

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8052
Core Size	8-Bit
Speed	8.38MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, PSM, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad, CSP
Supplier Device Package	56-LFCSP-VQ (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aduc843bcpz32-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet

¹ Temperature Range –40°C to +85°C.

- ² ADC linearity is guaranteed during normal MicroConverter core operation.
- ³ ADC LSB size = $V_{REF}/2^{12}$, that is, for internal $V_{REF} = 2.5$ V, 1 LSB = 610 μ V, and for external $V_{REF} = 1$ V, 1 LSB = 244 μ V.
- ⁴ These numbers are not production tested but are supported by design and/or characterization data on production release.
- ⁵ Offset and gain error and offset and gain error match are measured after factory calibration.
- ⁶ Based on external ADC system components, the user may need to execute a system calibration to remove additional external channel errors to achieve these
- specifications.
- ⁷ SNR calculation includes distortion and noise components.
- ⁸ Channel-to-channel crosstalk is measured on adjacent channels.
- ⁹ The temperature monitor gives a measure of the die temperature directly; air temperature can be inferred from this result.
- ¹⁰ DAC linearity is calculated using:
 - Reduced code range of 100 to 4095, 0 V to V_{REF} range.
 - Reduced code range of 100 to 3945, 0 V to V_{DD} range.
 - DAC output load = $10 \text{ k}\Omega$ and 100 pF.
- ¹¹ DAC differential nonlinearity specified on 0 V to V_{REF} and 0 V to V_{DD} ranges.
- ¹² DAC specification for output impedance in the unbuffered case depends on DAC code.
- ¹³ DAC specifications for I_{SINK}, voltage output settling time, and digital-to-analog glitch energy depend on external buffer implementation in unbuffered mode. DAC in unbuffered mode tested with OP270 external buffer, which has a low input leakage current.
- ¹⁴ Measured with C_{REF} pin decoupled with 0.47 μF capacitor to ground. Power-up time for the internal reference is determined by the value of the decoupling capacitor chosen for the C_{REF} pin.
- ¹⁵ When using an external reference device, the internal band gap reference input can be bypassed by setting the ADCCON1.6 bit.
- ¹⁶ Flash/EE memory reliability characteristics apply to both the Flash/EE program memory and the Flash/EE data memory.
- ¹⁷ Endurance is qualified to 100,000 cycles as per JEDEC Std. 22 method A117 and measured at -40°C, +25°C, and +85°C. Typical endurance at 25°C is 700,000 cycles.
 ¹⁸ Retention lifetime equivalent at junction temperature (T_j) = 55°C as per JEDEC Std. 22 method A117. Retention lifetime based on an activation energy of 0.6 eV derates with junction temperature as shown in Figure 38 in the Flash/EE Memory Reliability section.
- ¹⁹ Power supply current consumption is measured in normal, idle, and power-down modes under the following conditions:
 - Normal Mode: Reset = 0.4 V, digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON (ADuC842/ADuC843), core executing internal software loop.
 - Idle Mode: Reset = 0.4 V, digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON (ADuC842/ADuC843), PCON.0 = 1, core execution suspended in idle mode.
 - Power-Down Mode: Reset = 0.4 V, all Port 0 pins = 0.4 V, All other digital I/O and Port 1 pins are open circuit, Core Clk changed via CD bits in PLLCON (ADuC842/ADuC843), PCON.0 = 1, core execution suspended in power-down mode, OSC turned on or off via OSC_PD bit (PLLCON.7) in PLLCON SFR (ADuC842/ADuC843).
- ²⁰ DV_{DD} power supply current increases typically by 3 mA (3 V operation) and 10 mA (5 V operation) during a Flash/EE memory program or erase cycle.
- ²¹ Power supply currents are production tested at 5.25 V and 3.3 V for a 5 V and 3 V part, respectively.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 3 52 Load MOED Din Eunction Descriptions

Table 3. 52-Lead MQFP Pin Function Descriptions						
Pin No.	Mnemonic	Type ¹	Description			
1	P1.0/ADC0/T2	I	Input Port 1 (P1.0). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.			
			Single-Ended Analog Input (ADC0). Channel selection is via ADCCON2 SFR.			
			Timer 2 Digital Input (T2). Input to Timer/Counter 2. When enabled, Counter 2 is incremented in response to a 1 to 0 transition of the T2 input.			
2	P1.1/ADC1/T2EX	I	Input Port 1 (P1.1). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.			
			Single-Ended Analog Input 1 (ADC1). Channel selection is via ADCCON2 SFR. Capture/Reload Trigger for Counter 2 (T2EX). T2EX is a digital input. This pin also			
			functions as an up/down control input for Counter 2.			
3	P1.2/ADC2	I	Input Port 1 (P1.2). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.			
			Single-Ended Analog Input (ADC2). Channel selection is via ADCCON2 SFR.			
4	P1.3/ADC3	I	Input Port 1 (P1.3). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 defaults to analog input mode. To configure this port pin as a digital input, write a 0 to the port bit.			
			Single-Ended Analog Input (ADC3). Channel selection is via ADCCON2 SFR.			
5	AV _{DD}	Р	Analog Positive Supply Voltage. 3 V or 5 V nominal.			
6	AGND	G	Analog Ground. AGND is the ground reference point for the analog circuitry.			
7	C _{REF}	I/O	Decoupling Input for On-Chip Reference. Connect a 0.47 μF capacitor between this pin and AGND.			
8	V _{REF}	NC	Not Connected. This was a reference output on the ADuC812; use the C_{REF} pin instead.			
9	DAC0	0	Voltage Output from DAC0. This pin is a no connect on the ADuC843.			
10	DAC1	0	Voltage Output from DAC1. This pin is a no connect on the ADuC843.			

