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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8052

Core Size 8-Bit

Speed 8.38MHz

Connectivity I²C, SPI, UART/USART
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Program Memory Type FLASH

EEPROM Size -

RAM Size 2.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 8x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 56-VFQFN Exposed Pad, CSP
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SPECIFICATIONS1 
Table 1. AVDD = DVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V; VREF = 2.5 V internal reference, fCORE = 16.78 MHz @ 5 V 8.38 MHz @ 3 V; 
all specifications TA = TMIN to TMAX, unless otherwise noted 
Parameter VDD = 5 V VDD = 3 V Unit Test Conditions/Comments 
ADC CHANNEL SPECIFICATIONS     

DC ACCURACY2, 3    fSAMPLE = 120 kHz, see the Typical 
Performance Characteristics for typical 
performance at other values of fSAMPLE 

Resolution 12 12 Bits  
Integral Nonlinearity ±1 ±1 LSB max 2.5 V internal reference 
 ±0.3 ±0.3 LSB typ  
Differential Nonlinearity +1/–0.9 +1/–0.9 LSB max 2.5 V internal reference 
 ±0.3 ±0.3 LSB typ  
Integral Nonlinearity4 ±2 ±1.5 LSB max 1 V external reference 
Differential Nonlinearity4 +1.5/–0.9 +1.5/–0.9 LSB max 1 V external reference 
Code Distribution 1 1 LSB typ ADC input is a dc voltage 

CALIBRATED ENDPOINT ERRORS5, 6     
Offset Error ±3 ±2 LSB max  
Offset Error Match ±1 ±1 LSB typ  
Gain Error ±3 ±2 LSB max  
Gain Error Match ±1 ±1 LSB typ  

DYNAMIC PERFORMANCE    fIN = 10 kHz sine wave 
    fSAMPLE = 120 kHz 

Signal-to-Noise Ratio (SNR)7 71 71 dB typ  
Total Harmonic Distortion (THD) –85 –85 dB typ  
Peak Harmonic or Spurious Noise –85 –85 dB typ  
Channel-to-Channel Crosstalk8 –80 –80 dB typ  

ANALOG INPUT     
Input Voltage Range 0 to VREF 0 to VREF V  
Leakage Current ±1 ±1 μA max  
Input Capacitance 32 32 pF typ  

TEMPERATURE SENSOR9     
Voltage Output at 25°C 700 700 mV typ  
Voltage TC –1.4 –1.4 mV/°C typ  
Accuracy  ±1.5 ±1.5 °C typ Internal/External 2.5 V VREF 

     

DAC CHANNEL SPECIFICATIONS    DAC load to AGND 
Internal Buffer Enabled 

ADuC841/ADuC842 Only 
   RL = 10 kΩ, CL = 100 pF 

DC ACCURACY10     
Resolution 12 12 Bits  
Relative Accuracy ±3 ±3 LSB typ  
Differential Nonlinearity11 –1 –1 LSB max Guaranteed 12-bit monotonic 
 ±1/2 ±1/2 LSB typ  
Offset Error ±50 ±50 mV max VREF range 
Gain Error ±1 ±1 % max AVDD range 
 ±1 ±1 % typ VREF range 
Gain Error Mismatch 0.5 0.5 % typ % of full-scale on DAC1 

ANALOG OUTPUTS     
Voltage Range_0 0 to VREF 0 to VREF V typ DAC VREF = 2.5 V 
Voltage Range_1 0 to VDD 0 to VDD V typ DAC VREF = VDD 
Output Impedance 0.5 0.5 Ω typ  

 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
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1 Temperature Range –40°C to +85°C. 
2 ADC linearity is guaranteed during normal MicroConverter core operation. 
3 ADC LSB size = VREF/212, that is, for internal VREF = 2.5 V, 1 LSB = 610 μV, and for external VREF = 1 V, 1 LSB = 244 μV. 
4 These numbers are not production tested but are supported by design and/or characterization data on production release. 
5 Offset and gain error and offset and gain error match are measured after factory calibration. 
6 Based on external ADC system components, the user may need to execute a system calibration to remove additional external channel errors to achieve these 

specifications. 
7 SNR calculation includes distortion and noise components. 
8 Channel-to-channel crosstalk is measured on adjacent channels. 
9 The temperature monitor gives a measure of the die temperature directly; air temperature can be inferred from this result. 
10 DAC linearity is calculated using: 
      Reduced code range of 100 to 4095, 0 V to VREF range. 
      Reduced code range of 100 to 3945, 0 V to VDD range. 
      DAC output load = 10 kΩ and 100 pF. 
11 DAC differential nonlinearity specified on 0 V to VREF and 0 V to VDD ranges. 
12 DAC specification for output impedance in the unbuffered case depends on DAC code. 
13 DAC specifications for ISINK, voltage output settling time, and digital-to-analog glitch energy depend on external buffer implementation in unbuffered mode. DAC in 

unbuffered mode tested with OP270 external buffer, which has a low input leakage current. 
14 Measured with CREF pin decoupled with 0.47 μF capacitor to ground. Power-up time for the internal reference is determined by the value of the decoupling capacitor 

chosen for the CREF pin. 
15 When using an external reference device, the internal band gap reference input can be bypassed by setting the ADCCON1.6 bit.  
16 Flash/EE memory reliability characteristics apply to both the Flash/EE program memory and the Flash/EE data memory. 
17 Endurance is qualified to 100,000 cycles as per JEDEC Std. 22 method A117 and measured at –40°C, +25°C, and +85°C. Typical endurance at 25°C is 700,000 cycles. 
18 Retention lifetime equivalent at junction temperature (TJ) = 55°C as per JEDEC Std. 22 method A117. Retention lifetime based on an activation energy of 0.6 eV derates 

with junction temperature as shown in Figure 38 in the Flash/EE Memory Reliability section. 
19 Power supply current consumption is measured in normal, idle, and power-down modes under the following conditions: 

Normal Mode:  Reset = 0.4 V, digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON (ADuC842/ADuC843), core executing internal 
software loop. 

Idle Mode:  Reset = 0.4 V, digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON (ADuC842/ADuC843), PCON.0 = 1, core execution 
suspended in idle mode. 

Power-Down Mode: Reset = 0.4 V, all Port 0 pins = 0.4 V, All other digital I/O and Port 1 pins are open circuit, Core Clk changed via CD bits in PLLCON 
(ADuC842/ADuC843), PCON.0 = 1, core execution suspended in power-down mode, OSC turned on or off via OSC_PD bit (PLLCON.7) in 
PLLCON SFR (ADuC842/ADuC843). 

20 DVDD power supply current increases typically by 3 mA (3 V operation) and 10 mA (5 V operation) during a Flash/EE memory program or erase cycle. 
21  Power supply currents are production tested at 5.25 V and 3.3 V for a 5 V and 3 V part, respectively. 
 

