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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor 8052

Core Size 8-Bit

Speed 8.38MHz

Connectivity I²C, SPI, UART/USART

Peripherals DMA, PSM, PWM, Temp Sensor, WDT

Number of I/O 32

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 8x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 56-VFQFN Exposed Pad, CSP

Supplier Device Package 56-LFCSP-VQ (8x8)
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PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 
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Figure 3. 52-Lead MQFP Pin Configuration 

Table 3. 52-Lead MQFP Pin Function Descriptions 
Pin No.  Mnemonic Type1 Description 
1 P1.0/ADC0/T2 I Input Port 1 (P1.0). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 

defaults to analog input mode. To configure this port pin as a digital input, write a 
0 to the port bit.  

   Single-Ended Analog Input (ADC0). Channel selection is via ADCCON2 SFR. 
   Timer 2 Digital Input (T2). Input to Timer/Counter 2. When enabled, Counter 2 is 

incremented in response to a 1 to 0 transition of the T2 input. 
2 P1.1/ADC1/T2EX I Input Port 1 (P1.1). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 

defaults to analog input mode. To configure this port pin as a digital input, write a 
0 to the port bit. 

   Single-Ended Analog Input 1 (ADC1). Channel selection is via ADCCON2 SFR. 
   Capture/Reload Trigger for Counter 2 (T2EX). T2EX is a digital input. This pin also 

functions as an up/down control input for Counter 2. 
3 P1.2/ADC2 I Input Port 1 (P1.2). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 

defaults to analog input mode. To configure this port pin as a digital input, write a 
0 to the port bit. 

   Single-Ended Analog Input (ADC2). Channel selection is via ADCCON2 SFR. 
4 P1.3/ADC3 I Input Port 1 (P1.3). Port 1 is an 8-bit input port only. Unlike the other ports, Port 1 

defaults to analog input mode. To configure this port pin as a digital input, write a 
0 to the port bit. 

   Single-Ended Analog Input (ADC3). Channel selection is via ADCCON2 SFR. 
5 AVDD P Analog Positive Supply Voltage. 3 V or 5 V nominal. 
6 AGND G Analog Ground. AGND is the ground reference point for the analog circuitry. 
7 CREF I/O Decoupling Input for On-Chip Reference. Connect a 0.47 μF capacitor between this 

pin and AGND. 
8 VREF NC Not Connected. This was a reference output on the ADuC812; use the CREF pin 

instead. 
9 DAC0 O Voltage Output from DAC0. This pin is a no connect on the ADuC843. 
10 DAC1 O Voltage Output from DAC1. This pin is a no connect on the ADuC843. 

http://www.analog.com/aduc812?aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
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ACCUMULATOR SFR (ACC) 
ACC is the accumulator register and is used for math opera-
tions including addition, subtraction, integer multiplication and 
division, and Boolean bit manipulations. The mnemonics for 
accumulator-specific instructions refer to the accumulator as A. 

B SFR (B) 

The B register is used with the ACC for multiplication and 
division operations. For other instructions, it can be treated as a 
general-purpose scratchpad register. 

Stack Pointer (SP and SPH) 

The SP SFR is the stack pointer and is used to hold an internal 
RAM address that is called the top of the stack. The SP register 
is incremented before data is stored during PUSH and CALL 
executions. While the stack may reside anywhere in on-chip 
RAM, the SP register is initialized to 07H after a reset, which 
causes the stack to begin at location 08H. 

As mentioned earlier, the parts offer an extended 11-bit stack 
pointer. The 3 extra bits used to make up the 11-bit stack 
pointer are the 3 LSBs of the SPH byte located at B7H. 

Data Pointer (DPTR) 

The data pointer is made up of three 8-bit registers named DPP 
(page byte), DPH (high byte), and DPL (low byte). These are 
used to provide memory addresses for internal and external 
code access and for external data access. They may be manipu-
lated as a 16-bit register (DPTR = DPH, DPL), although INC 
DPTR instructions automatically carry over to DPP, or as three 
independent 8-bit registers (DPP, DPH, DPL). The parts support 
dual data pointers. Refer to the Dual Data Pointer section. 

Program Status Word (PSW) 

The PSW SFR contains several bits reflecting the current status 
of the CPU, as detailed in Table 6. 

SFR Address  D0H 

Power-On Default 00H 

Bit Addressable  Yes 
 
Table 6. PSW SFR Bit Designations 
Bit Name Description 
7 CY Carry Flag. 
6 AC Auxiliary Carry Flag. 
5 F0 General-Purpose Flag. 
4 RS1 Register Bank Select Bits. 
3 RS0 RS1 

0 
0 
1 
1 

RS0 
0 
1 
0 
1 

Selected Bank 
0 
1 
2 
3 

2 OV Overflow Flag. 
1 F1 General-Purpose Flag. 
0 P Parity Bit. 

 

Power Control SFR (PCON) 

The PCON SFR contains bits for power-saving options and 
general-purpose status flags, as shown in Table 7. 

SFR Address  87H 

Power-On Default 00H 

Bit Addressable  No 
 
Table 7. PCON SFR Bit Designations 
Bit No. Name Description 
7 SMOD Double UART Baud Rate. 
6 SERIPD I2C/SPI Power-Down Interrupt Enable. 
5 INT0PD INT0 Power-Down Interrupt Enable. 
4 ALEOFF Disable ALE Output. 
3 GF1 General-Purpose Flag Bit. 
2 GF0 General-Purpose Flag Bit. 
1 PD Power-Down Mode Enable. 
0 IDL Idle Mode Enable. 
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ADCCON2—(ADC Control SFR 2) 

The ADCCON2 register controls ADC channel selection and  
conversion modes as detailed below. 

SFR Address D8H 

SFR Power-On Default 00H 

Bit Addressable  Yes 
 
Table 9. ADCCON2 SFR Bit Designations 
Bit No. Name Description 

7 ADCI ADC Interrupt Bit.  
Set by hardware at the end of a single ADC conversion cycle or at the end of a DMA block conversion.  
Cleared by hardware when the PC vectors to the ADC interrupt service routine. Otherwise, the ADCI bit is cleared 
by user code. 

6 DMA DMA Mode Enable Bit.  
Set by the user to enable a preconfigured ADC DMA mode operation. A more detailed description of this mode is 
given in the ADC DMA Mode section. The DMA bit is automatically set to 0 at the end of a DMA cycle. Setting this 
bit causes the ALE output to cease; it starts again when DMA is started and operates correctly after DMA is 
complete. 

5 CCONV Continuous Conversion Bit.  
Set by the user to initiate the ADC into a continuous mode of conversion. In this mode, the ADC starts converting 
based on the timing and channel configuration already set up in the ADCCON SFRs; the ADC automatically starts 
another conversion once a previous conversion has completed.  

