

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc866l-2fra-be

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC866 Da Revision	ata Sheet History: 2007-10	V1.2				
Previous \	/ersion: V 0.1, 2005-01 V1.0, 2006-02 V1.1, 2006-12					
Page	Subjects (major changes since last revision)					
3	Device summary table is updated for Flash 4-Kb and ROM variants.					
13	Footnote is added to MBC pin; description of V_{DDP} pin is updated.					
25	Section on bit protection scheme and access type of register bit field PASSWD.PASS are updated.					
26	Access type of PAGE bits of all module page registers a	re corrected to rwh.				
29	Access type of Px_DIR register bits are corrected to rw	/h				
38	New bullet point on Flash delivery state is added to the	e feature list.				
88	Digital power supply voltage are differentiated for 5V a	nd 3.3V variants.				
89	New parameters on XTAL1 hysteresis and Voltage on $V_{\rm DDP}$ power-off condition are added.	GPIO pins during				
104	Figure on Power-on reset timing is updated.					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

 \ge

General Device Information

2.2 Logic Symbol

Figure 3 XC866 Logic Symbol

General Device Information

2.3 Pin Configuration

Figure 4 XC866 Pin Configuration, PG-TSSOP-38 Package (top view)

General Device Information

Symbol	Pin Number	Туре	Reset State	Function				
P3		I		Port 3				
				can be used	as alternate functions for the CCU6.			
P3.0	32		Hi-Z	CCPOS1_2 CC60_0	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0			
P3.1	33		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1			
				COUT60_0	Output of Capture/Compare channel 0			
P3.2	34		Hi-Z	CCPOS2_2 CC61_0	CCU6 Hall Input 2 Input/Output of Capture/Compare channel 1			
P3.3	35		Hi-Z	COUT61_0	Output of Capture/Compare channel 1			
P3.4	36		Hi-Z	CC62_0	Input/Output of Capture/Compare channel 2			
P3.5	37		Hi-Z	COUT62_0	Output of Capture/Compare channel 2			
P3.6	30		PD	CTRAP_0	CCU6 Trap Input			
P3.7	31		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3			

Table 3Pin Definitions and Functions (cont'd)

Figure 7 illustrates the memory address spaces of the XC866-4RR device.

Figure 7 Memory Map of XC866 ROM Devices

3.2.4 XC866 Register Overview

The SFRs of the XC866 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Table 7** to **Table 15**, with the addresses of the bitaddressable SFRs appearing in bold typeface.

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name		Bit	7	6	5	4	3	2	1	0	
RMAP =	0 or 1											
81 _H	SP Re:	set: 07 _H	Bit Field				S	P				
	Stack Pointer Register		Туре	rw								
82 _H	DPL Re:	set: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0	
	Data Pointer Register Low		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
83 _H	DPH Reset: 00 _H		Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0	
	Data Pointer Register High		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
87 _H	PCON Re:	set: 00 _H	Bit Field	SMOD		0	1	GF1	GF0	0	IDLE	
	Power Control Register		Туре	rw		r		rw	rw	r	rw	
88 _H	TCON Re:	set: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
	Timer Control Register		Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw	
89 _H	TMOD Re:	set: 00 _H	Bit Field	GATE1	0	Τ	M	GATE0	0	TC	M	
	Timer Mode Register		Туре	rw	r	r	w	rw	r	r	w	
8A _H	TL0 Re:	set: 00 _H	Bit Field				V	AL				
	Timer 0 Register Low		Туре	rwh								
8B _H	TL1 Re:	set: 00 _H	Bit Field				V	AL				
	Timer 1 Register Low		Туре	rwh								
8C _H	TH0 Reset: 00 _H Timer 0 Register High		Bit Field	VAL								
			Туре				rv	vh				
8D _H	TH1 Reset: 00 _H		Bit Field				V	AL				
	Timer 1 Register High		Туре	rwh								
98 _H	SCON Re:	set: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Regis	ter	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
99 _H	SBUF Re:	set: 00 _H	Bit Field	VAL								
	Serial Data Buffer Register		Туре				rv	vh				
A2 _H	EO Re	set: 00 _H	Bit Field		0		TRAP_		0		DPSEL	
	Extended Operation Register		-				EN	0			0	
••	15110		Туре	= 1	r	FTO	rw	574	r	570	rw Exco	
A8 _H	IENU Re Interrupt Enable Register 0	set: 00 _H	Bit Field	EA	0	E12	ES	EI1	EX1	EIU	EX0	
50		4: 00	Type	rw	r	rw	rw	rw DT4	rw	rw DTO	rw DX0	
ван	IP Re Interrupt Priority Register	set: 00 _H	Bit Field		0	P12	PS	PI1	PX1	PIO	PX0	
D 0		4: 00	Type		r		rw DOLL		TW DY(1)	TW DTOLL	TW DYOLL	
ва ^н	Interrupt Priority Register Hig	set: UU _H h	BIT FIEID			PIZH	PSH	PITH	PXIH	PIUH	PXUH	
50	Dow Do		Type	01/	r A O	rw F0	rw D01	rw D00	rw OV	rw E4	rw D	
DOH	Program Status Word Register	set: UU _H er	BIT FIEID	CY	AC	FU	R51	R50	0V	F1	P	
50	ACC		Type Dit Field	IW		IWI	TW ACC4	IW			111	
EOH	Accumulator Register	set: 00 _H	Bit Field	ACC7	ACCO	ACCS	ACC4	ACCS	ACCZ	ACCI	ACCU	
E0	IEN4 De	aat: 00	Type Bit Field	IW	IW		IW ECCID		IW EV2	IW		
⊏oH	Interrupt Enable Register 1	501: 00 _H		3	2	1	0	EXIVI	EV5	2000	EADC	
			Туре	rw	rw	rw	rw	rw	rw	rw	rw	