1.0 $AV_{DD}/DV_{DD} = 5V$ $f_{S} = 400kHz$ CD = 40.8 0.6 0.4 0.2 LSBs 0 -0.2 -0.4 -0.6 -0.8 -1.0 0 511 1023 1535 2047 2559 3071 3583 4095 3260-0 ADC CODES

ADuC841/ADuC842/ADuC843

Figure 12. Typical DNL Error, $V_{DD} = 3 V$

Figure 18. Dynamic Performance at $V_{DD} = 3 V$

33260-0-016

Data Sheet

ADuC841/ADuC842/ADuC843

Mnemonic	Description	Bvtes	Cvcles
XRI A.dir	Exclusive-OR indirect memory to A	2	2
XRL dir.#data	Exclusive-OR immediate data to direct	3	3
CLRA	Clear A	1	1
CPL A	Complement A	1	1
SWAP A	Swap nibbles of A	1	1
RLA	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RRA	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
Data Transfer			
MOV A.Rn	Move register to A	1	1
MOV A,@Ri	Move indirect memory to A	1	2
MOV Rn.A	Move A to register	1	1
MOV @Ri.A	Move A to indirect memory	1	2
MOV A.dir	Move direct byte to A	2	2
MOV A,#data	Move immediate to A	2	2
MOV Rn.#data	Move register to immediate	2	2
MOV dir.A	Move A to direct byte	2	2
MOV Rn, dir	Move register to direct byte	2	2
MOV dir, Rn	Move direct to register	2	2
MOV @Ri.#data	Move immediate to indirect memory	2	2
MOV dir.@Ri	Move indirect to direct memory	2	2
MOV @Ri.dir	Move direct to indirect memory	2	2
MOV dir.dir	Move direct byte to direct byte	3	3
MOV dir.#data	Move immediate to direct byte	3	3
MOV DPTR,#data	Move immediate to data pointer	3	3
MOVC A.@A+DPTR	Move code byte relative DPTR to A	1	4
MOVC A,@A+PC	Move code byte relative PC to A	1	4
MOVX A,@Ri	Move external (A8) data to A	1	4
MOVX A,@DPTR	Move external (A16) data to A	1	4
MOVX @Ri,A	Move A to external data (A8)	1	4
MOVX @DPTR,A	Move A to external data (A16)	1	4
PUSH dir	Push direct byte onto stack	2	2
POP dir	Pop direct byte from stack	2	2
XCH A,Rn	Exchange A and register	1	1
XCH A,@Ri	Exchange A and indirect memory	1	2
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2
XCH A,dir	Exchange A and direct byte	2	2
Boolean			
CLR C	Clear carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement carry	1	1
CPL bit	Complement direct bit	2	2
ANL C,bit	AND direct bit and carry	2	2
ANL C,/bit	AND direct bit inverse to carry	2	2
ORL C,bit	OR direct bit and carry	2	2
ORL C,/bit	OR direct bit inverse to carry	2	2
MOV C,bit	Move direct bit to carry	2	2
MOV bit,C	Move carry to direct bit	2	2

Figure 24. Extended Stack Pointer Operation

External Data Memory (External XRAM)

Just like a standard 8051 compatible core, the ADuC841/ ADuC842/ADuC843 can access external data memory by using a MOVX instruction. The MOVX instruction automatically outputs the various control strobes required to access the data memory.

The parts, however, can access up to 16 MBytes of external data memory. This is an enhancement of the 64 kBytes of external data memory space available on a standard 8051 compatible core. The external data memory is discussed in more detail in the Hardware Design Considerations section.

Internal XRAM

The parts contain 2 kBytes of on-chip data memory. This memory, although on-chip, is also accessed via the MOVX instruction. The 2 kBytes of internal XRAM are mapped into the bottom 2 kBytes of the external address space if the CFG841/CFG842 bit is set. Otherwise, access to the external data memory occurs just like a standard 8051. When using the internal XRAM, Ports 0 and 2 are free to be used as generalpurpose I/O.

Figure 25. Internal and External XRAM

SPECIAL FUNCTION REGISTERS (SFRS)

The SFR space is mapped into the upper 128 bytes of internal data memory space and is accessed by direct addressing only. It provides an interface between the CPU and all on-chip peripherals. A block diagram showing the programming model of the parts via the SFR area is shown in Figure 26.

All registers, except the program counter (PC) and the four general-purpose register banks, reside in the SFR area. The SFR registers include control, configuration, and data registers, which provide an interface between the CPU and all on-chip peripherals.