4 SCONV Single Conversion Bit.  
Set to initiate a single conversion cycle. The SCONV bit is automatically reset to 0 on completion of the single 
conversion cycle. 

3 
2 
1 
0 

CS3 
CS2 
CS1 
CS0  

Channel Selection Bits.  
Allow the user to program the ADC channel selection under software control. When a conversion is initiated, the 
converted channel is the one pointed to by these channel selection bits. In DMA mode, the channel selection is 
derived from the channel ID written to the external memory. 

  CS3 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

CS2 
0 
0 
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0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 

CS1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
1 

CS0 
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1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

CH# 
0 
1 
2 
3 
4 
5 
6 
7 
Temp Monitor 
DAC0 
DAC1 
AGND 
VREF 
DMA STOP 

 
 
 
 
 
 
 
 
 
Requires minimum of 1 μs to acquire. 
Only use with internal DAC output buffer on. 
Only use with internal DAC output buffer on. 
 
 
Place in XRAM location to finish DMA sequence; refer to 
the ADC DMA Mode section. 

All other combinations reserved. 
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The ADC incorporates a successive approximation architecture 
(SAR) involving a charge-sampled input stage. Figure 30 shows 
the equivalent circuit of the analog input section. Each ADC 
conversion is divided into two distinct phases, as defined by the 
position of the switches in Figure 30. During the sampling 
phase (with SW1 and SW2 in the track position), a charge 
proportional to the voltage on the analog input is developed 
across the input sampling capacitor. During the conversion 
phase (with both switches in the hold position), the capacitor 
DAC is adjusted via internal SAR logic until the voltage on 
Node A is 0, indicating that the sampled charge on the input 
capacitor is balanced out by the charge being output by the 
capacitor DAC. The final digital value contained in the SAR is 
then latched out as the result of the ADC conversion. Control of 
the SAR and timing of acquisition and sampling modes is 
handled automatically by built-in ADC control logic. 
Acquisition and conversion times are also fully configurable 
under user control. 
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Figure 30. Internal ADC Structure 

Note that whenever a new input channel is selected, a residual 
charge from the 32 pF sampling capacitor places a transient on 
the newly selected input. The signal source must be capable of 
recovering from this transient before the sampling switches go 
into hold mode. Delays can be inserted in software (between 
channel selection and conversion request) to account for input 
stage settling, but a hardware solution alleviates this burden 
from the software design task and ultimately results in a cleaner 
system implementation. One hardware solution is to choose a 
very fast settling op amp to drive each analog input. Such an op 
amp would need to fully settle from a small signal transient in 
less than 300 ns in order to guarantee adequate settling under 
all software configurations. A better solution, recommended for 
use with any amplifier, is shown in Figure 31. Though at first 
glance the circuit in Figure 31 may look like a simple antialias-
ing filter, it actually serves no such purpose since its corner 
frequency is well above the Nyquist frequency, even at a 200 

kHz sample rate. Though the R/C does help to reject some 
incoming high frequency noise, its primary function is to ensure 
that the transient demands of the ADC input stage are met.  
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Figure 31. Buffering Analog Inputs 

It does so by providing a capacitive bank from which the 32 pF 
sampling capacitor can draw its charge. Its voltage does not 
change by more than one count (1/4096) of the 12-bit transfer 
function when the 32 pF charge from a previous channel is 
dumped onto it. A larger capacitor can be used if desired, but 
not a larger resistor (for reasons described below). The Schottky 
diodes in Figure 31 may be necessary to limit the voltage 
applied to the analog input pin per the Absolute Maximum 
Ratings. They are not necessary if the op amp is powered from 
the same supply as the part since in that case the op amp is 
unable to generate voltages above VDD or below ground. An op 
amp of some kind is necessary unless the signal source is very 
low impedance to begin with. DC leakage currents at the parts’ 
analog inputs can cause measurable dc errors with external 
source impedances as low as 100 Ω or so. To ensure accurate 
ADC operation, keep the total source impedance at each analog 
input less than 61 Ω. The Table 11 illustrates examples of how 
source impedance can affect dc accuracy. 

Table 11. Source Impedance and DC Accuracy 
Source  
Impedance Ω 

Error from 1 μA 
Leakage Current 

Error from 10 μA 
Leakage Current 

61  61 μV = 0.1 LSB 610 μV = 1 LSB 
610  610 μV = 1 LSB 6.1 mV = 10 LSB 

 

Although Figure 31 shows the op amp operating at a gain of 1, 
one can, of course, configure it for any gain needed. Also, one 
can just as easily use an instrumentation amplifier in its place to 
condition differential signals. Use an amplifier that is capable of 
delivering the signal (0 V to VREF) with minimal saturation. 
Some single-supply rail-to-rail op amps that are useful for this 
purpose are described in Table 12. Check Analog Devices website 
www.analog.com for details on these and other op amps and 
instrumentation amps. 

http://www.analog.com/
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The DMA logic operates from the ADC clock and uses pipelin-
ing to perform the ADC conversions and to access the external 
memory at the same time. The time it takes to perform one ADC 
conversion is called a DMA cycle. The actions performed by the 
logic during a typical DMA cycle are shown in Figure 36. 

WRITE ADC RESULT
CONVERTED DURING

PREVIOUS DMA CYCLE

READ CHANNEL ID
TO BE CONVERTED DURING

NEXT DMA CYCLE

CONVERT CHANNEL READ DURING PREVIOUS DMA CYCLE

DMA CYCLE 03
26

0-
0-

03
5

 
Figure 36. DMA Cycle 

Figure 36 shows that during one DMA cycle, the following 
actions are performed by the DMA logic: 

1. An ADC conversion is performed on the channel whose 
ID was read during the previous cycle. 

2. The 12-bit result and the channel ID of the conversion 
performed in the previous cycle is written to the external 
memory. 

3. The ID of the next channel to be converted is read from 
external memory. 

For the previous example, the complete flow of events is shown 
in Figure 36. Because the DMA logic uses pipelining, it takes 
three cycles before the first correct result is written out. 

Micro Operation during ADC DMA Mode 

During ADC DMA mode, the MicroConverter core is free to 
continue code execution, including general housekeeping and 
communication tasks. However, note that MCU core accesses to 
Ports 0 and 2 (which of course are being used by the DMA con-
troller) are gated off during the ADC DMA mode of operation. 
This means that even though the instruction that accesses the 
external Ports 0 or 2 appears to execute, no data is seen at these 
external ports as a result. Note that during DMA to the inter-
nally contained XRAM, Ports 0 and 2 are available for use. 

The only case in which the MCU can access XRAM during 
DMA is when the internal XRAM is enabled and the section of 
RAM to which the DMA ADC results are being written to lies 
in an external XRAM. Then the MCU can access the internal 
XRAM only. This is also the case for use of the extended stack 
pointer. 

