

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc866l-2fri-bc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

XC866 Variant Devices

The XC866 product family features devices with different configurations and program memory sizes, temperature and quality profiles (Automotive or Industrial), offering cost-effective solution for different application requirements.

The configuration of LIN BSL for XC866 devices are summarized in Table 1.

Table 1	Device Configuration for LIN BSL
---------	----------------------------------

Device Name	LIN BSL Support
XC866	No
XC866L	Yes

The list of XC866 devices and their differences are summarized in Table 2.

Device Type	Device Name	Power Supply (V)	P-Flash Size (Kbytes)	D-Flash Size (Kbytes)	ROM Size (Kbytes)	Quality Profile ¹⁾
Flash ²⁾	SAK-XC866*-4FRA	5.0	12	4	_	Automotive
	SAK-XC866*-4FRI	5.0	12	4	-	Industrial
	SAK-XC866*-2FRA	5.0	4	4	-	Automotive
	SAK-XC866*-2FRI	5.0	4	4	-	Industrial
	SAK-XC866*-1FRA	5.0	_	4	-	Automotive
	SAK-XC866*-1FRI	5.0	-	4	_	Industrial
	SAF-XC866*-4FRA	5.0	12	4	-	Automotive
	SAF-XC866*-4FRI	5.0	12	4	-	Industrial
	SAF-XC866*-2FRA	5.0	4	4	_	Automotive
	SAF-XC866*-2FRI	5.0	4	4	-	Industrial
	SAF-XC866*-1FRA	5.0	_	4	-	Automotive
	SAF-XC866*-1FRI	5.0	_	4	-	Industrial
	SAK-XC866*-4FRA 3V	3.3	12	4	-	Automotive
	SAK-XC866*-4FRI 3V	3.3	12	4	-	Industrial
	SAK-XC866*-2FRA 3V	3.3	4	4	_	Automotive
	SAK-XC866*-2FRI 3V	3.3	4	4	-	Industrial
	SAK-XC866*-1FRA 3V	3.3	-	4	_	Automotive

Table 2 Device Summary

infineon

Summary of Features

Table 2Device Summary

	-					
	SAK-XC866*-1FRI 3V	3.3	-	4	-	Industrial
	SAF-XC866*-4FRA 3V	3.3	12	4	_	Automotive
	SAF-XC866*-4FRI 3V	3.3	12	4	_	Industrial
	SAF-XC866*-2FRA 3V	3.3	4	4	_	Automotive
	SAF-XC866*-2FRI 3V	3.3	4	4	-	Industrial
	SAF-XC866*-1FRA 3V	3.3	-	4	-	Automotive
	SAF-XC866*-1FRI 3V	3.3	-	4	-	Industrial
ROM	SAK-XC866*-4RRA	5.0	-	4	16	Automotive
	SAK-XC866*-4RRI	5.0	-	4	16	Industrial
	SAK-XC866*-2RRA	5.0	-	4	8	Automotive
	SAK-XC866*-2RRI	5.0	-	4	8	Industrial
	SAF-XC866*-4RRA	5.0	-	4	16	Automotive
	SAF-XC866*-4RRI	5.0	-	4	16	Industrial
	SAF-XC866*-2RRA	5.0	_	4	8	Automotive
	SAF-XC866*-2RRI	5.0	-	4	8	Industrial
	SAK-XC866*-4RRA 3V	3.3	-	4	16	Automotive
	SAK-XC866*-4RRI 3V	3.3	-	4	16	Industrial
	SAK-XC866*-2RRA 3V	3.3	-	4	8	Automotive
	SAK-XC866*-2RRI 3V	3.3	_	4	8	Industrial
	SAF-XC866*-4RRA 3V	3.3	-	4	16	Automotive
	SAF-XC866*-4RRI 3V	3.3	-	4	16	Industrial
	SAF-XC866*-2RRA 3V	3.3	-	4	8	Automotive
	SAF-XC866*-2RRI 3V	3.3	-	4	8	Industrial

1) Industrial is not for Automotive usage

²⁾ The flash memory (P-Flash and D-Flash) can be used for code or data.

Note: The asterisk (*) above denotes the device configuration letters from Table 1.