 

 

http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
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Pin No.  Mnemonic Type1 Description 
33 P2.3/A11/A19 I/O Input/Output Port 2 (P2.3). Port 2 is a bidirectional port with internal pull-up 

resistors. Port 2 pins that have 1s written to them are pulled high by the internal 
pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins 
being pulled externally low source current because of the internal pull-up resistors.  

   External Memory Addresses (A11). Port 2 emits the middle order address byte 
during accesses to the external 24-bit external data memory space. 

   External Memory Addresses (A19). Port 2 emits the high order address byte 
during accesses to the external 24-bit external data memory space. 

34 XTAL1 I Input to the Inverting Oscillator Amplifier. 
35 XTAL2 O Output of the Inverting Oscillator Amplifier. 
39 P2.4/A12/A20 I/O Input/Output Port 2 (P2.4). Port 2 is a bidirectional port with internal pull-up 

resistors. Port 2 pins that have 1s written to them are pulled high by the internal 
pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins 
being pulled externally low source current because of the internal pull-up resistors.  

   External Memory Addresses (A12). Port 2 emits the middle order address byte 
during accesses to the external 24-bit external data memory space. 

   External Memory Addresses (A20). Port 2 emits the high order address byte 
during accesses to the external 24-bit external data memory space. 

40 P2.5/A13/A21 I/O Input/Output Port 2 (P2.5). Port 2 is a bidirectional port with internal pull-up 
resistors. Port 2 pins that have 1s written to them are pulled high by the internal 
pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins 
being pulled externally low source current because of the internal pull-up resistors.  

   External Memory Addresses (A13). Port 2 emits the middle order address byte 
during accesses to the external 24-bit external data memory space. 

   External Memory Addresses (A21). Port 2 emits the high order address byte 
during accesses to the external 24-bit external data memory space. 

41 P2.6/A14/A22 I/O Input/Output Port 2 (P2.6). Port 2 is a bidirectional port with internal pull-up 
resistors. Port 2 pins that have 1s written to them are pulled high by the internal 
pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins 
being pulled externally low source current because of the internal pull-up resistors.  

   External Memory Addresses (A14). Port 2 emits the middle order address byte 
during accesses to the external 24-bit external data memory space. 

   External Memory Addresses (A22). Port 2 emits the high order address byte 
during accesses to the external 24-bit external data memory space. 

42 P2.7/A15/A23 I/O Input/Output Port 2 (P2.7). Port 2 is a bidirectional port with internal pull-up 
resistors. Port 2 pins that have 1s written to them are pulled high by the internal 
pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins 
being pulled externally low source current because of the internal pull-up resistors.  

   External Memory Addresses (A15). Port 2 emits the middle order address byte 
during accesses to the external 24-bit external data memory space. 

   External Memory Addresses (A23). Port 2 emits the high order address byte 
during accesses to the external 24-bit external data memory space. 

43 EA I External Access Enable, Logic Input. When held high, this input enables the 
device to fetch code from internal program memory locations. The devices do 
not support external code memory. Do not leave this pin floating. 

44 PSEN O Program Store Enable, Logic Output. This pin remains low during internal 
program execution. PSEN enables serial download mode when pulled low 
through a resistor on power-up or reset. On reset, this pin momentarily becomes 
an input and the status of the pin is sampled. If there is no pull-down resistor in 
place, the pin goes momentarily high and then user code executes. If a pull-down 
resistor is in place, the embedded serial download/debug kernel executes. 

45 ALE O Address Latch Enable, Logic Output. This output latches the low byte and page 
byte for 24-bit address space accesses of the address into external data memory. 
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Figure 19. Typical Dynamic Performance vs. VREF, VDD = 5 V 
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Figure 20. Typical Dynamic Performance vs. VREF, VDD = 3 V 
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Figure 21. Typical Dynamic Performance vs. Sampling Frequency 
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Figure 22. Typical Temperature Sensor Output vs. Temperature  
 

 

 

GENERAL DESCRIPTION (continued) 

The parts also incorporate additional analog functionality with 
two 12-bit DACs, power supply monitor, and a band gap 
reference. On-chip digital peripherals include two 16-bit ∑-Δ. 
DACs, a dual output 16-bit PWM, a watchdog timer, a time 
interval counter, three timers/counters, and three serial I/O 
ports (SPI, I2C, and UART). 

On the ADuC812 and the ADuC832, the I2C and SPI interfaces 
share some of the same pins. For backwards compatibility, this 
is also the case for the ADuC841/ADuC842/ADuC843. 

However, there is also the option to allow SPI operate separately 
on P3.3, P3.4, and P3.5, while I2C uses the standard pins. The 
I2C interface has also been enhanced to offer repeated start, 
general call, and quad addressing. 

On-chip factory firmware supports in-circuit serial download 
and debug modes (via UART) as well as single-pin emulation 
mode via the EA pin. A functional block diagram of the parts is 
shown on the first page. 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
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Mnemonic Description Bytes Cycles 
Branching    

JMP @A+DPTR Jump indirect relative to DPTR 1 3 
RET Return from subroutine 1 4 
RETI Return from interrupt 1 4 
ACALL addr11 Absolute jump to subroutine 2 3 
AJMP addr11  Absolute jump unconditional  2 3 
SJMP rel Short jump (relative address) 2 3 
JC rel Jump on carry equal to 1 2 3 
JNC rel Jump on carry equal to 0  2 3 
JZ rel Jump on accumulator = 0 2 3 
JNZ rel Jump on accumulator not equal to 0 2 3 
DJNZ Rn,rel Decrement register, JNZ relative 2 3 
LJMP Long jump unconditional 3 4 
LCALL addr16 Long jump to subroutine 3 4 
JB bit,rel Jump on direct bit = 1 3 4 
JNB bit,rel Jump on direct bit = 0 3 4 
JBC bit,rel Jump on direct bit = 1 and clear 3 4 
CJNE A,dir,rel Compare A, direct JNE relative 3 4 
CJNE A,#data,rel Compare A, immediate JNE relative 3 4 
CJNE Rn,#data,rel Compare register, immediate JNE relative 3 4 
CJNE @Ri,#data,rel Compare indirect, immediate JNE relative 3 4 
DJNZ dir,rel Decrement direct byte, JNZ relative 3 4 

Miscellaneous    
NOP No operation 1 1 

 
1. One cycle is one clock. 
2. Cycles of MOVX instructions are four cycles when they have 0 wait state. Cycles of MOVX instructions are 4 + n cycles when they have n wait states. 
3. Cycles of LCALL instruction are three cycles when the LCALL instruction comes from interrupt. 
 