The MicroConverter core can be configured with an interrupt 
to be triggered by the DMA controller when it has finished 
filling the requested block of RAM with ADC results, allowing 
the service routine for this interrupt to postprocess data without 
any real-time timing constraints. 

ADC Offset and Gain Calibration Coefficients 

The ADuC841/ADuC842/ADuC843 have two ADC calibration 
coefficients, one for offset calibration and one for gain calibra-
tion. Both the offset and gain calibration coefficients are 14-bit 
words, and are each stored in two registers located in the special 
function register (SFR) area. The offset calibration coefficient is 
divided into ADCOFSH (six bits) and ADCOFSL (8 bits), and 
the gain calibration coefficient is divided into ADCGAINH  
(6 bits) and ADCGAINL (8 bits). 

The offset calibration coefficient compensates for dc offset 
errors in both the ADC and the input signal. Increasing the 
offset coefficient compensates for positive offset, and effectively 
pushes the ADC transfer function down. Decreasing the offset 
coefficient compensates for negative offset, and effectively 
pushes the ADC transfer function up. The maximum offset that 
can be compensated is typically ±5% of VREF, which equates to 
typically ±125 mV with a 2.5 V reference. 

Similarly, the gain calibration coefficient compensates for dc 
gain errors in both the ADC and the input signal. Increasing the 
gain coefficient compensates for a smaller analog input signal 
range and scales the ADC transfer function up, effectively 
increasing the slope of the transfer function. Decreasing the 
gain coefficient compensates for a larger analog input signal 
range and scales the ADC transfer function down, effectively 
decreasing the slope of the transfer function. The maximum 
analog input signal range for which the gain coefficient can 
compensate is 1.025 × VREF, and the minimum input range is 
0.975 × VREF, which equates to typically ±2.5% of the reference 
voltage. 

CALIBRATING THE ADC 
Two hardware calibration modes are provided, which can be 
easily initiated by user software. The ADCCON3 SFR is used to 
calibrate the ADC. Bit 1 (typical) and CS3 to CS0 (ADCCON2) set 
up the calibration modes. 

Device calibration can be initiated to compensate for significant 
changes in operating condition frequency, analog input range, 
reference voltage, and supply voltages. In this calibration mode, 
offset calibration uses internal AGND selected via ADCCON2 
register Bits CS3 to CS0 (1011), and gain calibration uses inter-
nal VREF selected by Bits CS3 to CS0 (1100). Offset calibration 
should be executed first, followed by gain calibration. System 
calibration can be initiated to compensate for both internal and 
external system errors. To perform system calibration by using 
an external reference, tie the system ground and reference to 
any two of the six selectable inputs. Enable external reference 
mode (ADCCON1.6). Select the channel connected to AGND 
via Bits CS3 to CS0 and perform system offset calibration. 
Select the channel connected to VREF via Bits CS3 to CS0 and 
perform system gain calibration.  

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
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User Download Mode (ULOAD) 

Figure 39 shows that it is possible to use the 62 kBytes of 
Flash/EE program memory available to the user as a single 
block of memory. In this mode, all of the Flash/EE memory is 
read-only to user code. 

However, the Flash/EE program memory can also be written to 
during runtime simply by entering ULOAD mode. In ULOAD 
mode, the lower 56 kBytes of program memory can be erased 
and reprogrammed by user software as shown in Figure 39. 
ULOAD mode can be used to upgrade your code in the field via 
any user defined download protocol. By configuring the SPI 
port on the part as a slave, it is possible to completely reprogram 
the 56 kBytes of Flash/EE program memory in only 5 seconds 
(refer to Application Note uC007). 

Alternatively, ULOAD mode can be used to save data to the 
56 kBytes of Flash/EE memory. This can be extremely useful in 
data logging applications where the part can provide up to 
60 kBytes of NV data memory on chip (4 kBytes of dedicated 
Flash/EE data memory also exist).  

The upper 6 kBytes of the 62 kBytes of Flash/EE program 
memory are programmable only via serial download or parallel 
programming. This means that this space appears as read-only 
to user code. Therefore, it cannot be accidentally erased or 
reprogrammed by erroneous code execution, which makes it 
very suitable to use the 6 kBytes as a bootloader.  

A bootload enable option exists in the serial downloader to 
“always run from E000H after reset.” If using a bootloader, this 
option is recommended to ensure that the bootloader always 
executes correct code after reset. Programming the Flash/EE 
program memory via ULOAD mode is described in more detail 
in the description of ECON and in Application Note uC007. 
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Figure 39. Flash/EE Program Memory Map in ULOAD Mode  

(62 kByte Part) 
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Figure 40. Flash/EE Program Memory Map in ULOAD Mode  

(32 kByte Part) 

 

Flash/EE Program Memory Security 

The ADuC841/ADuC842/ADuC843 facilitate three modes of 
Flash/EE program memory security. These modes can be 
independently activated, restricting access to the internal code 
space. These security modes can be enabled as part of serial 
download protocol as described in Application Note uC004 or 
via parallel programming. The security modes available on the 
parts are as follows: 

Lock Mode 

This mode locks the code memory, disabling parallel program-
ming of the program memory. However, reading the memory in 
parallel mode and reading the memory via a MOVC command 
from external memory is still allowed. This mode is deactivated 
by initiating a code-erase command in serial download or 
parallel programming modes. 

Secure Mode 

This mode locks code in memory, disabling parallel program-
ming (program and verify/read commands) as well as disabling 
the execution of a MOVC instruction from external memory, 
which is attempting to read the op codes from internal memory. 
Read/write of internal data Flash/EE from external memory is 
also disabled. This mode is deactivated by initiating a code-erase 
command in serial download or parallel programming modes. 

Serial Safe Mode 

This mode disables serial download capability on the device. If 
serial safe mode is activated and an attempt is made to reset the 
part into serial download mode, that is, RESET asserted and de-
asserted with PSEN low, the part interprets the serial download 
reset as a normal reset only. It therefore cannot enter serial 
download mode but can only execute as a normal reset 
sequence. Serial safe mode can be disabled only by initiating a 
code-erase command in parallel programming mode. 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
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PULSE-WIDTH MODULATOR (PWM) 
The PWM on the ADuC841/ADuC842/ADuC843 is a highly 
flexible PWM offering programmable resolution and an input 
clock, and can be configured for any one of six different modes 
of operation. Two of these modes allow the PWM to be config-
ured as a Σ-Δ DAC with up to 16 bits of resolution. A block 
diagram of the PWM is shown in Figure 47. Note the PWM 
clock’s sources are different for the ADuC841, and are given in 
Table 18. 
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Figure 47. PWM Block Diagram 

The PWM uses five SFRs: the control SFR (PWMCON) and 
four data SFRs (PWM0H, PWM0L, PWM1H, and PWM1L). 