Figure 26. Programming Model

Data Sheet

Data Sheet

ADuC841/ADuC842/ADuC843

CFG841	ADuC841 Config SFR
SFR Address	AFH
Power-On Default	$10H^1$
Bit Addressable	No

Table 15. CFG841 SFR Bit Designations

Bit No.	Name	Descrip	tion					
7	EXSP	Extended SP Enable.						
		When set to 1 by the user, the stack rolls over from SPH/SP = 00FFH to 0100H. When set to 0 by the user, the stack rolls over from SP = FFH to SP = 00H.						
6	PWPO	PWM Pi	n Out Sele	ection.				
		Set to 1	by the us	er to seleo	rt P3.4 and P3.3 as the PWM output pins.			
		Set to 0	by the us	er to seled	rt P2.6 and P2.7 as the PWM output pins.			
5	DBUF	DAC Ou	tput Buffe	er.				
		Set to 1 by the user to bypass the DAC output buffer.						
		Set to 0	by the us	er to enab	ble the DAC output buffer.			
4	EPM2	Flash/EE	Controll	er and PW	M Clock Frequency Configuration Bits.			
		Frequency should be configured such that F_{osc} /Divide Factor = 32 kHz + 50%.						
3	EPM1	EPM2	EPM1	EPM0	Divide Factor			
2	EPM0	0	0	0	32			
		0	0	1	64			
		0	1	0	128			
		0	1	1	256			
		1	0	0	512			
		1	0	1	1024			
1	MSPI	Set to 1 by the user to move the SPI functionality of MISO, MOSI, and SCLOCK to P3.3, P3.4, and P3.5, respectively.						
		Set to 0 by the user to leave the SPI functionality as usual on MISO, MOSI, and SCLOCK pins.						
0	XRAMEN	XRAM Enable Bit.						
		When set to 1 by the user, the internal XRAM is mapped into the lower two kBytes of the external address space.When set to 0 by the user, the internal XRAM is not accessible, and the external data memory is mapped into the lower two kBytes of external data memory.						

¹ Note that the Flash/EE controller bits EPM2, EPM1, EPM0 are set to their correct values depending on the crystal frequency at power-up. The user should not modify these bits so all instructions to the CFG841 register should use the ORL, XRL, or ANL instructions. Value of 10H is for 11.0592 MHz crystal.

Data Sheet

Using the DAC

The on-chip DAC architecture consists of a resistor string DAC followed by an output buffer amplifier, the functional equivalent of which is illustrated in Figure 42. Features of this architecture include inherent guaranteed monotonicity and excellent differential linearity.

As shown in Figure 42, the reference source for each DAC is user selectable in software. It can be either AV_{DD} or V_{REF} . In 0 V-to-AV_{DD} mode, the DAC output transfer function spans from 0 V to the voltage at the AV_{DD} pin. In 0 V-to-V_{REF} mode, the DAC output transfer function spans from 0 V to the internal V_{REF} or, if an external reference is applied, the voltage at the C_{REF} pin. The DAC output buffer amplifier features a true rail-to-rail output stage implementation. This means that unloaded, each output is capable of swinging to within less than 100 mV of both AVDD and ground. Moreover, the DAC's linearity specification (when driving a 10 k Ω resistive load to ground) is guaranteed through the full transfer function except Codes 0 to 100, and, in 0 V-to-AVDD mode only, Codes 3995 to 4095. Linearity degradation near ground and V_{DD} is caused by saturation of the output amplifier, and a general representation of its effects (neglecting offset and gain error) is illustrated in Figure 43. The dotted line in Figure 43 indicates the ideal transfer function, and the solid line represents what the transfer function might look like with endpoint nonlinearities due to saturation of the output amplifier. Note that Figure 43 represents a transfer function in 0 V-to- V_{DD} mode only. In 0 V-to- V_{REF} mode (with $V_{REF} < V_{DD}$), the lower nonlinearity would be similar, but the upper portion of the transfer function would follow the ideal line right to the end (VREF in this case, not VDD), showing no signs of endpoint linearity errors.

ADuC841/ADuC842/ADuC843

Figure 43. Endpoint Nonlinearities Due to Amplifier Saturation

Figure 45. Source and Sink Current Capability with $V_{REF} = V_{DD} = 3 V$

PULSE-WIDTH MODULATOR (PWM)

The PWM on the ADuC841/ADuC842/ADuC843 is a highly flexible PWM offering programmable resolution and an input clock, and can be configured for any one of six different modes of operation. Two of these modes allow the PWM to be configured as a Σ - Δ DAC with up to 16 bits of resolution. A block diagram of the PWM is shown in Figure 47. Note the PWM clock's sources are different for the ADuC841, and are given in Table 18.

Figure 47. PWM Block Diagram

The PWM uses five SFRs: the control SFR (PWMCON) and four data SFRs (PWM0H, PWM0L, PWM1H, and PWM1L).

Bit No.	Name	Description
7	SNGL	Turns off PMW outp
6	MD2	PWM Mode Rits

Table 18. PWMCON SFR Bit Designations

PWMCON, as described in the following sections, controls the different modes of operation of the PWM as well as the PWM clock frequency.

PWM0H/L and PWM1H/L are the data registers that determine the duty cycles of the PWM outputs. The output pins that the PWM uses are determined by the CFG841/CFG842 register, and can be either P2.6 and P2.7 or P3.4 and P3.3. In this section of the data sheet, it is assumed that P2.6 and P2.7 are selected as the PWM outputs.