 

OTHER SINGLE-CYCLE CORE FEATURES
Timer Operation 

Timers on a standard 8052 increment by 1 with each machine 
cycle. On the ADuC841/ADuC842/ADuC843, one machine 
cycle is equal to one clock cycle; therefore the timers increment 
at the same rate as the core clock. 

ALE 

The output on the ALE pin on a standard 8052 part is a clock at 
1/6th of the core operating frequency. On the ADuC841/ 
ADuC842/ADuC843 the ALE pin operates as follows. For a 
single machine cycle instruction, ALE is high for the first half of 
the machine cycle and low for the second half. The ALE output 
is at the core operating frequency. For a two or more machine 
cycle instruction, ALE is high for the first half of the first 
machine cycle and low for the rest of the machine cycles. 

External Memory Access 

There is no support for external program memory access on the 
parts. When accessing external RAM, the EWAIT register may 
need to be programmed to give extra machine cycles to MOVX 
commands. This is to account for differing external RAM access 
speeds. 

EWAIT SFR 

SFR Address  9FH 

Power-On Default 00H 

Bit Addressable  No 

 

This special function register (SFR) is programmed with the 
number of wait states for a MOVX instruction. This value can 
range from 0H to 7H. 

 

 

 

 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
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Table 12. Some Single-Supply Op Amps 
Op Amp Model Characteristics 
OP281/OP481 Micropower 
OP191/OP291/OP491 I/O Good up to VDD, Low Cost 
OP196/OP296/OP496 I/O to VDD, Micropower, Low Cost 
OP183/OP283 High Gain-Bandwidth Product 
OP162/OP262/OP462 High GBP, Micro Package 
AD820/AD822/AD824 FET Input, Low Cost 
AD823 FET Input, High GBP 

 

Keep in mind that the ADC transfer function is 0 V to VREF, and 
that any signal range lost to amplifier saturation near ground 
impacts dynamic range. Though the op amps in Table 12 are 
capable of delivering output signals that very closely approach 
ground, no amplifier can deliver signals all the way to ground 
when powered by a single supply. Therefore, if a negative supply 
is available, you might consider using it to power the front end 
amplifiers. If you do, however, be sure to include the Schottky 
diodes shown in Figure 31 (or at least the lower of the two diodes) 
to protect the analog input from undervoltage conditions. To 
summarize this section, use the circuit in Figure 31 to drive the 
analog input pins of the parts. 

Voltage Reference Connections 

The on-chip 2.5 V band gap voltage reference can be used as the 
reference source for the ADC and DACs. To ensure the accuracy 
of the voltage reference, you must decouple the CREF pin to 
ground with a 0.47 μF capacitor, as shown in Figure 32. Note 
that this is different from the ADuC812/ADuC831/ADuC832. 

BUFFER

BUFFER 0.47F

51

VREF = NC

CREF

2.5V
BAND GAP

REFERENCE

ADuC841/ADuC842/ADuC843

03
26

0-
0-

03
0

 
Figure 32. Decoupling VREF and CREF 

If the internal voltage reference is to be used as a reference for 
external circuitry, the CREF output should be used. However, a 
buffer must be used in this case to ensure that no current is 
drawn from the CREF pin itself. The voltage on the CREF pin is 
that of an internal node within the buffer block, and its voltage 
is critical for ADC and DAC accuracy. The parts power up with 
their internal voltage reference in the off state. 

If an external voltage reference is preferred, it should be 
connected to the CREF pin as shown in Figure 33. Bit 6 of the 
ADCCON1 SFR must be set to 1 to switch in the external 
reference voltage. 

To ensure accurate ADC operation, the voltage applied to CREF 
must be between 1 V and AVDD. In situations where analog 
input signals are proportional to the power supply (such as in 
some strain gage applications), it may be desirable to connect 
the CREF pin directly to AVDD. Operation of the ADC or DACs 
with a reference voltage below 1 V, however, may incur loss of 
accuracy, eventually resulting in missing codes or non-
monotonicity. For that reason, do not use a reference voltage 
lower than 1 V. 
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EXTERNAL
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REFERENCE

 1 = EXTERNAL

 0 = INTERNAL
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Figure 33. Using an External Voltage Reference 

 

Configuring the ADC 

The parts’ successive approximation ADC is driven by a divided 
down version of the master clock. To ensure adequate ADC 
operation, this ADC clock must be between 400 kHz and 
8.38 MHz. Frequencies within this range can be achieved easily 
with master clock frequencies from 400 kHz to well above 
16 MHz, with the four ADC clock divide ratios to choose from. 
For example, set the ADC clock divide ratio to 8 (that is, ADCCLK 
= 16.777216 MHz/8 = 2 MHz) by setting the appropriate bits in 
ADCCON1 (ADCCON1.5 = 1, ADCCON1.4 = 0). The total 
ADC conversion time is 15 ADC clocks, plus 1 ADC clock for 
synchronization, plus the selected acquisition time (1, 2, 3, or 4 
ADC clocks). For the preceding example, with a 3-clock 
acquisition time, total conversion time is 19 ADC clocks (or 
9.05 μs for a 2 MHz ADC clock). 

In continuous conversion mode, a new conversion begins each 
time the previous one finishes. The sample rate is then simply 
the inverse of the total conversion time described previously. In 
the preceding example, the continuous conversion mode sample 
rate is 110.3 kHz. 

http://www.analog.com/aduc812?doc=aduc841_842_843.pdf
http://www.analog.com/aduc831?doc=aduc841_842_843.pdf
http://www.analog.com/aduc832?doc=aduc841_842_843.pdf
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The DMA logic operates from the ADC clock and uses pipelin-
ing to perform the ADC conversions and to access the external 
memory at the same time. The time it takes to perform one ADC 
conversion is called a DMA cycle. The actions performed by the 
logic during a typical DMA cycle are shown in Figure 36. 

WRITE ADC RESULT
CONVERTED DURING

PREVIOUS DMA CYCLE

READ CHANNEL ID
TO BE CONVERTED DURING

NEXT DMA CYCLE

CONVERT CHANNEL READ DURING PREVIOUS DMA CYCLE

DMA CYCLE 03
26

0-
0-

03
5

 
Figure 36. DMA Cycle 

Figure 36 shows that during one DMA cycle, the following 
actions are performed by the DMA logic: 

1. An ADC conversion is performed on the channel whose 
ID was read during the previous cycle. 

2. The 12-bit result and the channel ID of the conversion 
performed in the previous cycle is written to the external 
memory. 

3. The ID of the next channel to be converted is read from 
external memory. 

For the previous example, the complete flow of events is shown 
in Figure 36. Because the DMA logic uses pipelining, it takes 
three cycles before the first correct result is written out. 