PWMCON, as described in the following sections, controls the 
different modes of operation of the PWM as well as the PWM 
clock frequency. 

PWM0H/L and PWM1H/L are the data registers that deter-
mine the duty cycles of the PWM outputs. The output pins that 
the PWM uses are determined by the CFG841/CFG842 register, 
and can be either P2.6 and P2.7 or P3.4 and P3.3. In this section 
of the data sheet, it is assumed that P2.6 and P2.7 are selected as 
the PWM outputs. 

To use the PWM user software, first write to PWMCON to 
select the PWM mode of operation and the PWM input clock. 
Writing to PWMCON also resets the PWM counter. In any of 
the 16-bit modes of operation (Modes 1, 3, 4, 6), user software 
should write to the PWM0L or PWM1L SFRs first. This value is 
written to a hidden SFR. Writing to the PWM0H or PWM1H 
SFRs updates both the PWMxH and the PWMxL SFRs but does 
not change the outputs until the end of the PWM cycle in 
progress. The values written to these 16-bit registers are then 
used in the next PWM cycle. 

PWMCON PWM  Control SFR 

SFR Address  AEH 

Power-On Default 00H 

Bit Addressable  No 
 

Table 18. PWMCON SFR Bit Designations 
Bit No. Name Description 
7 SNGL Turns off PMW output at P2.6 or P3.4, leaving the port pin free for digital I/O. 
6 MD2 PWM Mode Bits. 
5 MD1 The MD2/1/0 bits choose the PWM mode as follows: 
4 MD0 MD2 MD1 MD0 Mode 

0 0 0 Mode 0: PWM Disabled 
0 0 1 Mode 1: Single variable resolution PWM on P2.7 or P3.3 
0 1 0 Mode 2: Twin 8-bit PWM 
0 1 1 Mode 3: Twin 16-bit PWM 
1 0 0 Mode 4: Dual NRZ 16-bit ∑-∆ DAC 
1 0 1 Mode 5: Dual 8-bit PWM 
1 1 0 Mode 6: Dual RZ 16-bit ∑-∆ DAC 
1 1 1  Reserved 

3 CDIV1 PWM Clock Divider. 
2 CDIV0 Scale the clock source for the PWM counter as follows: 

CDIV1 CDIV0 Description 
0 0 PWM Counter = Selected Clock/1 
0 1 PWM Counter = Selected Clock/4 
1 0 PWM Counter = Selected Clock/16 
1 1 PWM Counter = Selected Clock/64 

1 CSEL1 PWM Clock Divider. 
0 CSEL0 Select the clock source for the PWM as follows: 

CSEL1 CSEL0 Description 
0 0 PWM Clock = fXTAL/15, ADuC841 = fOCS/DIVIDE FACTOR /15 (see the CFG841 register) 
0 1 PWM Clock = fXTAL, ADuC841 = fOCS/DIVIDE FACTOR (see the CFG841 register) 
1 0 PWM Clock = External input at P3.4/T0 
1 1 PWM Clock = fVCO = 16.777216 MHz, ADuC841 = fOSC 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
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PWM Modes of Operation 
Mode 0: PWM Disabled 

The PWM is disabled allowing P2.6 and P2.7 to be used as 
normal. 

Mode 1: Single Variable Resolution PWM 

In Mode 1, both the pulse length and the cycle time (period) are 
programmable in user code, allowing the resolution of the 
PWM to be variable. 

PWM1H/L sets the period of the output waveform. Reducing 
PWM1H/L reduces the resolution of the PWM output but 
increases the maximum output rate of the PWM. For example, 
setting PWM1H/L to 65536 gives a 16-bit PWM with a maxi-
mum output rate of 266 Hz (16.777 MHz/65536). Setting 
PWM1H/L to 4096 gives a 12-bit PWM with a maximum 
output rate of 4096 Hz (16.777 MHz/4096). 

PWM0H/L sets the duty cycle of the PWM output waveform, as 
shown in Figure 48. 
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Figure 48. PWM in Mode 1 

Mode 2: Twin 8-Bit PWM 

In Mode 2, the duty cycle of the PWM outputs and the resolu-
tion of the PWM outputs are both programmable. The maximum 
resolution of the PWM output is 8 bits. 

PWM1L sets the period for both PWM outputs. Typically, this 
is set to 255 (FFH) to give an 8-bit PWM, although it is possible 
to reduce this as necessary. A value of 100 could be loaded here 
to give a percentage PWM, that is, the PWM is accurate to 1%.  

The outputs of the PWM at P2.6 and P2.7 are shown in 
Figure 49. As can be seen, the output of PWM0 (P2.6) goes low 
when the PWM counter equals PWM0L. The output of PWM1 
(P2.7) goes high when the PWM counter equals PWM1H and 
goes low again when the PWM counter equals PWM0H. Setting 
PWM1H to 0 ensures that both PWM outputs start simultaneously. 

P2.7

P2.6

PWM COUNTER

PWM1H

0

PWM1L

PWM0H

PWM0L

03
26

0-
0-

04
8

 
Figure 49. PWM Mode 2 

Mode 3: Twin 16-Bit PWM 

In Mode 3, the PWM counter is fixed to count from 0 to 65536, 
giving a fixed 16-bit PWM. Operating from the 16.777 MHz 
core clock results in a PWM output rate of 256 Hz. The duty 
cycle of the PWM outputs at P2.6 and P2.7 is independently 
programmable. 

As shown in Figure 50, while the PWM counter is less than 
PWM0H/L, the output of PWM0 (P2.6) is high. Once the 
PWM counter equals PWM0H/L, PWM0 (P2.6) goes low and 
remains low until the PWM counter rolls over. 

Similarly, while the PWM counter is less than PWM1H/L, the 
output of PWM1 (P2.7) is high. Once the PWM counter equals 
PWM1H/L, PWM1 (P2.7) goes low and remains low until the 
PWM counter rolls over. 

In this mode, both PWM outputs are synchronized, that is, once 
the PWM counter rolls over to 0, both PWM0 (P2.6) and 
PWM1 go high. 
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Figure 50. PWM Mode 3 
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Using the SPI Interface

Depending on the configuration of the bits in the SPICON SFR 
shown in Table 19, the ADuC841/ADuC842/ADuC843 SPI 
interface transmits or receives data in a number of possible 
modes. Figure 54 shows all possible SPI configurations for the 
parts, and the timing relationships and synchronization 
between the signals involved. Also shown in this figure is the 
SPI interrupt bit (ISPI) and how it is triggered at the end of each 
byte-wide communication. 

SCLOCK
(CPOL = 1)

SCLOCK
(CPOL = 0)

(CPHA = 1)

(CPHA = 0)

SAMPLE INPUT

ISPI FLAG

DATA OUTPUT

ISPI FLAG

SAMPLE INPUT

DATA OUTPUT ?