General Device Information

2 General Device Information

2.1 Block Diagram

İnfineon

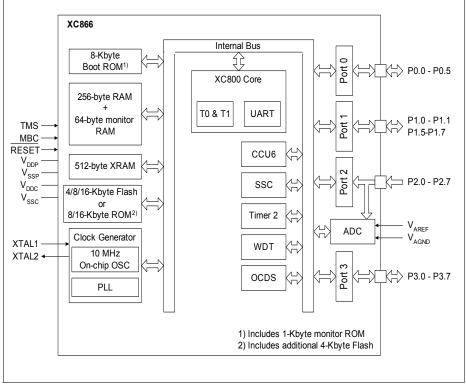


Figure 2 XC866 Block Diagram

General Device Information

2.3 Pin Configuration

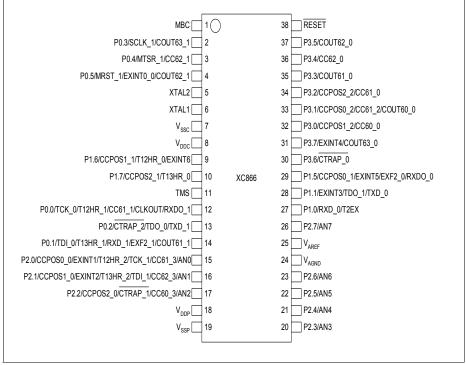


Figure 4 XC866 Pin Configuration, PG-TSSOP-38 Package (top view)

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation OX Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