Micro Operation during ADC DMA Mode 

During ADC DMA mode, the MicroConverter core is free to 
continue code execution, including general housekeeping and 
communication tasks. However, note that MCU core accesses to 
Ports 0 and 2 (which of course are being used by the DMA con-
troller) are gated off during the ADC DMA mode of operation. 
This means that even though the instruction that accesses the 
external Ports 0 or 2 appears to execute, no data is seen at these 
external ports as a result. Note that during DMA to the inter-
nally contained XRAM, Ports 0 and 2 are available for use. 

The only case in which the MCU can access XRAM during 
DMA is when the internal XRAM is enabled and the section of 
RAM to which the DMA ADC results are being written to lies 
in an external XRAM. Then the MCU can access the internal 
XRAM only. This is also the case for use of the extended stack 
pointer. 

The MicroConverter core can be configured with an interrupt 
to be triggered by the DMA controller when it has finished 
filling the requested block of RAM with ADC results, allowing 
the service routine for this interrupt to postprocess data without 
any real-time timing constraints. 

ADC Offset and Gain Calibration Coefficients 

The ADuC841/ADuC842/ADuC843 have two ADC calibration 
coefficients, one for offset calibration and one for gain calibra-
tion. Both the offset and gain calibration coefficients are 14-bit 
words, and are each stored in two registers located in the special 
function register (SFR) area. The offset calibration coefficient is 
divided into ADCOFSH (six bits) and ADCOFSL (8 bits), and 
the gain calibration coefficient is divided into ADCGAINH  
(6 bits) and ADCGAINL (8 bits). 

The offset calibration coefficient compensates for dc offset 
errors in both the ADC and the input signal. Increasing the 
offset coefficient compensates for positive offset, and effectively 
pushes the ADC transfer function down. Decreasing the offset 
coefficient compensates for negative offset, and effectively 
pushes the ADC transfer function up. The maximum offset that 
can be compensated is typically ±5% of VREF, which equates to 
typically ±125 mV with a 2.5 V reference. 

Similarly, the gain calibration coefficient compensates for dc 
gain errors in both the ADC and the input signal. Increasing the 
gain coefficient compensates for a smaller analog input signal 
range and scales the ADC transfer function up, effectively 
increasing the slope of the transfer function. Decreasing the 
gain coefficient compensates for a larger analog input signal 
range and scales the ADC transfer function down, effectively 
decreasing the slope of the transfer function. The maximum 
analog input signal range for which the gain coefficient can 
compensate is 1.025 × VREF, and the minimum input range is 
0.975 × VREF, which equates to typically ±2.5% of the reference 
voltage. 

CALIBRATING THE ADC 
Two hardware calibration modes are provided, which can be 
easily initiated by user software. The ADCCON3 SFR is used to 
calibrate the ADC. Bit 1 (typical) and CS3 to CS0 (ADCCON2) set 
up the calibration modes. 

Device calibration can be initiated to compensate for significant 
changes in operating condition frequency, analog input range, 
reference voltage, and supply voltages. In this calibration mode, 
offset calibration uses internal AGND selected via ADCCON2 
register Bits CS3 to CS0 (1011), and gain calibration uses inter-
nal VREF selected by Bits CS3 to CS0 (1100). Offset calibration 
should be executed first, followed by gain calibration. System 
calibration can be initiated to compensate for both internal and 
external system errors. To perform system calibration by using 
an external reference, tie the system ground and reference to 
any two of the six selectable inputs. Enable external reference 
mode (ADCCON1.6). Select the channel connected to AGND 
via Bits CS3 to CS0 and perform system offset calibration. 
Select the channel connected to VREF via Bits CS3 to CS0 and 
perform system gain calibration.  

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
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Initiating the Calibration in Code 

When calibrating the ADC using ADCCON1, the ADC must 
be set up into the configuration in which it is used. The 
ADCCON3 register can then be used to set up the device and to 
calibrate the ADC offset and gain. 
MOV ADCCON1,#08CH ; ADC on; ADCCLK set  

;to divide by 32,4 
;acquisition clock 

 

To calibrate device offset: 
MOV ADCCON2,#0BH ;select internal AGND
MOV ADCCON3,#25H ;select offset calibration, 

;31 averages per bit, 
;offset calibration
 

To calibrate device gain: 
MOV ADCCON2,#0CH ;select internal VREF

MOV ADCCON3,#27H ;select offset calibration, 
;31 averages per bit, 
;offset calibration
 

To calibrate system offset, connect system AGND to an ADC 
channel input (0). 
MOV ADCCON2,#00H ;select external AGND
MOV ADCCON3,#25H ;select offset calibration, 

;31 averages per bit
 

To calibrate system gain, connect system VREF to an ADC 
channel input (1). 
MOV ADCCON2,#01H ;select external VREF

MOV ADCCON3,#27H ;select offset calibration, 
;31 averages per bit, 
;offset calibration

 

The calibration cycle time TCAL is calculated by the following 
equation: 

 ACQCAL TNUMAVADCCLKT  1614  

For an ADCCLK/FCORE divide ratio of 32, TACQ = 4 ADCCLK, 
and NUMAV = 15, the calibration cycle time is 

   
msT

T

CAL

CAL

8
41615524288/114




 

In a calibration cycle, the ADC busy flag (Bit 7), instead of 
framing an individual ADC conversion as in normal mode, 
goes high at the start of calibration and returns to zero only at 
the end of the calibration cycle. It can therefore be monitored in 
code to indicate when the calibration cycle is completed. The 
following code can be used to monitor the BUSY signal during 
a calibration cycle: 

WAIT:  
MOV A, ADCCON3 ;move ADCCON3 to A 
JB ACC.7, WAIT ;If Bit 7 is set jump to 

WAIT else continue 

 

NONVOLATILE FLASH/EE MEMORY 
The ADuC841/ADuC842/ADuC843 incorporate Flash/EE 
memory technology on-chip to provide the user with nonvola-
tile, in-circuit, reprogrammable code and data memory space. 
Flash/EE memory is a relatively recent type of nonvolatile 
memory technology, which is based on a single transistor cell 
architecture. Flash/EE memory combines the flexible in-circuit 
reprogrammable features of EEPROM with the space efficient/ 
density features of EPROM as shown in Figure 37. 

Because Flash/EE technology is based on a single transistor cell 
architecture, a flash memory array, such as EPROM, can be 
implemented to achieve the space efficiencies or memory densities 
required by a given design. Like EEPROM, flash memory can 
be programmed in-system at a byte level; it must first be erased, 
the erase being performed in page blocks. Thus, flash memory 
is often and more correctly referred to as Flash/EE memory. 
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Figure 37. Flash/EE Memory Development 

Overall, Flash/EE memory represents a step closer to the ideal 
memory device that includes nonvolatility, in-circuit program-
mability, high density, and low cost. Incorporated in the parts, 
Flash/EE memory technology allows the user to update program 
code space in-circuit, without the need to replace one-time 
programmable (OTP) devices at remote operating nodes. 