MSB BIT 6 BIT 5 ?BIT 4 BIT 3 BIT 2 BIT 1 LSB

MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB

SS

03
26

0-
0-

05
3

 
Figure 54. SPI Timing, All Modes 

SPI Interface—Master Mode 

In master mode, the SCLOCK pin is always an output and 
generates a burst of eight clocks whenever user code writes to 
the SPIDAT register. The SCLOCK bit rate is determined by 
SPR0 and SPR1 in SPICON. Also note that the SS pin is not 
used in master mode. If the parts need to assert the SS pin on an 
external slave device, a port digital output pin should be used. 

In master mode, a byte transmission or reception is initiated by 
a write to SPIDAT. Eight clock periods are generated via the 
SCLOCK pin and the SPIDAT byte being transmitted via MOSI. 
With each SCLOCK period, a data bit is also sampled via MISO. 
After eight clocks, the transmitted byte is completely 
transmitted, and the input byte waits in the input shift register. 
The ISPI flag is set automatically, and an interrupt occurs if 
enabled. The value in the shift register is latched into SPIDAT. 

SPI Interface—Slave Mode 

In slave mode, SCLOCK is an input. The SS pin must also be 
driven low externally during the byte communication. Trans-
mission is also initiated by a write to SPIDAT. In slave mode, a 
data bit is transmitted via MISO, and a data bit is received via 
MOSI through each input SCLOCK period. After eight clocks, 
the transmitted byte is completely transmitted, and the input 
byte waits in the input shift register. The ISPI flag is set 
automatically, and an interrupt occurs if enabled. The value in 
the shift register is latched into SPIDAT only when the 
transmission/reception of a byte has been completed. The end 
of transmission occurs after the eighth clock has been received 
if CPHA = 1, or when SS returns high if CPHA = 0. 

 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
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I2C COMPATIBLE INTERFACE
The ADuC841/ADuC842/ADuC843 support a fully licensed 
I2C serial interface. The I2C interface is implemented as a full 
hardware slave and software master. SDATA is the data I/O pin, 
and SCLOCK is the serial clock. These two pins are shared with 
the MOSI and SCLOCK pins of the on-chip SPI interface. To 
enable the I2C interface, the SPI interface must be turned off 
(see SPE in Table 19) or the SPI interface must be moved to 
P3.3, P3.4, and P3.5 via the CFG841.1/CFG842.1 bit. Application 
Note uC001 describes the operation of this interface as imple-
mented and is available from the MicroConverter website at 
www.analog.com/microconverter. 

Three SFRs are used to control the I2C interface and are 
described in the following tables. 

I2CCON I2C Control Register 

SFR Address  E8H 

Power-On Default 00H 

Bit Addressable  Yes 
 

 
Table 20. I2CCON SFR Bit Designations, Master Mode 
Bit No.  Name Description 
7 MDO I2C Software Master Data Output Bit (Master Mode Only). 

This data bit is used to implement a master I2C transmitter interface in software. Data written to this bit is output on 
the SDATA pin if the data output enable (MDE) bit is set. 

6 MDE I2C Software Master Data Output Enable Bit (Master Mode Only). 
Set by the user to enable the SDATA pin as an output (Tx). 
Cleared by the user to enable the SDATA pin as an input (Rx). 

5 MCO I2C Software Master Clock Output Bit (Master Mode Only). 
This data bit is used to implement a master I2C transmitter interface in software. Data written to this bit is output on 
the SCLOCK pin. 

4 MDI I2C Software Master Data Input Bit (Master Mode Only). 
This data bit is used to implement a master I2C receiver interface in software. Data on the SDATA pin is latched into 
this bit on SCLOCK if the data output enable (MDE) bit is 0. 

3 I2CM I2C Master/Slave Mode Bit. 
Set by the user to enable I2C software master mode. 
Cleared by the user to enable I2C hardware slave mode. 

2 ---- Reserved. 
1 ---- Reserved. 
0 ---- Reserved. 

 

Table 21. I2CCON SFR Bit Designations, Slave Mode 
Bit No.  Name Description 
7 I2CSI I2C Stop Interrupt Enable Bit. 

Set by the user to enable I2C stop interrupts. If set, a stop bit that follows a valid start condition generates an 
interrupt. 
Cleared by the user to disable I2C stop interrupts. 

6 I2CGC I2C General Call Status Bit. 
Set by hardware after receiving a general call address. 
Cleared by the user. 

5 I2CID1 I2C Interrupt Decode Bits. 
4 I2CID0 Set by hardware to indicate the source of an I2C interrupt. 

00  Start and Matching Address. 
01  Repeated Start and Matching Address. 
10  User Data. 
11  Stop after a Start and Matching Address. 

3 I2CM I2C Master/Slave Mode Bit. 
Set by the user to enable I2C software master mode. 
Cleared by the user to enable I2C hardware slave mode. 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
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INTVAL User Time Interval Select Register 
Function  User code writes the required time interval to this register. When the 8-bit interval counter is equal to the 

time interval value loaded in the INTVAL SFR, the TII bit (TIMECON.2) is set and generates an 
interrupt if enabled. 

SFR Address  A6H 
Power-On Default 00H 
Bit Addressable No 
Valid Value  0 to 255 decimal 

 

HTHSEC Hundredths Seconds Time Register 
Function This register is incremented in 1/128 second intervals once TCEN in TIMECON is active. The HTHSEC 

SFR counts from 0 to 127 before rolling over to increment the SEC time register. 
SFR Address  A2H 
Power-On Default 00H 
Bit Addressable No 
Valid Value  0 to 127 decimal 

 

SEC  Seconds Time Register 
Function  This register is incremented in 1-second intervals once TCEN in TIMECON is active. The SEC SFR 

counts from 0 to 59 before rolling over to increment the MIN time register. 
SFR Address  A3H 
Power-On Default 00H 
Bit Addressable No 
Valid Value  0 to 59 decimal 

 

MIN  Minutes Time Register 
Function  This register is incremented in 1-minute intervals once TCEN in TIMECON is active. The MIN SFR 

counts from 0 to 59 before rolling over to increment the HOUR time register. 
SFR Address  A4H 
Power-On Default 00H 
Bit Addressable No 
Valid Value  0 to 59 decimal 

 

HOUR  Hours Time Register 

Function  This register is incremented in 1-hour intervals once TCEN in TIMECON is active. The HOUR SFR 
counts from 0 to 23 before rolling over to 0. 

SFR Address  A5H 

Power-On Default 00H 
Bit Addressable No 
Valid Value 0 to 23 decimal 
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TIMER/COUNTER 0 AND 1 OPERATING MODES 
The following sections describe the operating modes for 
Timer/Counters 0 and 1. Unless otherwise noted, assume that 
these modes of operation are the same for both Timer 0 and 
Timer 1. 