To use the PWM user software, first write to PWMCON to select the PWM mode of operation and the PWM input clock. Writing to PWMCON also resets the PWM counter. In any of the 16-bit modes of operation (Modes 1, 3, 4, 6), user software should write to the PWM0L or PWM1L SFRs first. This value is written to a hidden SFR. Writing to the PWM0H or PWM1H SFRs updates both the PWMxH and the PWMxL SFRs but does not change the outputs until the end of the PWM cycle in progress. The values written to these 16-bit registers are then used in the next PWM cycle.

PWMCON PWM	Control SFR
SFR Address	AEH
Power-On Default	00H
Bit Addressable	No

7	SNGL	Turns off PMW output at P2.6 or P3.4, leaving the port pin free for digital I/O.			
6	MD2	PWM Mode Bits.			
5	MD1	The MD2/1/0 bits choose the PWM mode as follows:			
4	MD0	MD2	MD1	MD0	Mode
		0	0	0	Mode 0: PWM Disabled
		0	0	1	Mode 1: Single variable resolution PWM on P2.7 or P3.3
		0	1	0	Mode 2: Twin 8-bit PWM
		0	1	1	Mode 3: Twin 16-bit PWM
		1	0	0	Mode 4: Dual NRZ 16-bit Σ-Δ DAC
		1	0	1	Mode 5: Dual 8-bit PWM
		1	1	0	Mode 6: Dual RZ 16-bit Σ-Δ DAC
		1	1	1	Reserved
3	CDIV1	PWM Clock	Divider.		
2	CDIV0	Scale the c	ock source fo	the PWM counter as follows:	
		CDIV1	CDIV0	Descriptio	on
		0	0	PWM Cou	nter = Selected Clock/1
		0	1	PWM Cou	nter = Selected Clock/4
		1	0	PWM Cou	nter = Selected Clock/16
		1	1	PWM Cou	nter = Selected Clock/64
1	CSEL1	PWM Clock	Divider.		
0	CSEL0	Select the o	clock source fo	or the PWM as follows:	
		CSEL1	CSEL0	Descriptio	on
		0	0	PWM Cloo	$k = f_{xTAL}/15$, ADuC841 = focs/DIVIDE FACTOR /15 (see the CFG841 register)
		0	1	PWM Cloo	$k = f_{XTAL}$, ADuC841 = focs/DIVIDE FACTOR (see the CFG841 register)
		1	0	PWM Cloo	ck = External input at P3.4/T0
		1	1	PWM Cloo	$k = f_{VCO} = 16.777216 \text{ MHz}, \text{ ADuC841} = f_{OSC}$

PWM Modes of Operation Mode 0: PWM Disabled

The PWM is disabled allowing P2.6 and P2.7 to be used as normal.

Mode 1: Single Variable Resolution PWM

In Mode 1, both the pulse length and the cycle time (period) are programmable in user code, allowing the resolution of the PWM to be variable.

PWM1H/L sets the period of the output waveform. Reducing PWM1H/L reduces the resolution of the PWM output but increases the maximum output rate of the PWM. For example, setting PWM1H/L to 65536 gives a 16-bit PWM with a maximum output rate of 266 Hz (16.777 MHz/65536). Setting PWM1H/L to 4096 gives a 12-bit PWM with a maximum output rate of 4096 Hz (16.777 MHz/4096).

PWM0H/L sets the duty cycle of the PWM output waveform, as shown in Figure 48.

Mode 2: Twin 8-Bit PWM

In Mode 2, the duty cycle of the PWM outputs and the resolution of the PWM outputs are both programmable. The maximum resolution of the PWM output is 8 bits.

PWM1L sets the period for both PWM outputs. Typically, this is set to 255 (FFH) to give an 8-bit PWM, although it is possible to reduce this as necessary. A value of 100 could be loaded here to give a percentage PWM, that is, the PWM is accurate to 1%.

The outputs of the PWM at P2.6 and P2.7 are shown in Figure 49. As can be seen, the output of PWM0 (P2.6) goes low when the PWM counter equals PWM0L. The output of PWM1 (P2.7) goes high when the PWM counter equals PWM1H and goes low again when the PWM counter equals PWM0H. Setting PWM1H to 0 ensures that both PWM outputs start simultaneously.

Mode 3: Twin 16-Bit PWM

In Mode 3, the PWM counter is fixed to count from 0 to 65536, giving a fixed 16-bit PWM. Operating from the 16.777 MHz core clock results in a PWM output rate of 256 Hz. The duty cycle of the PWM outputs at P2.6 and P2.7 is independently programmable.

As shown in Figure 50, while the PWM counter is less than PWM0H/L, the output of PWM0 (P2.6) is high. Once the PWM counter equals PWM0H/L, PWM0 (P2.6) goes low and remains low until the PWM counter rolls over.

Similarly, while the PWM counter is less than PWM1H/L, the output of PWM1 (P2.7) is high. Once the PWM counter equals PWM1H/L, PWM1 (P2.7) goes low and remains low until the PWM counter rolls over.

In this mode, both PWM outputs are synchronized, that is, once the PWM counter rolls over to 0, both PWM0 (P2.6) and PWM1 go high.

Figure 50. PWM Mode 3

ADuC841/ADuC842/ADuC843

Using the SPI Interface

Depending on the configuration of the bits in the SPICON SFR shown in Table 19, the ADuC841/ADuC842/ADuC843 SPI interface transmits or receives data in a number of possible modes. Figure 54 shows all possible SPI configurations for the parts, and the timing relationships and synchronization between the signals involved. Also shown in this figure is the SPI interrupt bit (ISPI) and how it is triggered at the end of each byte-wide communication.