Flash/EE Memory and the ADuC841/ADuC842/ADuC843 

The parts provide two arrays of Flash/EE memory for user 
applications. Up to 62 kBytes of Flash/EE program space are 
provided on-chip to facilitate code execution without any 
external discrete ROM device requirements. The program 
memory can be programmed in-circuit by using the serial 
download mode provided, by using conventional third party 
memory programmers, or via a user defined protocol that can 
configure it as data if required. 

Note that the following sections use the 62 kByte program space 
as an example when referring to ULOAD mode. For the other 
memory models (32 kByte and 8 kByte), the ULOAD space 
moves to the top 8 kBytes of the on-chip program memory, that is, 
for 32 kBytes, the ULOAD space is from 24 kBytes to 32 kBytes, 
the kernel still resides in a protected space from 60 kBytes to 
62 kBytes. There is no ULOAD space present on the 8 kBtye part. 

 

 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
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Example: Programming the Flash/EE Data Memory 

A user wants to program F3H into the second byte on Page 03H 
of the Flash/EE data memory space while preserving the other 
3 bytes already in this page. A typical program of the Flash/EE 
data array involves 

1. Setting EADRH/L with the page address. 

2. Writing the data to be programmed to the EDATA1–4. 

3. Writing the ECON SFR with the appropriate command. 

Step 1: Set Up the Page Address 

Address registers EADRH and EADRL hold the high byte 
address and the low byte address of the page to be addressed. 
The assembly language to set up the address may appear as 
MOV EADRH,#0 ; Set Page Address Pointer
MOV EADRL,#03H  

 
Step 2: Set Up the EDATA Registers 

Write the four values to be written into the page into the four 
SFRs, EDATA1–4. Unfortunately, the user does not know three 
of them. Thus, the user must read the current page and over-
write the second byte. 
MOV ECON,#1 ; Read Page into EDATA1-4 
MOV EDATA2,#0F3H ; Overwrite byte 2 

 
Step 3: Program Page 

A byte in the Flash/EE array can be programmed only if it has 
previously been erased. To be more specific, a byte can be 
programmed only if it already holds the value FFH. Because of 
the Flash/EE architecture, this erase must happen at a page 
level; therefore, a minimum of 4 bytes (1 page) are erased when 
an erase command is initiated. Once the page is erase, the user 
can program the 4 bytes in-page and then perform a 
verification of the data. 
MOV ECON,#5 ; ERASE Page 
MOV ECON,#2 ; WRITE Page 
MOV ECON,#4 ; VERIFY Page 
MOV A,ECON ; Check if ECON=0 (OK!) 
JNZ ERROR  

Although the 4 kBytes of Flash/EE data memory are shipped 
from the factory pre-erased, that is, byte locations set to FFH, it 
is nonetheless good programming practice to include an 
ERASEALL routine as part of any configuration/setup code 
running on the parts. An ERASEALL command consists of 
writing 06H to the ECON SFR, which initiates an erase of the  
4-kByte Flash/EE array. This command coded in 8051 assembly 
would appear as 
MOV ECON,#06H ; Erase all Command
 ; 2 ms Duration 

 

Flash/EE Memory Timing 

Typical program and erase times for the parts are as follows: 

Normal Mode (operating on Flash/EE data memory) 
READPAGE (4 bytes)  22 machine cycles 
WRITEPAGE (4 bytes) 380 μs 
VERIFYPAGE (4 bytes) 22 machine cycles 
ERASEPAGE (4 bytes) 2 ms 
ERASEALL (4 kBytes) 2 ms 
READBYTE (1 byte) 9 machine cycles 
WRITEBYTE (1 byte) 200 μs 

 
ULOAD Mode (operating on Flash/EE program memory) 
WRITEPAGE (256 bytes)  16.5 ms 
ERASEPAGE (64 bytes) 2 ms 
ERASEALL (56 kBytes) 2 ms 
WRITEBYTE (1 byte) 200 μs 

 

Note that a given mode of operation is initiated as soon as the 
command word is written to the ECON SFR. The core micro-
controller operation on the parts is idled until the requested 
program/read or erase mode is completed. In practice, this 
means that even though the Flash/EE memory mode of operation 
is typically initiated with a two machine cycle MOV instruction 
(to write to the ECON SFR), the next instruction is not 
executed until the Flash/EE operation is complete. This means 
that the core cannot respond to interrupt requests until the 
Flash/EE operation is complete, although the core peripheral 
functions like counter/timers continue to count and time as 
configured throughout this period. 
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The endpoint nonlinearities illustrated in Figure 43 become 
worse as a function of output loading. Most of the part’s 
specifications assume a 10 kΩ resistive load to ground at the 
DAC output. As the output is forced to source or sink more 
current, the nonlinear regions at the top or bottom (respectively) 
of Figure 43 become larger. Larger current demands can sig-
nificantly limit output voltage swing. Figure 44 and Figure 45 
illustrate this behavior. Note that the upper trace in each of 
these figures is valid only for an output range selection of  
0 V-to-AVDD. In 0 V-to-VREF mode, DAC loading does not cause 
high-side voltage drops as long as the reference voltage remains 
below the upper trace in the corresponding figure. For example, 
if AVDD = 3 V and VREF = 2.5 V, the high-side voltage is not be 
affected by loads less than 5 mA. But somewhere around 7 mA, 
the upper curve in Figure 45 drops below 2.5 V (VREF), indicating 
that at these higher currents the output is not capable of 
reaching VREF. 

To reduce the effects of the saturation of the output amplifier at 
values close to ground and to give reduced offset and gain errors, 
the internal buffer can be bypassed. This is done by setting the 
DBUF bit in the CFG841/CFG842 register. This allows a full 
rail-to-rail output from the DAC, which should then be buffered 
externally using a dual-supply op amp in order to get a rail-to-
rail output. This external buffer should be located as close as 
physically possible to the DAC output pin on the PCB. Note 
that the unbuffered mode works only in the 0 V to VREF range. 