Mode 0 (13-Bit Timer/Counter) 

Mode 0 configures an 8-bit timer/counter. Figure 66 shows 
Mode 0 operation. Note that the divide-by-12 prescaler is not 
present on the single-cycle core. 
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Figure 66. Timer/Counter 0, Mode 0 

In this mode, the timer register is configured as a 13-bit register. 
As the count rolls over from all 1s to all 0s, it sets the timer 
overflow flag, TF0. TF0 can then be used to request an 
interrupt. The counted input is enabled to the timer when TR0 
= 1 and either Gate = 0 or INT0 = 1. Setting Gate = 1 allows the 
timer to be controlled by external input INT0 to facilitate pulse-
width measurements. TR0 is a control bit in the special function 
register TCON; Gate is in TMOD. The 13-bit register consists of 
all 8 bits of TH0 and the lower five bits of TL0. The upper 3 bits 
of TL0 are indeterminate and should be ignored. Setting the run 
flag (TR0) does not clear the registers. 

Mode 1 (16-Bit Timer/Counter) 

Mode 1 is the same as Mode 0, except that the Mode 1 timer 
register is running with all 16 bits. Mode 1 is shown in 
Figure 67. 
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Figure 67. Timer/Counter 0, Mode 1 

 

Mode 2 (8-Bit Timer/Counter with Autoreload) 

Mode 2 configures the timer register as an 8-bit counter (TL0) 
with automatic reload, as shown in Figure 68. Overflow from TL0 
not only sets TF0, but also reloads TL0 with the contents of TH0, 
which is preset by software. The reload leaves TH0 unchanged. 
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Figure 68. Timer/Counter 0, Mode 2 

 

Mode 3 (Two 8-Bit Timer/Counters) 

Mode 3 has different effects on Timer 0 and Timer 1. Timer 1 in 
Mode 3 simply holds its count. The effect is the same as setting 
TR1 = 0. Timer 0 in Mode 3 establishes TL0 and TH0 as two 
separate counters. This configuration is shown in Figure 69. 
TL0 uses the Timer 0 control bits: C/T, Gate, TR0, INT0, and 
TF0. TH0 is locked into a timer function (counting machine 
cycles) and takes over the use of TR1 and TF1 from Timer 1. 
Thus, TH0 now controls the Timer 1 interrupt. Mode 3 is 
provided for applications requiring an extra 8-bit timer or 
counter.  

When Timer 0 is in Mode 3, Timer 1 can be turned on and off 
by switching it out of and into its own Mode 3, or it can still be 
used by the serial interface as a baud rate generator. In fact, it 
can be used in any application not requiring an interrupt from 
Timer 1 itself. 
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Figure 69. Timer/Counter 0, Mode 3 
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Mode 3: 9-Bit UART with Variable Baud Rate 

Mode 3 is selected by setting both SM0 and SM1. In this mode, 
the 8051 UART serial port operates in 9-bit mode with a vari-
able baud rate determined by either Timer 1 or Timer 2. The 
operation of the 9-bit UART is the same as for Mode 2, but the 
baud rate can be varied as for Mode 1. 

In all four modes, transmission is initiated by any instruction 
that uses SBUF as a destination register. Reception is initiated in 
Mode 0 by the condition RI = 0 and REN = 1. Reception is 
initiated in the other modes by the incoming start bit if REN = 1. 

UART Serial Port Baud Rate Generation 
 

Mode 0 Baud Rate Generation 

The baud rate in Mode 0 is fixed. 

Mode 0 Baud Rate = (Core Clock Frequency/12) 

Mode 2 Baud Rate Generation 

The baud rate in Mode 2 depends on the value of the SMOD bit 
in the PCON SFR. If SMOD = 0, the baud rate is 1/32 of the 
core clock. If SMOD = 1, the baud rate is 1/16 of the core clock: 

Mode 2 Baud Rate = (2SMOD/32 × [Core Clock Frequency]) 

Modes 1 and 3 Baud Rate Generation 

The baud rates in Modes 1 and 3 are determined by the over-
flow rate in Timer 1 or Timer 2, or in both (one for transmit 
and the other for receive). 

Timer 1 Generated Baud Rates 

When Timer 1 is used as the baud rate generator, the baud rates 
in Modes 1 and 3 are determined by the Timer 1 overflow rate 
and the value of SMOD as follows: 

Modes 1 and 3 Baud Rate = (2SMOD/32 × (Timer 1 Overflow Rate) 

The Timer 1 interrupt should be disabled in this application. 
The timer itself can be configured for either timer or counter 
operation, and in any of its three running modes. In the most 
typical application, it is configured for timer operation in the 
autoreload mode (high nibble of TMOD = 0010 binary). In that 
case, the baud rate is given by the formula 

Modes 1 and 3 Baud Rate =  
(2SMOD/32) × (Core Clock/ [256 − TH1]) 

Timer 2 Generated Baud Rates 

Baud rates can also be generated using Timer 2. Using Timer 2 
is similar to using Timer 1 in that the timer must overflow 16 
times before a bit is transmitted/received. Because Timer 2 has a 
16-bit autoreload mode, a wider range of baud rates is possible 
using Timer 2.  

Modes 1 and 2 Baud Rate = (1/16) × (Timer 2 Overflow Rate) 

Therefore, when Timer 2 is used to generate baud rates, the 
timer increments every two clock cycles rather than every core 
machine cycle as before. Thus, it increments six times faster 
than Timer 1, and therefore baud rates six times faster are possi-
ble. Because Timer 2 has 16-bit autoreload capability, very low 
baud rates are still possible.  

Timer 2 is selected as the baud rate generator by setting the 
TCLK and/or RCLK in T2CON. The baud rates for transmit 
and receive can be simultaneously different. Setting RCLK and/ 
or TCLK puts Timer 2 into its baud rate generator mode as 
shown in Figure 73. 

In this case, the baud rate is given by the formula 

Modes 1 and 3 Baud Rate =  
(Core Clock)/(16 × [65536 − (RCAP 2H, RCAP 2L)]) 
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Figure 73. Timer 2, UART Baud Rates 
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IEIP2  Secondary Interrupt Enable Register 
SFR Address  A9H 
Power-On Default A0H 
Bit Addressable No 

 

Table 38. IEIP2 SFR Bit Designations 
Bit No. Name Description 

7 ---- Reserved. 

6 PTI Priority for time interval interrupt. 

5 PPSM Priority for power supply monitor interrupt. 

4 PSI Priority for SPI/I2C interrupt. 

3 ---- This bit must contain zero. 