SPI Interface—Master Mode

In master mode, the SCLOCK pin is always an output and generates a burst of eight clocks whenever user code writes to the SPIDAT register. The SCLOCK bit rate is determined by SPR0 and SPR1 in SPICON. Also note that the \overline{SS} pin is not used in master mode. If the parts need to assert the \overline{SS} pin on an external slave device, a port digital output pin should be used.

In master mode, a byte transmission or reception is initiated by a write to SPIDAT. Eight clock periods are generated via the SCLOCK pin and the SPIDAT byte being transmitted via MOSI. With each SCLOCK period, a data bit is also sampled via MISO. After eight clocks, the transmitted byte is completely transmitted, and the input byte waits in the input shift register. The ISPI flag is set automatically, and an interrupt occurs if enabled. The value in the shift register is latched into SPIDAT.

SPI Interface—Slave Mode

In slave mode, SCLOCK is an input. The \overline{SS} pin must also be driven low externally during the byte communication. Transmission is also initiated by a write to SPIDAT. In slave mode, a data bit is transmitted via MISO, and a data bit is received via MOSI through each input SCLOCK period. After eight clocks, the transmitted byte is completely transmitted, and the input byte waits in the input shift register. The ISPI flag is set automatically, and an interrupt occurs if enabled. The value in the shift register is latched into SPIDAT only when the transmission/reception of a byte has been completed. The end of transmission occurs after the eighth clock has been received if CPHA = 1, or when \overline{SS} returns high if CPHA = 0.

WATCHDOG TIMER

The purpose of the watchdog timer is to generate a device reset or interrupt within a reasonable amount of time if the ADuC841/ ADuC842/ADuC843 enter an erroneous state, possibly due to a programming error or electrical noise. The watchdog function can be disabled by clearing the WDE (watchdog enable) bit in the watchdog control (WDCON) SFR. When enabled, the watchdog circuit generates a system reset or interrupt (WDS) if the user program fails to set the watchdog (WDE) bit within a predetermined amount of time (see PRE3-0 bits in Table 24. The watchdog timer is clocked directly from the 32 kHz external crystal on the ADuC842/ADuC843. On the ADuC841, the watchdog timer is clocked by an internal R/C oscillator at $32 \text{ kHz} \pm 10\%$. The WDCON SFR can be written only by user software if the double write sequence described in WDWR below is initiated on every write access to the WDCON SFR.

WDCON Watchdog Timer	Control Register
SFR Address	C0H
Power-On Default	10H
Bit Addressable	Yes

Bit No.	Name	Description						
7	PRE3	Watchdog Timer Prescale Bits.						
6	PRE2	The watchdog timeout period is given by the equation $t_{WD} = (2^{PRE} \times (2^9/f_{XTAL}))$						
5	PRE1	(0 – PRE	$-7; f_{XTAL} = 3$	2.768 kHz (<mark>ADu</mark>	C842/AD	uC843), or 32kHz ± 10% (ADu	JC841))	
4	PRE0	PRE3	PRE2	PRE1	PRE0	Timeout Period (ms)	Action	
		0	0	0	0	15.6	Reset or Interrupt	
		0	0	0	1	31.2	Reset or Interrupt	
		0	0	1	0	62.5	Reset or Interrupt	
		0	0	1	1	125	Reset or Interrupt	
		0	1	0	0	250	Reset or Interrupt	
		0	1	0	1	500	Reset or Interrupt	
		0	1	1	0	1000	Reset or Interrupt	
		0	1	1	1	2000	Reset or Interrupt	
		1	0	0	0	0.0	Immediate Reset	
		PRE3-0	> 1000				Reserved	
3	WDIR	Watchdog Interrupt Response Enable Bit.						
		If this bit is set by the user, the watchdog generates an interrupt response instead of a system reset when watchdog timeout period has expired. This interrupt is not disabled by the CLR ^{EA} instruction, and it is als high priority interrupt. If the watchdog is not being used to monitor the system, it can be used alternative timer. The prescaler is used to set the timeout period in which an interrupt is generated.				e instead of a system reset when the le CLR EA instruction, and it is also a fixed, ystem, it can be used alternatively as a ot is generated.		
2	WDS Watchdog Status Bit.							
		Set by th	he watchdog	g controller to ir	ndicate th	nat a watchdog timeout has o	occurred.	
		Cleared	by writing a	0 or by an exte	rnal hard	ware reset. It is not cleared b	y a watchdog reset.	
1	WDE	E Watchdog Enable Bit.						
Set by the user to enable the watchdog and clear its counters. timeout period, the watchdog generates a reset or interrupt, d			clear its counters. If this bit is eset or interrupt, depending o	not set by the user within the watchdog on WDIR.				
		Cleared	Cleared under the following conditions: user writes 0, watchdog reset (WDIR = 0); hardware reset; PSM interrupt.					
0	WDWR	Watchd	og Write Ena	ıble Bit.				
		To write data to the WDCON SFR involves a double instruction sequence. The WDWR bit must be set and the very next instruction must be a write instruction to the WDCON SFR.					The WDWR bit must be set and the very	
		For exar	nple:					
		CLR	EA			disable interrupts whi;to WDT	le writing	
		SETB MOV SETB	WDWI WDCC EA	ОN,#72Н		allow write to WDCON; enable WDT for 2.0s ti; enable interrupts agai;	.meout .n (if rqd)	

Table 24. WDCON SFR Bit Designations

TIME INTERVAL COUNTER (TIC)

A TIC is provided on-chip for counting longer intervals than the standard 8051 compatible timers are capable of. The TIC is capable of timeout intervals ranging from 1/128 second to 255 hours. Furthermore, this counter is clocked by the external 32.768 kHz crystal rather than by the core clock, and it has the ability to remain active in power-down mode and time long power-down intervals. This has obvious applications for remote battery-powered sensors where regular widely spaced readings are required.

