   |                  |                 |       |
| bit 8        | LVDIF: Low-V                                                                 | /oltage Detect I                   | nterrupt Flag S   | Status bit        |                  |                 |       |
|              | 1 = Interrupt r<br>0 = Interrupt r                                           | request has occ<br>request has not | urred<br>occurred |                   |                  |                 |       |
| bit 7-4      | Unimplemen                                                                   | ted: Read as 'd                    | )'                |                   |                  |                 |       |
| bit 3        | CRCIF: CRC                                                                   | Generator Inte                     | rrupt Flag Stat   | us bit            |                  |                 |       |
|              | 1 = Interrupt request has occurred<br>0 = Interrupt request has not occurred |                                    |                   |                   |                  |                 |       |
| bit 2        | U2ERIF: UART2 Error Interrupt Flag Status bit                                |                                    |                   |                   |                  |                 |       |
|              | 1 = Interrupt request has occurred                                           |                                    |                   |                   |                  |                 |       |
|              | 0 = Interrupt request has not occurred                                       |                                    |                   |                   |                  |                 |       |
| bit 1        | U1ERIF: UAF                                                                  | RT1 Error Interr                   | upt Flag Status   | s bit             |                  |                 |       |
|              | 1 = Interrupt r                                                              | equest has occ                     | urred             |                   |                  |                 |       |
| 1.1.0        | 0 = Interrupt r                                                              | equest has not                     | occurred          |                   |                  |                 |       |
| DIT U        | Unimplemen                                                                   | tea: Read as '                     | ).                |                   |                  |                 |       |

### REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

## 8.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- · Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal USB PLL block, which generates both the USB module clock and a separate system clock from the 96 MHZ PLL. Refer to **Section 8.5 "Oscillator Modes and USB Operation"** for additional information.

The Fast Internal FRC provides an 8 MHz clock source. It can optionally be reduced by the programmable clock divider to provide a range of system clock frequencies.

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

## 8.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to **Section 26.1 "Configuration Bits"** for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, shown in Table 8-1.

#### 8.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

| Oscillator Mode                                    | Oscillator Source | POSCMD<1:0> | FNOSC<2:0> | Note |
|----------------------------------------------------|-------------------|-------------|------------|------|
| Fast RC Oscillator with Postscaler (FRCDIV)        | Internal          | 11          | 111        | 1, 2 |
| (Reserved)                                         | Internal          | xx          | 110        | 1    |
| Low-Power RC Oscillator (LPRC)                     | Internal          | 11          | 101        | 1    |
| Secondary (Timer1) Oscillator<br>(SOSC)            | Secondary         | 11          | 100        | 1    |
| Primary Oscillator (XT) with PLL<br>Module (XTPLL) | Primary           | 01          | 011        |      |
| Primary Oscillator (EC) with PLL<br>Module (ECPLL) | Primary           | 00          | 011        |      |
| Primary Oscillator (HS)                            | Primary           | 10          | 010        |      |
| Primary Oscillator (XT)                            | Primary           | 01          | 010        |      |
| Primary Oscillator (EC)                            | Primary           | 00          | 010        |      |
| Fast RC Oscillator with PLL Module (FRCPLL)        | Internal          | 11          | 001        | 1    |
| Fast RC Oscillator (FRC)                           | Internal          | 11          | 000        | 1    |

### TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

**Note 1:** OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

## 11.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC), or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.



### FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

## 13.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, modules 1 and 2 are paired, as are modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even module (ICy) provides the Most Significant 16 bits. Wraparounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

## 13.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx, or all transitions on ICx. Captures can be configured to occur on all rising edges, or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event, or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSEL bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSEL bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICI bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
  - a) Check that the SYNCSEL bits are not set to '00000'.
  - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
  - c) For Trigger mode, set ICTRIG, and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICM bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected trigger/sync source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8> and (ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSEL and SYNCSEL bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSEL and SYNCSEL settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>); this forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICI bits (ICxCON1<6:5>) to the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- Note: For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICM bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.

The module is ready to capture events when the time base and the trigger/sync source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (perform automatically by hardware).