2 ETI Set by the user to enable, or cleared to disable time interval counter interrupts. 

1 EPSMI Set by the user to enable, or cleared to disable power supply monitor interrupts. 

0 ESI Set by the user to enable, or cleared to disable SPI or I2C serial port interrupts. 

 

Interrupt Priority 

The interrupt enable registers are written by the user to enable 
individual interrupt sources, while the interrupt priority regis-
ters allow the user to select one of two priority levels for each 
interrupt. An interrupt of a high priority may interrupt the 
service routine of a low priority interrupt, and if two interrupts 
of different priority occur at the same time, the higher level 
interrupt is serviced first. An interrupt cannot be interrupted by 
another interrupt of the same priority level. If two interrupts of 
the same priority level occur simultaneously, a polling sequence 
is observed as shown in Table 39. 

Table 39. Priority within an Interrupt Level 
Source  Priority  Description 
PSMI 1 (Highest) Power Supply Monitor Interrupt. 
WDS 2 Watchdog Timer Interrupt. 
IE0 2 External Interrupt 0. 
ADCI 3 ADC Interrupt. 
TF0 4 Timer/Counter 0 Interrupt. 
IE1 5 External Interrupt 1. 
TF1 6 Timer/Counter 1 Interrupt. 
ISPI/I2CI 7 SPI Interrupt/I2C Interrupt. 
RI + TI 8 Serial Interrupt. 
TF2 + EXF2 9  Timer/Counter 2 Interrupt. 
TII 11(Lowest) Time Interval Counter Interrupt. 

 

Interrupt Vectors 

When an interrupt occurs, the program counter is pushed onto 
the stack, and the corresponding interrupt vector address is 
loaded into the program counter. The interrupt vector addresses 
are shown in Table 40. 

Table 40. Interrupt Vector Addresses 
Source Vector Address 
IE0 0003H 
TF0  000BH 
IE1 0013H 
TF1 001BH 
RI + TI 0023H 
TF2 + EXF2 002BH 
ADCI 0033H 
ISPI/I2CI 003BH 
PSMI 0043H 
TII 0053H 
WDS 005BH 
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If access to more than 64 kBytes of RAM is desired, a feature 
unique to the ADuC841/ADuC842/ADuC843 allows address-
ing up to 16 MBytes of external RAM simply by adding an 
additional latch as illustrated in Figure 79. 
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Figure 79. External Data Memory Interface (16 MBytes Address Space) 

In either implementation, Port 0 (P0) serves as a multiplexed 
address/data bus. It emits the low byte of the data pointer (DPL) 
as an address, which is latched by a pulse of ALE prior to data 
being placed on the bus by the ADuC841/ADuC842/ADuC843 
(write operation) or by the SRAM (read operation). Port 2 (P2) 
provides the data pointer page byte (DPP) to be latched by ALE, 
followed by the data pointer high byte (DPH). If no latch is 
connected to P2, DPP is ignored by the SRAM, and the 8051 
standard of 64 kBytes external data memory access is maintained. 

Power Supplies 

The operational power supply voltage of the parts depends on 
whether the part is the 3 V version or the 5 V version. The 
specifications are given for power supplies within 2.7 V to 3.6 V 
or ±5% of the nominal 5 V level. 

Note that Figure 80 and Figure 81 refer to the PQFP package. 
For the CSP package, connect the extra DVDD, DGND, AVDD, 
and AGND in the same manner. Also, the paddle on the bottom 
of the package should be soldered to a metal plate to provide 
mechanical stability. This metal plate should not be connected 
to ground. 

Separate analog and digital power supply pins (AVDD and DVDD, 
respectively) allow AVDD to be kept relatively free of the noisy 
digital signals that are often present on the system DVDD line. 
However, though you can power AVDD and DVDD from two 
separate supplies if desired, you must ensure that they remain 
within ±0.3 V of one another at all times to avoid damaging the 
chip (as per the Absolute Maximum Ratings section). 
Therefore, it is recommended that unless AVDD and DVDD are 

connected directly together, back-to-back Schottky diodes 
should be connected between them, as shown in Figure 80. 
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Figure 80. External Dual-Supply Connections 

As an alternative to providing two separate power supplies, the 
user can help keep AVDD quiet by placing a small series resistor 
and/or ferrite bead between it and DVDD, and then decoupling 
AVDD separately to ground. An example of this configuration is 
shown in Figure 81. With this configuration, other analog 
circuitry (such as op amps and voltage reference) can be powered 
from the AVDD supply line as well. The user still needs to 
include back-to-back Schottky diodes between AVDD and DVDD 
to protect them from power-up and power-down transient 
conditions that could momentarily separate the two supply voltages. 

DVDD

AGND

AVDD

DGND

DIGITAL SUPPLY

–
+

BEAD 1.6

0.1F

0.1F

10F10F

ADuC841/
ADuC842/
ADuC843

03
26

0-
0-

08
1

 
Figure 81. External Single-Supply Connections 

Notice that in both Figure 80 and Figure 81, a large value 
(10 μF) reservoir capacitor sits on DVDD and a separate 10 μF 
capacitor sits on AVDD. Also, local small-value (0.1 μF) capaci-
tors are located at each VDD pin of the chip. As per standard 
design practice, be sure to include all of these capacitors, and 
ensure the smaller capacitors are close to each AVDD pin with 
trace lengths as short as possible. Connect the ground terminal 
of each of these capacitors directly to the underlying ground 
plane. Finally, note that at all times, the analog and digital ground 
pins on the part must be referenced to the same system ground 
reference point. 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
http://www.analog.com/aduc842?doc=aduc841_842_843.pdf
http://www.analog.com/aduc843?doc=aduc841_842_843.pdf
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Power Consumption 

The currents consumed by the various sections of the part are 
shown in Table 41. The core values given represent the current 
drawn by DVDD, while the rest (ADC, DAC, voltage ref) are 
pulled by the AVDD pin and can be disabled in software when 
not in use. The other on-chip peripherals (such as the watchdog 
timer and the power supply monitor) consume negligible 
current, and are therefore lumped in with the core operating 
current here. Of course, the user must add any currents sourced 
by the parallel and serial I/O pins, and sourced by the DAC, in 
order to determine the total current needed at the supply pins. 
Also, current drawn from the DVDD supply increases by 
approximately 10 mA during Flash/EE erase and program cycles. 

Table 41. Typical IDD of Core and Peripherals 
 VDD = 5 V VDD = 3 V 
Core (Normal Mode) (2.2 nA × MCLK)  (1.4 nA × MCLK)  
ADC 1.7 mA 1.7 mA 
DAC (Each) 250 μA 200 μA 
Voltage Ref 200 μA 150 μA 

 

Since operating DVDD current is primarily a function of clock 
speed, the expressions for core supply current in Table 41 are 
given as functions of MCLK, the core clock frequency. Plug in a 
value for MCLK in hertz to determine the current consumed by 
the core at that oscillator frequency. Since the ADC and DACs 
can be enabled or disabled in software, add only the currents 
from the peripherals you expect to use. And again, do not forget 
to include current sourced by I/O pins, serial port pins, DAC 
outputs, and so forth, plus the additional current drawn during 
Flash/EE erase and program cycles. A software switch allows 
the chip to be switched from normal mode into idle mode, and 
also into full power-down mode. Brief descriptions of idle and 
power-down modes follow. 