Six SFRs are associated with the time interval counter, TIMECON being its control register. Depending on the configuration of the IT0 and IT1 bits in TIMECON, the selected time counter register overflow clocks the interval counter. When this counter is equal to the time interval value loaded in the INTVAL SFR, the TII bit (TIMECON.2) is set and generates an interrupt if enabled. If the part is in power-down mode, again with TIC interrupt enabled, the TII bit wakes up the device and resumes code execution by vectoring directly to the TIC interrupt service vector address at 0053H. The TICrelated SFRs are described in Table 25. Note also that the time based SFRs can be written initially with the current time; the TIC can then be controlled and accessed by user software. In effect, this facilitates the implementation of a real-time clock. A block diagram of the TIC is shown in Figure 56.

The TIC is clocked directly from a 32 kHz external crystal on the ADuC842/ADuC843 and by the internal 32 kHz $\pm 10\%$ R/C oscillator on the ADuC841. Due to this, instructions that access the TIC registers are also clocked at this speed. The user should ensure that there is sufficient time between instructions to these registers to allow them to execute correctly.

Figure 56. TIC, Simplified Block Diagram

INTVAL	User Time Interval Select Register
Function	User code writes the required time interval to this register. When the 8-bit interval counter is equal to the time interval value loaded in the INTVAL SFR, the TII bit (TIMECON.2) is set and generates an interrupt if enabled.
SFR Address	АбН
Power-On Default	00H
Bit Addressable	No
Valid Value	0 to 255 decimal
HTHSEC	Hundredths Seconds Time Register
Function	This register is incremented in 1/128 second intervals once TCEN in TIMECON is active. The HTHSEC SFR counts from 0 to 127 before rolling over to increment the SEC time register.
SFR Address	A2H
Power-On Default	00H
Bit Addressable	No
Valid Value	0 to 127 decimal
SEC	Seconds Time Register
Function	This register is incremented in 1-second intervals once TCEN in TIMECON is active. The SEC SFR counts from 0 to 59 before rolling over to increment the MIN time register.
SFR Address	A3H
Power-On Default	00H
Bit Addressable	No
Valid Value	0 to 59 decimal
MIN	Minutes Time Register
Function	This register is incremented in 1-minute intervals once TCEN in TIMECON is active. The MIN SFR counts from 0 to 59 before rolling over to increment the HOUR time register.
SFR Address	A4H
Power-On Default	00H
Bit Addressable	No
Valid Value	0 to 59 decimal
HOUR	Hours Time Register
Function	This register is incremented in 1-hour intervals once TCEN in TIMECON is active. The HOUR SFR counts from 0 to 23 before rolling over to 0.
SFR Address	A5H
Power-On Default	00H
Bit Addressable	No
Valid Value	0 to 23 decimal

	Timer/Counter 0 and 1
TCON	Control Register
SFR Address	88H
Power-On Default	00H
Bit Addressable	Yes

Table 30. TCON SFR Bit Designations

Bit No.	Name	Description
7	TF1	Timer 1 Overflow Flag.
		Set by hardware on a Timer/Counter 1 overflow.
		Cleared by hardware when the program counter (PC) vectors to the interrupt service routine.
6	TR1	Timer 1 Run Control Bit.
		Set by the user to turn on Timer/Counter 1.
		Cleared by the user to turn off Timer/Counter 1.
5	TF0	Timer 0 Overflow Flag.
		Set by hardware on a Timer/Counter 0 overflow.
		Cleared by hardware when the PC vectors to the interrupt service routine.
4	TR0	Timer 0 Run Control Bit.
		Set by the user to turn on Timer/Counter 0.
		Cleared by the user to turn off Timer/Counter 0.
3	3 IE1 ¹ External Interrupt 1 (INT1) Flag.	
		Set by hardware by a falling edge or by a zero level being applied to the external interrupt pin, INT1, depending on the state of Bit IT1
		Cleared by hardware when the PC vectors to the interrupt service routine only if the interrupt was transition- activated. If level-activated, the external requesting source controls the request flag, rather than the on-chip hardware.
2	IT1 ¹	External Interrupt 1 (IE1) Trigger Type.
		Set by software to specify edge-sensitive detection, that is, 1-to-0 transition.
		Cleared by software to specify level-sensitive detection, that is, zero level.
1	IE0 ¹	External Interrupt 0 (INT0) Flag.
		Set by hardware by a falling edge or by a zero level being applied to external interrupt pin INTO, depending on the state of Bit ITO.
		Cleared by hardware when the PC vectors to the interrupt service routine only if the interrupt was transition- activated. If level-activated, the external requesting source controls the request flag, rather than the on-chip hardware.
0	IT0 ¹	External Interrupt 0 (IE0) Trigger Type.
		Set by software to specify edge-sensitive detection, that is,1-to-0 transition.
		Cleared by software to specify level-sensitive detection, that is, zero level.