Table 7 CPU Register Overview

Table 11 ADC Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
CA _H	ADC_RESR0L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 0 Low		Туре	r	rh r rh				rh rh		
CB _H	ADC_RESR0H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 0 High		Туре				r	h			
CCH	ADC_RESR1L Reset: 00 _H Result Register 1 Low		Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
			Туре	r	h	r	rh	rh		rh	
CD _H	ADC_RESR1H Reset: 00 _H		Bit Field				RESU	LT[9:2]			
	Result Register 1 High		Туре				r	h			
CEH	ADC_RESR2L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 2 Low		Туре	r	h	r	rh	rh		rh	
CF _H	ADC_RESR2H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 2 High		Туре				r	h			
D2 _H	ADC_RESR3L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 3 Low		Туре	r	h	r	rh	rh		rh	
D3 _H	ADC_RESR3H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 3 High		Туре				r	h			
RMAP =	0, Page 3										
CA _H	ADC_RESRA0L	Reset: 00 _H	Bit Field	RE	ESULT[2	2:0]	VF	DRC		CHNR	
	Result Register 0, View A Low	A Low	Туре		rh		rh	rh		rh	
CBH	ADC_RESRA0H	Reset: 00 _H	Bit Field				RESUL	T[10:3]			
	Result Register 0, View A High		Туре		rh						
CCH	ADC_RESRA1L Reset: 00 _H Result Register 1, View A Low		Bit Field	RE	ESULT[2	2:0]	VF	DRC CHNR			
			Туре		rh		rh	rh		rh	
CD _H	ADC_RESRA1H Reset: 00 _H		Bit Field				RESUL	.T[10:3]			
	Result Register 1, View A	A High	Туре		r						
CEH	ADC_RESRA2L	Reset: 00 _H	Bit Field	RESULT[2:0]			VF	DRC		CHNR	
	Result Register 2, View A	A Low	Туре		rh rh			rh rh			
CF _H	ADC_RESRA2H	Reset: 00 _H	Bit Field				RESUL	.T[10:3]			
	Result Register 2, View A	A High	Туре		r						
D2 _H	ADC_RESRA3L	Reset: 00 _H	Bit Field	RE	ESULT[2	2:0]	VF	DRC CHNR		CHNR	
	Result Register 3, View A	A LOW	Туре		rh		rh	rh rh			
D3 _H	ADC_RESRA3H	Reset: 00 _H	Bit Field				RESUL	.T[10:3]			
	Result Register 3, View A	A High	Туре				r	h			
RMAP =	0, Page 4										
CA _H	ADC_RCR0 Result Control Register 0	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
			Туре	rw	rw	r	rw		r		rw
СВ _Н	ADC_RCR1 Result Control Register 1	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
			Туре	rw	rw	r	rw		r		rw
CCH	ADC_RCR2 Result Control Register 2	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
			Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Result Control Register 3	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
			Туре	rw	rw	r	rw		r		rw
CEH	ADC_VFCR	Reset: 00 _H	Bit Field			0		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register		Туре			r		w	w	w	w
RMAP =	0, Page 5										

, see the second s								
Oscillator	fosc	Ν	Ρ	K	fsys			
On-chip	10 MHz	16	1	2	80 MHz			
External	10 MHz	16	1	2	80 MHz			
	8 MHz	20	1	2	80 MHz			
	5 MHz	32	1	2	80 MHz			

Table 21 System frequency (f_{svs} = 80 MHz)

Table 22 shows the VCO range for the XC866.