Power Saving Modes 

In idle mode, the oscillator continues to run, but the core clock 
generated from the PLL is halted. The on-chip peripherals 
continue to receive the clock, and remain functional. The CPU 
status is preserved with the stack pointer and program counter, 
and all other internal registers maintain their data during idle 
mode. Port pins and DAC output pins retain their states in this 
mode. The chip recovers from idle mode upon receiving any 
enabled interrupt, or upon receiving a hardware reset. 

In full power-down mode, both the PLL and the clock to the 
core are stopped. The on-chip oscillator can be halted or can 
continue to oscillate, depending on the state of the oscillator 
power-down bit in the PLLCON SFR. The TIC, being driven 
directly from the oscillator, can also be enabled during power-
down. All other on-chip peripherals are, however, shut down. 
Port pins retain their logic levels in this mode, but the DAC 
output goes to a high impedance state (three-state). During full 

power-down mode, the part consumes a total of approximately 
20 μA. There are five ways of terminating power-down mode: 

Asserting the RESET Pin (Pin 15) 

Returns to normal mode. All registers are set to their default 
state and program execution starts at the reset vector once the 
RESET pin is de-asserted. 

Cycling Power 

All registers are set to their default state and program execution 
starts at the reset vector approximately 128 ms later.  

Time Interval Counter (TIC) Interrupt  

Power-down mode is terminated, and the CPU services the TIC 
interrupt. The RETI at the end of the TIC ISR returns the core 
to the instruction after the one that enabled power-down. 

I2C or SPI Interrupt 

Power-down mode is terminated, and the CPU services the 
I2C/SPI interrupt. The RETI at the end of the ISR returns the 
core to the instruction after the one that enabled power-down. 
Note that the I2C/SPI power-down interrupt enable bit (SERIPD) 
in the PCON SFR must be set to allow this mode of operation. 

INT0 Interrupt 

Power-down mode is terminated, and the CPU services the 
INT0 interrupt. The RETI at the end of the ISR returns the core 
to the instruction after the one that enabled power-down. The 
INT0 pin must not be driven low during or within two machine 
cycles of the instruction that initiates power-down mode. Note 
that the INT0 power-down interrupt enable bit (INT0PD) in 
the PCON SFR must be set to allow this mode of operation. 

Power-On Reset (POR) 

An internal POR is implemented on the ADuC841/ADuC842/ 
ADuC843.  

3 V Part 

For DVDD below 2.45 V, the internal POR holds the part in reset. 
As DVDD rises above 2.45 V, an internal timer times out for 
approximately 128 ms before the part is released from reset. The 
user must ensure that the power supply has reached a stable 
2.7 V minimum level by this time. Likewise on power-down, 
the internal POR holds the part in reset until the power supply 
has dropped below 1 V. Figure 82 illustrates the operation of the 
internal POR in detail. 
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Figure 82. Internal POR Operation 

http://www.analog.com/aduc841?doc=aduc841_842_843.pdf
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Parameter 16 MHz Core Clk 8 MHz Core Clock  

EXTERNAL DATA MEMORY WRITE CYCLE Min Max Min Max Unit 
tWLWH WR Pulse Width 65  130  ns 

tAVLL Address Valid after ALE Low 60  120  ns 
tLLAX Address Hold after ALE Low 65  135  ns 
tLLWL ALE Low to RD or WR Low  130  260 ns 

tAVWL Address Valid to RD or WR Low 190  375  ns 

tQVWX Data Valid to WR Transition 60  120  ns 

tQVWH Data Setup before WR 120  250  ns 

tWHQX Data and Address Hold after WR  380  755  ns 

tWHLH RD or WR High to ALE High 60  125  ns 
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Figure 89. External Data Memory Write Cycle 
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Parameter    
I2C COMPATIBLE INTERFACE TIMING Min Max Unit 
tL SCLOCK Low Pulse Width 1.3  μs 
tH SCLOCK High Pulse Width 0.6  μs 
tSHD Start Condition Hold Time 0.6  μs 
tDSU Data Setup Time 100  μs 
tDHD Data Hold Time  0.9 μs 
tRSU Setup Time for Repeated Start 0.6  μs 
tPSU Stop Condition Setup Time 0.6  μs 
tBUF Bus Free Time between a Stop Conditionand a Start Condition 1.3  μs 
tR Rise Time of Both SCLOCK and SDATA  300 ns 
tF Fall Time of Both SCLOCK and SDATA  300 ns 
tSUP

1 Pulse Width of Spike Suppressed  50 ns 
1Input filtering on both the SCLOCK and SDATA inputs suppresses noise spikes less than 50 ns. 
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Figure 90. I2C Compatible Interface Timing 
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Parameter     
SPI MASTER MODE TIMING (CPHA = 1) Min Typ Max Unit 
tSL SCLOCK Low Pulse Width1  476  ns 
tSH SCLOCK High Pulse Width1  476  ns 
tDAV Data Output Valid after SCLOCK Edge   50 ns 
tDSU Data Input Setup Time before SCLOCK Edge 100   ns 
tDHD Data Input Hold Time after SCLOCK Edge 100   ns 
tDF Data Output Fall Time  10 25 ns 
tDR Data Output Rise Time  10 25 ns 
tSR SCLOCK Rise Time   10 25 ns 
tSF SCLOCK Fall Time  10 25 ns 
1 Characterized under the following conditions: 

a. Core clock divider bits CD2, CD1, and CD0 bits in PLLCON SFR set to 0, 1, and 1, respectively, that is, core clock frequency = 2.09 MHz. 
b. SPI bit-rate selection bits SPR1 and SPR0 in SPICON SFR set to 0 and 0, respectively. 
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Figure 91. SPI Master Mode Timing (CPHA = 1) 
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Parameter     
SPI SLAVE MODE TIMING (CPHA = 0) Min Typ Max Unit 
tSS SS to SCLOCK Edge  0   ns 

tSL SCLOCK Low Pulse Width  330  ns 
tSH SCLOCK High Pulse Width  330  ns 
tDAV Data Output Valid after SCLOCK Edge   50 ns 
tDSU Data Input Setup Time before SCLOCK Edge 100   ns 
tDHD Data Input Hold Time after SCLOCK Edge 100   ns 
tDF Data Output Fall Time  10 25 ns 
tDR Data Output Rise Time  10 25 ns 
tSR SCLOCK Rise Time   10 25 ns 
tSF SCLOCK Fall Time  10 25 ns 
tDOSS Data Output Valid after SS Edge    20 ns 

tSFS SS High after SCLOCK Edge    ns 
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Figure 94. SPI Slave Mode Timing (CPHA = 0) 