To drive significant loads with the DAC outputs, external 
buffering may be required (even with the internal buffer 
enabled), as illustrated in Figure 46. Table 12 lists some 
recommended op amps. 
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Figure 46. Buffering the DAC Outputs 

The DAC output buffer also features a high impedance disable 
function. In the chip’s default power-on state, both DACs are 
disabled, and their outputs are in a high impedance state (or 
three-state) where they remain inactive until enabled in 
software. This means that if a zero output is desired during 
power-up or power-down transient conditions, then a pull-
down resistor must be added to each DAC output. Assuming 
this resistor is in place, the DAC outputs remain at ground 
potential whenever the DAC is disabled. 
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SERIAL PERIPHERAL INTERFACE (SPI) 
The ADuC841/ADuC842/ADuC843 integrate a complete hard-
ware serial peripheral interface on-chip. SPI is an industry-
standard synchronous serial interface that allows 8 bits of data 
to be synchronously transmitted and received simultaneously, 
that is, full duplex. Note that the SPI pins are shared with the 
I2C pins. Therefore, the user can enable only one interface or 
the other on these pins at any given time (see SPE in Table 19). 
SPI can be operated at the same time as the I2C interface if the 
MSPI bit in CFG841/CFG8842 is set. This moves the SPI 
outputs (MISO, MOSI, and SCLOCK) to P3.3, P3.4, and P3.5, 
respectively). The SPI port can be configured for master or slave 
operation and typically consists of four pins, described in the 
following sections.  

MISO (Master In, Slave Out Data I/O Pin)  

The MISO pin is configured as an input line in master mode 
and as an output line in slave mode. The MISO line on the 
master (data in) should be connected to the MISO line in the 
slave device (data out). The data is transferred as byte-wide  
(8-bit) serial data, MSB first. 

MOSI (Master Out, Slave In Pin) 

The MOSI pin is configured as an output line in master mode 
and as an input line in slave mode. The MOSI line on the 
master (data out) should be connected to the MOSI line in the 
slave device (data in). The data is transferred as byte-wide (8-
bit) serial data, MSB first. 

 

 

 

SCLOCK (Serial Clock I/O Pin) 

The master serial clock (SCLOCK) is used to synchronize the 
data being transmitted and received through the MOSI and 
MISO data lines. A single data bit is transmitted and received in 
each SCLOCK period. Therefore, a byte is transmitted/received 
after eight SCLOCK periods. The SCLOCK pin is configured as 
an output in master mode and as an input in slave mode. In 
master mode, the bit rate, polarity, and phase of the clock are 
controlled by the CPOL, CPHA, SPR0, and SPR1 bits in the 
SPICON SFR (see Table 19). In slave mode, the SPICON 
register must be configured with the phase and polarity (CPHA 
and CPOL) of the expected input clock. In both master and 
slave modes, the data is transmitted on one edge of the 
SCLOCK signal and sampled on the other. It is important, 
therefore, that CPHA and CPOL are configured the same for 
the master and slave devices. 

SS (Slave Select Input Pin) 

The SS pin is shared with the ADC5 input. To configure this pin 
as a digital input, the bit must be cleared, for example, CLR 
P1.5. This line is active low. Data is received or transmitted in 
slave mode only when the SS pin is low, allowing the parts to be 
used in single-master, multislave SPI configurations. If CPHA = 
1, the SS input may be permanently pulled low. If CPHA = 0, 
the SS input must be driven low before the first bit in a byte-
wide transmission or reception and return high again after the 
last bit in that byte-wide transmission or reception. In SPI slave 
mode, the logic level on the external SS pin can be read via the 
SPR0 bit in the SPICON SFR. The SFR registers, described in 
the following tables, are used to control the SPI interface.

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
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Using the SPI Interface

Depending on the configuration of the bits in the SPICON SFR 
shown in Table 19, the ADuC841/ADuC842/ADuC843 SPI 
interface transmits or receives data in a number of possible 
modes. Figure 54 shows all possible SPI configurations for the 
parts, and the timing relationships and synchronization 
between the signals involved. Also shown in this figure is the 
SPI interrupt bit (ISPI) and how it is triggered at the end of each 
byte-wide communication. 
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Figure 54. SPI Timing, All Modes 

SPI Interface—Master Mode 

In master mode, the SCLOCK pin is always an output and 
generates a burst of eight clocks whenever user code writes to 
the SPIDAT register. The SCLOCK bit rate is determined by 
SPR0 and SPR1 in SPICON. Also note that the SS pin is not 
used in master mode. If the parts need to assert the SS pin on an 
external slave device, a port digital output pin should be used. 

In master mode, a byte transmission or reception is initiated by 
a write to SPIDAT. Eight clock periods are generated via the 
SCLOCK pin and the SPIDAT byte being transmitted via MOSI. 
With each SCLOCK period, a data bit is also sampled via MISO. 
After eight clocks, the transmitted byte is completely 
transmitted, and the input byte waits in the input shift register. 
The ISPI flag is set automatically, and an interrupt occurs if 
enabled. The value in the shift register is latched into SPIDAT. 

SPI Interface—Slave Mode 

In slave mode, SCLOCK is an input. The SS pin must also be 
driven low externally during the byte communication. Trans-
mission is also initiated by a write to SPIDAT. In slave mode, a 
data bit is transmitted via MISO, and a data bit is received via 
MOSI through each input SCLOCK period. After eight clocks, 
the transmitted byte is completely transmitted, and the input 
byte waits in the input shift register. The ISPI flag is set 
automatically, and an interrupt occurs if enabled. The value in 
the shift register is latched into SPIDAT only when the 
transmission/reception of a byte has been completed. The end 
of transmission occurs after the eighth clock has been received 
if CPHA = 1, or when SS returns high if CPHA = 0. 

 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
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TIME INTERVAL COUNTER (TIC) 
A TIC is provided on-chip for counting longer intervals than 
the standard 8051 compatible timers are capable of. The TIC is 
capable of timeout intervals ranging from 1/128 second to 255 
hours. Furthermore, this counter is clocked by the external 
32.768 kHz crystal rather than by the core clock, and it has the 
ability to remain active in power-down mode and time long 
power-down intervals. This has obvious applications for remote 
battery-powered sensors where regular widely spaced readings 
are required.  

Six SFRs are associated with the time interval counter, 
TIMECON being its control register. Depending on the 
configuration of the IT0 and IT1 bits in TIMECON, the 
selected time counter register overflow clocks the interval 
counter. When this counter is equal to the time interval value 
loaded in the INTVAL SFR, the TII bit (TIMECON.2) is set and 
generates an interrupt if enabled. If the part is in power-down 
mode, again with TIC interrupt enabled, the TII bit wakes up 
the device and resumes code execution by vectoring directly to 
the TIC interrupt service vector address at 0053H. The TIC-
related SFRs are described in Table 25. Note also that the time 
based SFRs can be written initially with the current time; the 
TIC can then be controlled and accessed by user software. In 
effect, this facilitates the implementation of a real-time clock. A 
block diagram of the TIC is shown in Figure 56. 