¹These bits are not used in the control of Timer/Counter 0 and 1, but are used instead in the control and monitoring of the external INT0 and INT1 interrupt pins.

Timer/Counter 0 and 1 Data Registers

Each timer consists of two 8-bit registers. These can be used as independent registers or combined into a single 16-bit register depending on the timer mode configuration.

TH0 and TL0

Timer 0 high byte and low byte. SFR Address = 8CH 8AH, respectively.

TH1 and TL1

Timer 1 high byte and low byte. SFR Address = 8DH, 8BH, respectively.

Mode 3: 9-Bit UART with Variable Baud Rate

Mode 3 is selected by setting both SM0 and SM1. In this mode, the 8051 UART serial port operates in 9-bit mode with a variable baud rate determined by either Timer 1 or Timer 2. The operation of the 9-bit UART is the same as for Mode 2, but the baud rate can be varied as for Mode 1.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1.

UART Serial Port Baud Rate Generation

Mode 0 Baud Rate Generation

The baud rate in Mode 0 is fixed.

Mode 0 Baud Rate = (Core Clock Frequency/12)

Mode 2 Baud Rate Generation

The baud rate in Mode 2 depends on the value of the SMOD bit in the PCON SFR. If SMOD = 0, the baud rate is 1/32 of the core clock. If SMOD = 1, the baud rate is 1/16 of the core clock:

Mode 2 Baud Rate = $(2^{\text{SMOD}}/32 \times [Core Clock Frequency])$

Modes 1 and 3 Baud Rate Generation

The baud rates in Modes 1 and 3 are determined by the overflow rate in Timer 1 or Timer 2, or in both (one for transmit and the other for receive).

Timer 1 Generated Baud Rates

When Timer 1 is used as the baud rate generator, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows:

Modes 1 and 3 Baud Rate = $(2^{\text{SMOD}}/32 \times (Timer 1 \text{ Overflow Rate}))$

The Timer 1 interrupt should be disabled in this application. The timer itself can be configured for either timer or counter operation, and in any of its three running modes. In the most typical application, it is configured for timer operation in the autoreload mode (high nibble of TMOD = 0010 binary). In that case, the baud rate is given by the formula

Modes 1 and 3 Baud Rate = $(2^{\text{SMOD}}/32) \times (Core Clock/ [256 - TH1])$

Timer 2 Generated Baud Rates

Baud rates can also be generated using Timer 2. Using Timer 2 is similar to using Timer 1 in that the timer must overflow 16 times before a bit is transmitted/received. Because Timer 2 has a 16-bit autoreload mode, a wider range of baud rates is possible using Timer 2.

Modes 1 and 2 Baud Rate = $(1/16) \times (Timer 2 Overflow Rate)$

Therefore, when Timer 2 is used to generate baud rates, the timer increments every two clock cycles rather than every core machine cycle as before. Thus, it increments six times faster than Timer 1, and therefore baud rates six times faster are possible. Because Timer 2 has 16-bit autoreload capability, very low baud rates are still possible.

Timer 2 is selected as the baud rate generator by setting the TCLK and/or RCLK in T2CON. The baud rates for transmit and receive can be simultaneously different. Setting RCLK and/ or TCLK puts Timer 2 into its baud rate generator mode as shown in Figure 73.

In this case, the baud rate is given by the formula

Modes 1 and 3 Baud Rate = (*Core Clock*)/(16 × [65536 – (*RCAP 2H*, *RCAP 2L*)])

Figure 73. Timer 2, UART Baud Rates

ADuC841/ADuC842/ADuC843

IEIP2	Secondary Interrupt Enable Register
SFR Address	A9H
Power-On Default	A0H
Bit Addressable	No

Table 38. IEIP2 SFR Bit Designations

Bit No.	Name	Description
7		Reserved.
6	PTI	Priority for time interval interrupt.
5	PPSM	Priority for power supply monitor interrupt.
4	PSI	Priority for SPI/I ² C interrupt.
3		This bit must contain zero.
2	ETI	Set by the user to enable, or cleared to disable time interval counter interrupts.
1	EPSMI	Set by the user to enable, or cleared to disable power supply monitor interrupts.
0	ESI	Set by the user to enable, or cleared to disable SPI or I ² C serial port interrupts.

Interrupt Priority

The interrupt enable registers are written by the user to enable individual interrupt sources, while the interrupt priority registers allow the user to select one of two priority levels for each interrupt. An interrupt of a high priority may interrupt the service routine of a low priority interrupt, and if two interrupts of different priority occur at the same time, the higher level interrupt is serviced first. An interrupt cannot be interrupted by another interrupt of the same priority level. If two interrupts of the same priority level occur simultaneously, a polling sequence is observed as shown in Table 39.

Table 39. Priority within an Interrupt Level

Source	Priority	Description
PSMI	1 (Highest)	Power Supply Monitor Interrupt.
WDS	2	Watchdog Timer Interrupt.
IEO	2	External Interrupt 0.
ADCI	3	ADC Interrupt.
TF0	4	Timer/Counter 0 Interrupt.
IE1	5	External Interrupt 1.
TF1	6	Timer/Counter 1 Interrupt.
ISPI/I2CI	7	SPI Interrupt/I ² C Interrupt.
RI + TI	8	Serial Interrupt.
TF2 + EXF2	9	Timer/Counter 2 Interrupt.
TII	11(Lowest)	Time Interval Counter Interrupt.