### FIGURE 19-2: LEGACY PARALLEL SLAVE PORT EXAMPLE







#### TABLE 19-1: SLAVE MODE ADDRESS RESOLUTION

| PMA<1:0> | Output Register (Buffer) | Input Register (Buffer) |
|----------|--------------------------|-------------------------|
| 00       | PMDOUT1<7:0> (0)         | PMDIN1<7:0> (0)         |
| 01       | PMDOUT1<15:8> (1)        | PMDIN1<15:8> (1)        |
| 10       | PMDOUT2<7:0> (2)         | PMDIN2<7:0> (2)         |
| 11       | PMDOUT2<15:8> (3)        | PMDIN2<15:8> (3)        |

## FIGURE 19-4: MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, TWO CHIP SELECTS)



## 20.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (Military Time) display option
- Calendar data as date, month and year
- Automatic, hardware-based day of the week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for \_compact firmware
- · Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 20-1. The SOSC and RTCC will both remain running while the device is held in Reset with MCLR and will continue running after MCLR is released.



### FIGURE 20-1: RTCC BLOCK DIAGRAM

## REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER<sup>(1)</sup> (CONTINUED)

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

...

01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

... 00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment

111111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
  - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
  - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

### REGISTER 20-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

| U-0               | U-0         | U-0              | U-0 | U-0                                | U-0 | U-0                     | U-0    |  |
|-------------------|-------------|------------------|-----|------------------------------------|-----|-------------------------|--------|--|
| —                 | —           | —                | —   | —                                  | —   | —                       |        |  |
| bit 15 bit 8      |             |                  |     |                                    |     |                         |        |  |
|                   |             |                  |     |                                    |     |                         |        |  |
| U-0               | U-0         | U-0              | U-0 | U-0                                | U-0 | R/W-0                   | R/W-0  |  |
| —                 | —           | —                | —   | —                                  | —   | RTSECSEL <sup>(1)</sup> | PMPTTL |  |
| bit 7             | bit 7 bit 0 |                  |     |                                    |     |                         |        |  |
|                   |             |                  |     |                                    |     |                         |        |  |
| Legend:           |             |                  |     |                                    |     |                         |        |  |
| R = Readable bit  |             | W = Writable bit |     | U = Unimplemented bit, read as '0' |     |                         |        |  |
| -n = Value at POR |             | '1' = Bit is set |     | '0' = Bit is cleared               |     | x = Bit is unknown      |        |  |
| <u>-</u>          |             |                  |     |                                    |     |                         |        |  |

| bit 15-2 | Unimplemented: Read as '0'                                                                                                                     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 1    | RTSECSEL: RTCC Seconds Clock Output Select bit <sup>(1)</sup>                                                                                  |
|          | 1 = RTCC seconds clock is selected for the RTCC pin                                                                                            |
| hit 0    | <b>DMDTTI</b> : DMD Module TTI Input Puffer Select bit                                                                                         |
| DILU     |                                                                                                                                                |
|          | <ul> <li>1 = PMP module inputs (PMDx, PMCS1) use TTL input buffers</li> <li>0 = PMP module inputs use Schmitt Trigger input buffers</li> </ul> |
|          |                                                                                                                                                |

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>)) bit must also be set.

## 22.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 500 ksps
- 16 analog input pins
- External voltage reference input pins
- Internal band gap reference inputs
- Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable Buffer Fill modes
- · Four result alignment options
- Operation during CPU Sleep and Idle modes

On all PIC24FJ256GB110 family devices, the 10-bit A/D Converter has 16 analog input pins, designated AN0 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 22-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
  - Configure port pins as analog inputs and/or select band gap reference inputs (AD1PCFGL<15:0> and AD1PCFGH<1:0>).
  - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
  - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>).
  - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
  - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
  - f) Select interrupt rate (AD1CON2<5:2>).
  - g) Turn on A/D module (AD1CON1<15>).
- 2. Configure A/D interrupt (if required):
  - a) Clear the AD1IF bit.
  - b) Select A/D interrupt priority.

## 26.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "PIC24F Family Reference Manual":
   Section 9. "Watchdog Timer (WDT)" (DS39697)
  - Section 32. "High-Level Device Integration" (DS39719)
  - Section 33. "Programming and Diagnostics" (DS39716)

PIC24FJ256GB110 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming
- In-Circuit Emulation

## 26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location F80000h. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-5.

Note that address F80000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh) which can only be accessed using table reads and table writes.