The TIC is clocked directly from a 32 kHz external crystal on 
the ADuC842/ADuC843 and by the internal 32 kHz ±10% R/C 
oscillator on the ADuC841. Due to this, instructions that access 
the TIC registers are also clocked at this speed. The user should 
ensure that there is sufficient time between instructions to these 
registers to allow them to execute correctly. 
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Figure 56. TIC, Simplified Block Diagram 
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INTVAL User Time Interval Select Register 
Function  User code writes the required time interval to this register. When the 8-bit interval counter is equal to the 

time interval value loaded in the INTVAL SFR, the TII bit (TIMECON.2) is set and generates an 
interrupt if enabled. 

SFR Address  A6H 
Power-On Default 00H 
Bit Addressable No 
Valid Value  0 to 255 decimal 

 

HTHSEC Hundredths Seconds Time Register 
Function This register is incremented in 1/128 second intervals once TCEN in TIMECON is active. The HTHSEC 

SFR counts from 0 to 127 before rolling over to increment the SEC time register. 
SFR Address  A2H 
Power-On Default 00H 
Bit Addressable No 
Valid Value  0 to 127 decimal 

 

SEC  Seconds Time Register 
Function  This register is incremented in 1-second intervals once TCEN in TIMECON is active. The SEC SFR 

counts from 0 to 59 before rolling over to increment the MIN time register. 
SFR Address  A3H 
Power-On Default 00H 
Bit Addressable No 
Valid Value  0 to 59 decimal 

 

MIN  Minutes Time Register 
Function  This register is incremented in 1-minute intervals once TCEN in TIMECON is active. The MIN SFR 

counts from 0 to 59 before rolling over to increment the HOUR time register. 
SFR Address  A4H 
Power-On Default 00H 
Bit Addressable No 
Valid Value  0 to 59 decimal 

 

HOUR  Hours Time Register 

Function  This register is incremented in 1-hour intervals once TCEN in TIMECON is active. The HOUR SFR 
counts from 0 to 23 before rolling over to 0. 

SFR Address  A5H 

Power-On Default 00H 
Bit Addressable No 
Valid Value 0 to 23 decimal 
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8052 COMPATIBLE ON-CHIP PERIPHERALS 
This section gives a brief overview of the various secondary 
peripheral circuits that are also available to the user on-chip. 
These remaining functions are mostly 8052 compatible (with a 
few additional features) and are controlled via standard 8052 
SFR bit definitions. 

Parallel I/O 

The ADuC841/ADuC842/ADuC843 use four input/output 
ports to exchange data with external devices. In addition to 
performing general-purpose I/O, some ports are capable of 
external memory operations while others are multiplexed with 
alternate functions for the peripheral features on the device. In 
general, when a peripheral is enabled, that pin may not be used 
as a general-purpose I/O pin. 

Port 0 

Port 0 is an 8-bit open-drain bidirectional I/O port that is 
directly controlled via the Port 0 SFR. Port 0 is also the 
multiplexed low order address and data bus during accesses to 
external program or data memory. 

Figure 57 shows a typical bit latch and I/O buffer for a Port 0 
port pin. The bit latch (one bit in the port’s SFR) is represented 
as a Type D flip-flop, which clocks in a value from the internal 
bus in response to a write to latch signal from the CPU. The Q 
output of the flip-flop is placed on the internal bus in response 
to a read latch signal from the CPU. The level of the port pin 
itself is placed on the internal bus in response to a read pin 
signal from the CPU. Some instructions that read a port activate 
the read latch signal, and others activate the read pin signal. See 
the Read-Modify-Write Instructions section for details. 
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Figure 57. Port 0 Bit Latch and I/O Buffer 

As shown in Figure 57, the output drivers of Port 0 pins are 
switchable to an internal ADDR and ADDR/DATA bus by an 
internal control signal for use in external memory accesses. 
During external memory accesses, the P0 SFR has 1s written to 
it, that is, all of its bit latches become 1. When accessing 
external memory, the control signal in Figure 57 goes high, 
enabling push-pull operation of the output pin from the 
internal address or data bus (ADDR/DATA line). Therefore, no 
external pull-ups are required on Port 0 for it to access external 
memory. 

In general-purpose I/O port mode, Port 0 pins that have 1s writ-
ten to them via the Port 0 SFR are configured as open-drain and 
therefore float. In this state, Port 0 pins can be used as high 
impedance inputs. This is represented in Figure 57 by the NAND 
gate whose output remains high as long as the control signal is 
low, thereby disabling the top FET. External pull-up resistors are 
therefore required when Port 0 pins are used as general-purpose 
outputs. Port 0 pins with 0s written to them drive a logic low 
output voltage (VOL) and are capable of sinking 1.6 mA. 

Port 1 

Port 1 is also an 8-bit port directly controlled via the P1 SFR. 
Port 1 digital output capability is not supported on this device. 
Port 1 pins can be configured as digital inputs or analog inputs. 
By (power-on) default, these pins are configured as analog 
inputs, that is, 1 written in the corresponding Port 1 register bit. 
To configure any of these pins as digital inputs, the user should 
write a 0 to these port bits to configure the corresponding pin as 
a high impedance digital input. These pins also have various 
secondary functions as described in Table 26. 

Table 26. Port 1 Alternate Pin Functions 
Pin No. Alternate Function 
P1.0 T2 (Timer/Counter 2 External Input) 
P1.1 T2EX (Timer/Counter 2 Capture/Reload Trigger) 
P1.5 SS (Slave Select for the SPI Interface) 
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Figure 58. Port 1 Bit Latch and I/O Buffer 

Port 2 

Port 2 is a bidirectional port with internal pull-up resistors 
directly controlled via the P2 SFR. Port 2 also emits the high-
order address bytes during fetches from external program 
memory, and middle and high order address bytes during 
accesses to the 24-bit external data memory space. 

As shown in Figure 59, the output drivers of Port 2 are switch-
able to an internal ADDR and ADDR/DATA bus by an internal 
control signal for use in external memory accesses (as for 
Port 0). In external memory addressing mode (CONTROL = 1), 
the port pins feature push-pull operation controlled by the 
internal address bus (ADDR line). However, unlike the P0 SFR 
during external memory accesses, the P2 SFR remains unchanged. 
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5 V Part 

For DVDD below 4.5 V, the internal POR holds the part in reset. 
As DVDD rises above 4.5 V, an internal timer times out for 
approximately 128 ms before the part is released from reset. The 
user must ensure that the power supply has reached a stable 
4.75 V minimum level by this time. Likewise on power-down, 
the internal POR holds the part in reset until the power supply 
has dropped below 1 V. Figure 83 illustrates the operation of the 
internal POR in detail. 
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Figure 83. Internal POR Operation 

 

Grounding and Board Layout Recommendations 

As with all high resolution data converters, special attention 
must be paid to grounding and PC board layout of ADuC841/ 
ADuC842/ADuC843 based designs to achieve optimum 
performance from the ADC and the DACs. Although the parts 
have separate pins for analog and digital ground (AGND and 
DGND), the user must not tie these to two separate ground 
planes unless the two ground planes are connected together 
very close to the part, as illustrated in the simplified example of 
Figure 84a. In systems where digital and analog ground planes 
are connected together somewhere else (for example, at the 
system’s power supply), they cannot be connected again near 
the part since a ground loop would result. In these cases, tie all 
the part’s AGND and DGND pins to the analog ground plane, 
as illustrated in Figure 84b. In systems with only one ground 
plane, ensure that the digital and analog components are 
physically separated onto separate halves of the board such that 
digital return currents do not flow near analog circuitry and 
vice versa. The part can then be placed between the digital and 
analog sections, as illustrated in Figure 84c. 