Table 2	2 VCC	Range
---------	-------	-------

f _{VCOmin}	f _{VCOmax}	f _{VCOFREEmin}	f _{VCOFREEmax}	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in Figure 24 can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor.

Figure 24 shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

3.9 Power Saving Modes

The power saving modes of the XC866 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- · Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- · Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 26**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- · Idle mode
- Slow-down mode
- Power-down mode

Figure 26 Transition between Power Saving Modes

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert WDTTO) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value (<WDTREL> $* 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- the input frequency to the WDT can be selected to be either f_{PCLK}/2 or f_{PCLK}/128
- the reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, P_{WDT} , between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1+WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

If the Window-Boundary Refresh feature of the WDT is enabled, the period P_{WDT} between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see Figure 28. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB should not be smaller than WDTREL.

Figure 28 WDT Timing Diagram

3.13 LIN Protocol

The UART can be used to support the Local Interconnect Network (LIN) protocol for both master and slave operations. The LIN baud rate detection feature provides the capability to detect the baud rate within LIN protocol using Timer 2. This allows the UART to be synchronized to the LIN baud rate for data transmission and reception.

LIN is a holistic communication concept for local interconnected networks in vehicles. The communication is based on the SCI (UART) data format, a single-master/multipleslave concept, a clock synchronization for nodes without stabilized time base. An attractive feature of LIN is self-synchronization of the slave nodes without a crystal or ceramic resonator, which significantly reduces the cost of hardware platform. Hence, the baud rate must be calculated and returned with every message frame.

The structure of a LIN frame is shown in Figure 30. The frame consists of the:

- header, which comprises a Break (13-bit time low), Synch Byte (55_H), and ID field
- response time
- data bytes (according to UART protocol)
- checksum

Figure 30 Structure of LIN Frame

3.13.1 LIN Header Transmission

LIN header transmission is only applicable in master mode. In the LIN communication, a master task decides when and which frame is to be transferred on the bus. It also identifies a slave task to provide the data transported by each frame. The information needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data.

3.19.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC866 devices are given in Table 31.

Device Type	Device Name	JTAG ID	
Flash	XC866L-4FR	1010 0083 _H	
	XC866-4FR	100F 5083 _H	
	XC866L-2FR	1010 2083 _H	
	XC866-2FR	1010 1083 _H	
	XC866L-1FR	1013 8083 _H	
	XC866-1FR	1013 8083 _H	

Table 31	JTAG ID Summarv

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC866.

Note: The electrical parameters are valid for the XC866-4FR and XC866-2FR. The electrical parameters for the ROM variants and XC866-1FR are preliminary, differences from XC866-4FR and XC866-2FR are stated explicitly.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC866 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• cc

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC866 and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC866 is designed in.

4.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the XC866. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Table 33 Operating Condition Parameters

Parameter	Symbol	Limit	Values	Unit	Notes/	
		min.	max.		Conditions	
Digital power supply voltage	V _{DDP}	4.5	5.5	V	5V Device	
Digital power supply voltage	V _{DDP}	3.0	3.6	V	3.3V Device	
Digital ground voltage	V _{SS}		0	V		
Digital core supply voltage	V _{DDC}	2.3	2.7	V		
System Clock Frequency ¹⁾	<i>f</i> sys	74	86	MHz		
Ambient temperature	T _A	-40	85	°C	SAF-XC866	
		-40	125	°C	SAK-XC866	

¹⁾ f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 3. Please refer to Figure 25 for detailed description.