Interrupt Vectors

When an interrupt occurs, the program counter is pushed onto the stack, and the corresponding interrupt vector address is loaded into the program counter. The interrupt vector addresses are shown in Table 40.

Table 40. Interrupt Vector Addresses

Source	Vector Address
IEO	0003H
TFO	000BH
IE1	0013H
TF1	001BH
RI + TI	0023H
TF2 + EXF2	002BH
ADCI	0033H
ISPI/I2CI	003BH
PSMI	0043H
TII	0053H
WDS	005BH

5 V Part

For DV_{DD} below 4.5 V, the internal POR holds the part in reset. As DV_{DD} rises above 4.5 V, an internal timer times out for approximately 128 ms before the part is released from reset. The user must ensure that the power supply has reached a stable 4.75 V minimum level by this time. Likewise on power-down, the internal POR holds the part in reset until the power supply has dropped below 1 V. Figure 83 illustrates the operation of the internal POR in detail.

Figure 83. Internal POR Operation

Grounding and Board Layout Recommendations

As with all high resolution data converters, special attention must be paid to grounding and PC board layout of ADuC841/ ADuC842/ADuC843 based designs to achieve optimum performance from the ADC and the DACs. Although the parts have separate pins for analog and digital ground (AGND and DGND), the user must not tie these to two separate ground planes unless the two ground planes are connected together very close to the part, as illustrated in the simplified example of Figure 84a. In systems where digital and analog ground planes are connected together somewhere else (for example, at the system's power supply), they cannot be connected again near the part since a ground loop would result. In these cases, tie all the part's AGND and DGND pins to the analog ground plane, as illustrated in Figure 84b. In systems with only one ground plane, ensure that the digital and analog components are physically separated onto separate halves of the board such that digital return currents do not flow near analog circuitry and vice versa. The part can then be placed between the digital and analog sections, as illustrated in Figure 84c.

In all of these scenarios, and in more complicated real-life applications, keep in mind the flow of current from the supplies and back to ground. Make sure the return paths for all currents are as close as possible to the paths that the currents took to

ADuC841/ADuC842/ADuC843

reach their destinations. For example, do not power components on the analog side of Figure 84b with DV_{DD} since that would force return currents from DV_{DD} to flow through AGND. Also, try to avoid digital currents flowing under analog circuitry, which could happen if the user places a noisy digital chip on the left half of the board in Figure 84c. Whenever possible, avoid large discontinuities in the ground plane(s) (like those formed by a long trace on the same layer), since they force return signals to travel a longer path. And of course, make all connections to the ground plane directly, with little or no trace separating the pin from its via to ground.

If the user plans to connect fast logic signals (rise/fall time < 5 ns) to any of the part's digital inputs, a series resistor should be added to each relevant line to keep rise and fall times longer than 5 ns at the part's input pins. A value of 100 Ω or 200 Ω is usually sufficient to prevent high speed signals from coupling capacitively into the part and from affecting the accuracy of ADC conversions.

Figure 84. System Grounding Schemes

Parameter				
I ² C COMPATIBLE INTERFACE TIMING		Min	Max	Unit
tL	SCLOCK Low Pulse Width	1.3		μs
t⊦	SCLOCK High Pulse Width	0.6		μs
t _{shD}	Start Condition Hold Time	0.6		μs
t DSU	Data Setup Time	100		μs
t _{DHD}	Data Hold Time		0.9	μs
t _{RSU}	Setup Time for Repeated Start	0.6		μs
t _{PSU}	Stop Condition Setup Time	0.6		μs
tBUF	Bus Free Time between a Stop Conditionand a Start Condition	1.3		μs
t _R	Rise Time of Both SCLOCK and SDATA		300	ns
t⊧	Fall Time of Both SCLOCK and SDATA		300	ns
t _{sup} 1	Pulse Width of Spike Suppressed		50	ns

¹Input filtering on both the SCLOCK and SDATA inputs suppresses noise spikes less than 50 ns.

Figure 90. I²C Compatible Interface Timing

Data Sheet

ADuC841/ADuC842/ADuC843

Parameter					
SPI SLAVE MODE TIMING (CPHA = 0)		Min	Тур	Мах	Unit
tss	SS to SCLOCK Edge	0			ns
t _{sL}	SCLOCK Low Pulse Width		330		ns
t _{sH}	SCLOCK High Pulse Width		330		ns
t _{DAV}	Data Output Valid after SCLOCK Edge			50	ns
t _{DSU}	Data Input Setup Time before SCLOCK Edge	100			ns
t DHD	Data Input Hold Time after SCLOCK Edge	100			ns
\mathbf{t}_{DF}	Data Output Fall Time		10	25	ns
t _{DR}	Data Output Rise Time		10	25	ns
t _{sr}	SCLOCK Rise Time		10	25	ns
tsF	SCLOCK Fall Time		10	25	ns
t _{DOSS}	Data Output Valid after SS Edge			20	ns
t _{SFS}	SS High after SCLOCK Edge				ns

Figure 94. SPI Slave Mode Timing (CPHA = 0)