In all of these scenarios, and in more complicated real-life 
applications, keep in mind the flow of current from the supplies 
and back to ground. Make sure the return paths for all currents 
are as close as possible to the paths that the currents took to 

reach their destinations. For example, do not power components 
on the analog side of Figure 84b with DVDD since that would 
force return currents from DVDD to flow through AGND. Also, 
try to avoid digital currents flowing under analog circuitry, 
which could happen if the user places a noisy digital chip on the 
left half of the board in Figure 84c. Whenever possible, avoid 
large discontinuities in the ground plane(s) (like those formed 
by a long trace on the same layer), since they force return 
signals to travel a longer path. And of course, make all connec-
tions to the ground plane directly, with little or no trace separating 
the pin from its via to ground. 

If the user plans to connect fast logic signals (rise/fall time < 
5 ns) to any of the part’s digital inputs, a series resistor should 
be added to each relevant line to keep rise and fall times longer 
than 5 ns at the part’s input pins. A value of 100 Ω or 200 Ω is 
usually sufficient to prevent high speed signals from coupling 
capacitively into the part and from affecting the accuracy of 
ADC conversions. 
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Figure 84. System Grounding Schemes 
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Parameter 16 MHz Core Clk 8 MHz Core Clock  

EXTERNAL DATA MEMORY READ CYCLE Min Max Min Max Unit 
tRLRH RD Pulse Width 60  125  ns 

tAVLL Address Valid after ALE Low 60  120  ns 
tLLAX Address Hold after ALE Low 145  290  ns 
tRLDV RD Low to Valid Data In  48  100 Ns 

tRHDX Data and Address Hold after RD 0  0  ns 

tRHDZ Data Float after RD  150  625 ns 

tLLDV ALE Low to Valid Data In  170  350 ns 
tAVDV Address to Valid Data In  230  470 ns 
tLLWL ALE Low to RD or WR Low 130  255  ns 

tAVWL Address Valid to RD or WR Low 190  375  ns 

tRLAZ RD Low to Address Float   15  35 ns 

tWHLH RD or WR High to ALE High 60  120  ns 
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Figure 88. External Data Memory Read Cycle 
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Parameter     
SPI SLAVE MODE TIMING (CPHA = 1) Min Typ Max Unit 
tSS SS to SCLOCK Edge  0   ns 

tSL SCLOCK Low Pulse Width  330  ns 
tSH SCLOCK High Pulse Width  330  ns 
tDAV Data Output Valid after SCLOCK Edge   50 ns 
tDSU Data Input Setup Time before SCLOCK Edge 100   ns 
tDHD Data Input Hold Time after SCLOCK Edge 100   ns 
tDF Data Output Fall Time  10 25 ns 
tDR Data Output Rise Time  10 25 ns 
tSR SCLOCK Rise Time   10 25 ns 
tSF SCLOCK Fall Time  10 25 ns 
tSFS SS High after SCLOCK Edge 0   ns 
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Figure 93. SPI Slave Mode Timing (CPHA = 1) 



ADuC841/ADuC842/ADuC843 Data Sheet
 

Rev. A | Page 94 of 95 

OUTLINE DIMENSIONS 

COMPLIANT TO JEDEC STANDARDS MO-112-AC-2
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Figure 95. 52-Lead Plastic Quad Flat Package [MQFP] 

(S-52-2) 
Dimensions shown in millimeters 
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Figure 96. 56-Lead Frame Chip Scale Package [LFCSP] 

8 mm × 8 mm and 0.75 mm Package Height 
(CP-56-11) 

Dimensions shown in millimeters 
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ORDERING GUIDE 

Model1 
Supply 
Voltage VDD 

User Program 
Code Space 

Temperature 
Range Package Description 

Package 
Option 

ADuC841BSZ62-5  5 62 –40°C to +85°C 52-Lead Plastic Quad Flat Package [MQFP] S-52-2 
ADuC841BSZ62-3  3 62 –40°C to +85°C 52-Lead Plastic Quad Flat Package [MQFP] S-52-2 
ADuC841BCPZ62-5  5 62 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC841BCPZ62-3  3 62 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC841BCPZ8-5  5 8 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC841BCPZ8-3  3 8 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC842BSZ62-5  5 62 –40°C to +85°C 52-Lead Plastic Quad Flat Package [MQFP] S-52-2 
ADuC842BSZ62-3  3 62 –40°C to +85°C 52-Lead Plastic Quad Flat Package [MQFP] S-52-2 
ADuC842BCPZ62-5  5 62 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC842BCPZ62-3  3 62 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC842BCPZ32-5  5 32 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC842BCPZ32-3  3 32 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC842BCPZ8-5  5 8 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC842BCPZ8-3  3 8 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADUC843BSZ62-5 5 62 –40°C to +85°C 52-Lead Plastic Quad Flat Package [MQFP] S-52-2 
ADuC843BSZ62-3  3 62 –40°C to +85°C 52-Lead Plastic Quad Flat Package [MQFP] S-52-2 
ADuC843BCP62Z-5  5 62 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC843BCPZ62-3  3 62 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC843BCP32Z-5  5 32 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC843BCPZ32-3  3 32 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC843BCPZ8-5  5 8 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
ADuC843BCPZ8-3  3 8 –40°C to +85°C 56-Lead Lead Frame Chip Scale Package [LFCSP] CP-56-11 
EVAL-ADuC841QSZ  5   QuickStart Development System for the ADuC841  
EVAL-ADuC841QSPZ  5   QuickStart Plus Development System  
EVAL-ADuC842QSZ  5   QuickStart Development System for the 

ADuC842 and ADuC843 
 

EVAL-ADuC842QSPZ 5   QuickStart Plus Development System  
USB-EA-CONVZ    USB to EA Emulator  
                                                                    
1 The only difference between the ADuC842 and ADuC843devices is the voltage output DACs on the ADuC842; thus, the evaluation system for the ADuC842 is also 

suitable for the ADuC843. 

 

 

 

 

 

 

 

 

 

 
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). 
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