

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc866-2fri-bc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC866 8-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking

3.2 Memory Organization

The XC866 CPU operates in the following five address spaces:

- 8 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 512 bytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- a 128-byte Special Function Register area
- 4/8/16 Kbytes of Flash program memory (Flash devices); or 8/16 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices)

Figure 6 illustrates the memory address spaces of the XC866-4FR device.

Figure 6 Memory Map of XC866 Flash Devices

Table 5 Flash Protection Type for XC866-2FR and XC866-4FR devices

PASSWORD	Type of Protection	Flash Banks to Erase when Unprotected
1XXXXXXX _B	Flash Protection Mode 1	All Banks
OXXXXXXAB	Flash Protection Mode 0	P-Flash Bank

For XC866-1FR device and ROM devices:

The selection of protection type is summarized in Table 6.

Table 6 Flash Protection Type for XC866-1FR device and ROM devices

PASSWORD	Type of Protection (Applicable to the whole Flash)	Sectors to Erase when Unprotected	Comments
1XXXXXXX _B	Read/Program/Erase	All Sectors	Compatible to Protection mode 1
00001XXX _B	Erase	Sector 0	
00010XXX _B	Erase	Sector 0 and 1	
00011XXX _B	Erase	Sector 0 to 2	
00100XXX _B	Erase	Sector 0 to 3	
00101XXX _B	Erase	Sector 0 to 4	
00110XXX _B	Erase	Sector 0 to 5	
00111XXX _B	Erase	Sector 0 to 6	
01000XXX _B	Erase	Sector 0 to 7	
01001XXX _B	Erase	Sector 0 to 8	
01010XXX _B	Erase	All Sectors	
Others	Erase	None	

Although no protection scheme can be considered infallible, the XC866 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Note: The RMAP bit must be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

Figure 8 Address Extension by Mapping

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC866 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in Figure 9.

Figure 9 Address Extension by Paging

The page register has the following definition:

MOD_PAGE

Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
C	P	ST	NR	0		PAGE	
١	N	v	V	r		rwh	

Field	Bits	Туре	Description
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	w	Storage Number This number indicates which storage bit field is the target of the operation defined by bit field OP. If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value. If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored. 00 ST0 is selected.
			01 ST1 is selected.10 ST2 is selected.11 ST3 is selected.

Field	Bits	Туре	Description
OP	[7:6]	W	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

Table 8System Control Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B3 _H	ID Reset: 01	H Bit Field		1	PRODIC)			VERID	1
	Identity Register	Туре			r				r	
B4 _H	PMCON0 Reset: 00 Power Mode Control Register 0	H Bit Field	0	WDT RST	WKRS	WKRS WK SEL		PD	N	/S
		Туре	r	rwh	rwh	rw	rw	rwh	r	w
B5 _H	PMCON1 Reset: 00 Power Mode Control Register 1	H Bit Field			0		T2_DIS	CCU _DIS	SSC _DIS	ADC _DIS
		Туре			r		rw	rw	rw	rw
B6 _H	OSC_CON Reset: 08 OSC Control Register	Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR
		Туре		r		rw	rw	rw	rwh	rh
B7 _H	PLL_CON Reset: 20 PLL Control Register	H Bit Field		NDIV			VCO BYP	OSC DISC	RESLD	LOCK
		Туре		r	w		rw	rw	rwh	rh
BA _H	CMCON Reset: 00 Clock Control Register	H Bit Field	VCO SEL	VCO 0 SEL			CLKREL			
		Туре	rw	rw r				r	w	
BB _H	PASSWD Reset: 07 Password Register	и Bit Field	PASS					PROTE MODE CT_S		
		Туре			w			rh	rh rw	
BC _H	FEAL Reset: 00	H Bit Field			E	CCERR	ADDR[7:	0]		
	Flash Error Address Register Low	Туре				1	rh			
BD _H	FEAH Reset: 00	H Bit Field			E	CCERRA	ADDR[15	:8]		
	Flash Ellor Address Register High	Туре					rh			
BE _H	COCON Reset: 00 Clock Output Control Register	H Bit Field		0	TLEN	COUT S		CO	REL	
		Туре		r	rw	rw		r	w	
E9 _H	MISC_CON Reset: 00 Miscellaneous Control Register	H Bit Field	id 0				DFLAS HEN			
		Туре				r				rwh
RMAP =	0, Page 3									
B3 _H	XADDRH Reset: FO	H Bit Field				AD	DRH			
	On-Chip XRAM Address Higher Ord	er Type				r	w			

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9 WDT Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	1										
BB _H	WDTCON Watchdog Timer Control	WDTCON Reset: 00 _H Watchdog Timer Control Register		(0		WDT PR	0	WDT EN	WDT RS	WDT IN
			Туре	1	r	rw	rh	r	rw	rwh	rw
BC _H	C _H WDTREL Reset: 00 _H Watchdog Timer Reload Register		Bit Field	WDTREL							
			Туре	rw							
BD _H	WDTWINB Reset: 00 _H Watchdog Window-Boundary Count		Bit Field	WDTWINB							
	Register		Туре	rw							
BE _H	WDTL	Reset: 00 _H	Bit Field				WD1	[7:0]			
	Watchdog Timer Registe	er Low	Туре	rh							
BF _H	WDTH	Reset: 00 _H	Bit Field	WDT[15:8]							
	Watchdog Timer Register High		Туре	rh							

Table 12Timer 2 Register Overview (cont'd)