### 26.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256GB110 FAMILY DEVICES

In PIC24FJ256GB110 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 26-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

**Note:** Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

### TABLE 26-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ256GB110 FAMILY DEVICES

| Device        | Configuration Word Addresses |       |       |  |  |  |
|---------------|------------------------------|-------|-------|--|--|--|
| Device        | 1                            | 2     | 3     |  |  |  |
| PIC24FJ64GB1  | ABFEh                        | ABFCh | ABFAh |  |  |  |
| PIC24FJ128GB1 | 157FEh                       | 157FC | 157FA |  |  |  |
| PIC24FJ192GB1 | 20BFEh                       | 20BFC | 20BFA |  |  |  |
| PIC24FJ256GB1 | 2ABFEh                       | 2ABFC | 2ABFA |  |  |  |

| DC CHARACTERISTICS                      |                        |     | Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |            |                     |                                                                  |  |
|-----------------------------------------|------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|------------------------------------------------------------------|--|
| Parameter<br>No.                        | Typical <sup>(1)</sup> | Мах | Units                                                                                                                                            | Conditions |                     |                                                                  |  |
| Power-Down Current (IPD) <sup>(2)</sup> |                        |     |                                                                                                                                                  |            |                     |                                                                  |  |
| DC62                                    | 2.5                    | 7   | μA                                                                                                                                               | -40°C      |                     |                                                                  |  |
| DC62a                                   | 2.5                    | 7   | μA                                                                                                                                               | +25°C      | 2.0√ <sup>(3)</sup> | RTCC + Timer1 w/32 kHz Crystal:<br>∆RTCC + ∆I⊤i32 <sup>(5)</sup> |  |
| DC62m                                   | 3.0                    | 7   | μA                                                                                                                                               | +60°C      |                     |                                                                  |  |
| DC62b                                   | 3.0                    | 7   | μA                                                                                                                                               | +85°C      |                     |                                                                  |  |
| DC62c                                   | 2.8                    | 7   | μA                                                                                                                                               | -40°C      |                     |                                                                  |  |
| DC62d                                   | 3.0                    | 7   | μA                                                                                                                                               | +25°C      |                     |                                                                  |  |
| DC62n                                   | 3.0                    | 7   | μA                                                                                                                                               | +60°C      |                     |                                                                  |  |
| DC62e                                   | 3.0                    | 7   | μA                                                                                                                                               | +85°C      |                     |                                                                  |  |
| DC62f                                   | 3.5                    | 10  | μA                                                                                                                                               | -40°C      | 3.3V <sup>(4)</sup> |                                                                  |  |
| DC62g                                   | 3.5                    | 10  | μA                                                                                                                                               | +25°C      |                     |                                                                  |  |
| DC62p                                   | 4.0                    | 10  | μA                                                                                                                                               | +60°C      |                     |                                                                  |  |
| DC62h                                   | 4.0                    | 10  | μA                                                                                                                                               | +85°C      |                     |                                                                  |  |

#### TABLE 29-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

**Note 1:** Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear, and the Peripheral Module Disable (PMD) bits for all unused peripherals are set.

3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The  $\Delta$  current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

### 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | Units | N        | <b>ILLIMETER</b> | S    |
|------------------------|-------|----------|------------------|------|
| Dimensior              | MIN   | NOM      | MAX              |      |
| Number of Pins         | N     | 64       |                  |      |
| Pitch                  | е     | 0.50 BSC |                  |      |
| Overall Height         | A     | 0.80     | 0.90             | 1.00 |
| Standoff               | A1    | 0.00     | 0.02             | 0.05 |
| Contact Thickness      | A3    | 0.20 REF |                  |      |
| Overall Width          | E     | 9.00 BSC |                  |      |
| Exposed Pad Width      | E2    | 7.05     | 7.15             | 7.50 |
| Overall Length         | D     | 9.00 BSC |                  |      |
| Exposed Pad Length     | D2    | 7.05     | 7.15             | 7.50 |
| Contact Width          | b     | 0.18     | 0.25             | 0.30 |
| Contact Length         | L     | 0.30     | 0.40             | 0.50 |
| Contact-to-Exposed Pad | K     | 0.20     | -                | -    |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2

### 100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
  - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

NOTES:

## THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

## **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com