4.2.2 Supply Threshold Characteristics

Figure 36 Supply Threshold Parameters

Table 35 Supply Threshold Parameters (Operating Conditions apply)

Parameters	Symbol		Lir	nit Valı	les	Unit	Remarks
			min.	typ.	max.		
V _{DDC} prewarning voltage ¹⁾	V _{DDCPW}	СС	2.2	2.3	2.4	V	
V_{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	СС	2.0	2.1	2.2	V	XC866-4FR, XC866-2FR
			2.0	2.1	2.3	V	XC866-1FR, ROM device
RAM data retention voltage	V _{DDCRDR}	CC	0.9	1.0	1.1	V	
V_{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	СС	1.3	1.5	1.7	V	
V _{DDP} prewarning voltage ³⁾	V _{DDPPW}	СС	3.4	4.0	4.6	V	
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	СС	1.3	1.5	1.7	V	

¹⁾ Detection is disabled in power-down mode.

²⁾ Detection is enabled in both active and power-down mode.

³⁾ Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

⁴⁾ The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

Table 39Power Supply Current Parameters (Operating Conditions apply;
 V_{DDP} = 3.3V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition Remarks	
		typ. ¹⁾	max. ²⁾			
V _{DDP} = 3.3V Range		-		4		
Active Mode	I _{DDP}	21.5	23.3	mA	3)	
Idle Mode	I _{DDP}	16.4	18.9	mA	XC866-4FR, XC866-2FR ⁴⁾	
		11.2	13.5	mA	XC866-1FR, ROM device ⁴⁾	
Active Mode with slow-down enabled	I _{DDP}	6.8	8	mA	XC866-4FR, XC866-2FR ⁵⁾	
		5.4	7.3	mA	XC866-1FR, ROM device ⁵⁾	
Idle Mode with slow-down enabled	I _{DDP}	6.8	7.8	mA	XC866-4FR, XC866-2FR ⁶⁾	
		4.9	6.9	mA	XC866-1FR, ROM device ⁶⁾	

¹⁾ The typical $I_{\rm DDP}$ values are periodically measured at $T_{\rm A}$ = + 25 °C and $V_{\rm DDP}$ = 3.3 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 3.6 V).

³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.

⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock</u> disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.

⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: <u>CPU</u> clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET</u> = V_{DDP}, no load on ports.

⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to all peripherals enable and running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET = V_{DDP}, no load on ports.</u></u>

4.3 AC Parameters

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in Figure 38, Figure 39 and Figure 40.

Figure 38 Rise/Fall Time Parameters

Figure 39 Testing Waveform, Output Delay

4.3.3 Power-on Reset and PLL Timing

Table 42 Power-On Reset and PLL Timing (Operating Conditions appr	Table 42	Power-On Reset and PLL	Timing (Operating	Conditions a	apply)
---	----------	------------------------	-------------------	--------------	--------

Parameter	Symbol	Limit Values			Unit	Test Conditions
		min.	typ.	max.		
Pad operating voltage	V _{PAD} CC	2.3	-	-	V	
On-Chip Oscillator start-up time	t _{OSCST} CC	_	-	500	ns	
Flash initialization time	t _{FINIT} CC	-	160	-	μs	
RESET hold time ¹⁾	t _{RST} SR	_	500	-	μs	V_{DDP} rise time (10% – 90%) \leq 500µs
PLL lock-in in time	t _{LOCK} CC	-	-	200	μs	
PLL accumulated jitter	D _P	-	-	0.7	ns	2)

¹⁾ RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5V).

²⁾ PLL lock at 80 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 40 and P = 1.

Figure 42 Power-on Reset Timing

Table 45	JTAG Timing	(Operating	Conditions	apply; C _l	_ = 50 pF)
----------	-------------	------------	------------	-----------------------	------------

Parameter		nbol	Limits		Unit
			min	max	
TMS setup to TCK 🖌	<i>t</i> ₁	SR	8.0	-	ns
TMS hold to TCK _	<i>t</i> ₂	SR	5.0	-	ns
TDI setup to TCK 🦨	<i>t</i> ₁	SR	11.0	-	ns
TDI hold to TCK 🦨	<i>t</i> ₂	SR	6.0	_	ns
TDO valid output from TCK 🥆	t_3	СС	-	23	ns
TDO high impedance to valid output from TCK 🥆	t_4	СС	-	26	ns
TDO valid output to high impedance from TCK \sim	t_5	СС	-	18	ns

Figure 44 JTAG Timing

XC866

Package and Reliability

5.2 Package Outline

Figure 46 PG-TSSOP-38-4 Package Outline