C1 _H	T2_T2MOD Timer 2 Mode Register	Reset: 00 _H	Bit Field	T2 REGS	T2 RHEN	EDGE SEL	PREN	T2PRE	DCEN	
			Туре	rw	rw	rw	rw	rw	rw	
C2 _H	T2_RC2L	Reset: 00 _H	Bit Field	RC2[7:0]						
Timer 2 Reload/Capture	Register Low	Туре		rwh						
C3 _H	T2_RC2H	Reset: 00 _H	Bit Field	RC2[15:8]						
	Timer 2 Reload/Capture	Register High	Туре		rwh					
C4 _H	T2_T2L	Reset: 00 _H	Bit Field		THL2[7:0]					
	Timer 2 Register Low		Туре	rwh						
C5 _H	T2_T2H	Reset: 00 _H	Bit Field	THL2[15:8]						
Timer 2 Re	Timer 2 Register High		Туре	rwh						

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 13 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	0		1				1	1	1		
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE		
	Page Register for CCU6	Туре	١	w w r					rwh		
RMAP =	0, Page 0										
9A _H	CCU6_CC63SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field	CC63SL								
	Channel CC63 Low	Туре	rw								
9B _H	CCU6_CC63SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC6	3SH				
	Channel CC63 High	Туре				r	w				
9C _H	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	()	DTRES	T12 RES	T12RS	T12RR	
		Туре	w	w	1	r	w	w	w	w	
9D _H	H CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR	0			T13 RES	T13RS	T13RR	
		Туре	w	w	r			w	w	w	
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0	MCMPS						
	Register Low	Туре	w	r			n	w			
9F _H	CCU6_MCMOUTSH Reset: 00 _H	Bit Field	STRHP	0	CURHS EXPHS						
	Multi-Channel Mode Output Shadow Register High	Туре	w	r	rw			rw			
A4 _H	CCU6_ISRL Reset: 00 _H	Bit Field	RT12P	RT120	RCC62	RCC62	RCC61	RCC61	RCC60	RCC60	
	Reset Register Low	Turne	IVI	IVI	F	R	F	R	F	R	
A.5.	CCUE ISPH Bosot: 00.	Type Bit Eiold	W DSTD			PCHE	0	W	W DT13	W DT13	
ASH	Capture/Compare Interrupt Status	Dit Field	ROIR	RIDLE	RWIE	ROHE	0	RIRFF	PM	CM	
	Reset Register High	Туре	w	w	w	w	r	w	w	w	
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 S		0		MCC62 S	MCC61 S	MCC60 S	
	Low	Туре	r	w		r		w	w	w	
A7 _H	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 R		0		MCC62 R	MCC61 R	MCC60 R	
	High	Туре	r	w	r		w	w	w		
FA _H	CCU6_CC60SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC	OSL				
	Channel CC60 Low					n	vh				

XC866

Functional Description

XINTR6	0033 _H	ADC	EADC	IEN1
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
XINTR11	005B _H	CCU6 INP1	ECCIP1	
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
XINTR13	006B _H	CCU6 INP3	ECCIP3	

Table 17 Interrupt Vector Addresses (cont'd)

Figure 19 General Structure of Input Port

		/ i sys		,		
Oscillator	fosc	Ν	Ρ	K	fsys	
On-chip	10 MHz	16	1	2	80 MHz	
External	10 MHz	16	1	2	80 MHz	
	8 MHz	20	1	2	80 MHz	
	5 MHz	32	1	2	80 MHz	

Table 21 System frequency (f_{svs} = 80 MHz)

Table 22 shows the VCO range for the XC866.

Table 22 VCO Range

f _{VCOmin}	f _{VCOmax}	f _{VCOFREEmin}	f _{VCOFREEmax}	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in Figure 24 can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor.

Figure 24 shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

3.9 Power Saving Modes

The power saving modes of the XC866 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- · Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- · Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 26**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- · Idle mode
- Slow-down mode
- Power-down mode

Figure 26 Transition between Power Saving Modes

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 31 shows the block diagram of the SSC.

Figure 31 SSC Block Diagram

3.16 Timer 2

Timer 2 is a 16-bit general purpose timer (THL2) that has two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode. If the prescalar is disabled, Timer 2 counts with an input clock of PCLK/12. Timer 2 continues counting as long as it is enabled.

Table 29	Timer 2 Modes				
Mode	Description				
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event 				
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition 				
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event 				

The block diagram of the CCU6 module is shown in Figure 32.

Figure 32 CCU6 Block Diagram

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC866.

Note: The electrical parameters are valid for the XC866-4FR and XC866-2FR. The electrical parameters for the ROM variants and XC866-1FR are preliminary, differences from XC866-4FR and XC866-2FR are stated explicitly.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC866 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• cc

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC866 and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC866 is designed in.

⁴⁾ Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when VDDP is powered off.

4.3.5 JTAG Timing

Table 44 TCK Clock Timing (Operating Conditions apply; $C_{L} = 50 \text{ pF}$)

Parameter	Symbol		Limits	
		min	max	
TCK clock period	t _{TCK} SR	50	_	ns
TCK high time	t ₁ SR	20	-	ns
TCK low time	t ₂ SR	20	_	ns
TCK clock rise time	t ₃ SR	-	4	ns
TCK clock fall time	t ₄ SR	-	4	ns

Figure 43 TCK Clock Timing

4.3.6 SSC Master Mode Timing

Table 46 SSC Master Mode Timing (Operating Conditions apply; C_L = 50 pF)

Parameter		bol	Limit Values		Unit
			min.	max.	
SCLK clock period	t ₀	CC	2*T _{SSC} 1)	-	ns
MTSR delay from SCLK _	<i>t</i> ₁	CC	0	8	ns
MRST setup to SCLK ٦	<i>t</i> ₂	SR	22	-	ns
MRST hold from SCLK ٦	t_3	SR	0	-	ns

¹⁾ $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 26.7$ MHz, $t_0 = 74.9$ ns. T_{CPU} is the CPU clock period.

Figure 45 SSC Master Mode Timing