XC866

Functional Description

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10 Port Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	-			-	-	-	-	-	_	-	-
B2 _H	PORT PAGE	Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
D-H	Page Register for PORT		Туре	-	N		N	r		rwh	
RMAP =	0, Page 0		1300					•			
80 _H	P0_DATA	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
ССH	P0 Data Register	Hessell oog	Туре		r	rwh	rwh	rwh	rwh	rwh	rwh
86 _H	P0 DIR	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
OOH	P0 Direction Register	Hessell oog	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1 DATA	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
чч	P1 Data Register	Hessell oog	Туре	rwh	rwh	rwh		r		rwh	rwh
91 _H	P1 DIR	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
ЧH	P1 Direction Register	Hessell oog	Туре	rw	rw	rw		r		rw	rw
А0 _н	P2 DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
AVH	P2 Data Register	Reset. Oug	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
A1 _H	P2 DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
П	P2 Direction Register	Neset. Oug	Туре	rw	rw	rw	rw	rw	rw	rw	rw
В0 _н	P3 DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
BOH	P3 Data Register	Reset. 00H	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
D1	P3 DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
B1 _H	P3 Direction Register	Reset. 00H		rw	rw	rw	r4	rs rw	rv	rw	rw
	0, Page 1		Туре	IW	IW	IW	TW	IW	TW	IW	TW
	P0 PUDSEL	Boost: EE	Bit Field		0	P5	P4	P3	P2	P1	P0
80 _H	P0_P0D3EL P0 Pull-Up/Pull-Down Se	Reset: FF _H			-	-					
00	P0 PUDEN		Type Bit Field		r D	rw P5	rw P4	rw P3	rw P2	rw P1	rw P0
86 _H	P0_P0DEN P0 Pull-Up/Pull-Down Er	Reset: C4 _H			-						
~~			Type		r P6	rw P5	rw	rw	rw	rw P1	rw P0
90 _H	P1_PUDSEL P1 Pull-Up/Pull-Down Se	Reset: FF _H	Bit Field	P7		-		0			
04			Type	rw	rw	rw		r		rw	rw
91 _H	P1_PUDEN P1 Pull-Up/Pull-Down Er	Reset: FF _H	Bit Field	P7	P6	P5		0		P1	P0
••			Туре	rw	rw	rw	54	r		rw	rw
A0 _H	P2_PUDSEL P2 Pull-Up/Pull-Down Se	Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
A1 _H	P2_PUDEN P2 Pull-Up/Pull-Down Er	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
в0 _Н	P3_PUDSEL P3 Pull-Up/Pull-Down Se	Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
-			Туре	rw	rw	rw	rw	rw	rw	rw	rw
B1 _H	P3_PUDEN P3 Pull-Up/Pull-Down Er	Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	•	iaule register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
	0, Page 2		lava:								
80 _H	P0_ALTSEL0	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Re	0	Туре		r	rw	rw	rw	rw	rw	rw
86 _H	P0_ALTSEL1	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 1 Re	-	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_ALTSEL0	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Alternate Select 0 Re	0	Туре	rw	rw	rw		r		rw	rw
91 _H	P1_ALTSEL1	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Alternate Select 1 Re	gister	Туре	rw	rw	rw		r		rw	rw
B0 _H	P3_ALTSEL0	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 0 Re	gister	Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 11 ADC Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
CA _H	ADC_RESR0L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	1
	Result Register 0 Low		Туре	r	h	r	rh	rh		rh	
CB _H	ADC_RESR0H	Reset: 00 _H	Bit Field				RESU	LT[9:2]	1		
	Result Register 0 High		Туре				r	ħ			
ССн	ADC_RESR1L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 1 Low		Туре	r	h	r	rh	rh		rh	
CD _H	ADC_RESR1H	Reset: 00 _H	Bit Field				RESU	LT[9:2]	1		
	Result Register 1 High		Туре				r	h i			
CEH	ADC_RESR2L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 2 Low		Туре	r	h	r	rh	rh		rh	
CF _H	ADC_RESR2H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 2 High		Туре				r	ħ			
D2 _H	ADC_RESR3L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 3 Low		Туре	r	h	r	rh	rh		rh	
D3 _H	ADC_RESR3H	Reset: 00 _H	Bit Field				RESU	LT[9:2]	1		
	Result Register 3 High		Туре					h i			
RMAP =	0, Page 3										
CA _H	ADC RESRAOL	Reset: 00 _H	Bit Field	RE	ESULT[2	:0]	VF	DRC		CHNR	
- 11	Result Register 0, View		Туре		rh		rh	rh		rh	
CB _H	ADC RESRA0H	Reset: 00 _H	Bit Field				RESUL	T[10:3]			
n	Result Register 0, View		Туре					h			
ССн	ADC_RESRA1L	Reset: 00 _H	Bit Field	RE	ESULT[2	:01	VF	DRC		CHNR	
H	Result Register 1, View		Туре		rh]	rh	rh		rh	
CD _H	ADC RESRA1H	Reset: 00 _H	Bit Field					T[10:3]			
0DH	Result Register 1, View		Туре					h			
CEH	ADC RESRA2L	Reset: 00 _H	Bit Field	RF	ESULT[2	·01	VF .	DRC		CHNR	
0-H	Result Register 2, View		Туре			.0]	rh	rh		rh	
CF _H	ADC RESRA2H	Reset: 00 _H	Bit Field					T[10:3]			
0. H	Result Register 2, View		Туре					h			
D2 _H	ADC RESRA3L	Reset: 00 _H	Bit Field	RF	ESULT[2	·01	VF .	DRC		CHNR	
5-H	Result Register 3, View		Туре		rh	.0]	rh	rh		rh	
D3 _H	ADC RESRA3H	Reset: 00 _H	Bit Field					_T[10:3]			
DOH	Result Register 3, View /		Туре					h			
RMAP =	0, Page 4		1300								
CA _H	ADC RCR0	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN	l	0		DRCT
o, H	Result Control Register (Bittiola			Ũ			Ũ		R
			Туре	rw	rw	r	rw		r		rw
СВн	ADC_RCR1	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT
	Result Control Register 1										R
			Туре	rw	rw	r	rw		r		rw
CCH	ADC_RCR2 Result Control Register 2	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
	Ç. A		Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Result Control Register 3	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT
			Туре	rw	rw	r	rw		r		rw
CEH	ADC_VFCR	Reset: 00 _H	Bit Field	1 VV)	1 44	VFC3	VFC2	VFC1	VFC0
UCH	Valid Flag Clear Register		Туре			r		WFC3	WFC2	W	WFCU
	i g men regiotoi		iyhe	1				vv	٧V	vv	vv

AB _H	SSC_CONH Reset: 00 Control Register High	H Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN
	Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw
	Operating Mode	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
		Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
AC _H	SSC_TBL Reset: 00	H Bit Field	Field TB_VALUE							
	Transmitter Buffer Register Low		rw							
AD _H	SSC_RBL Reset: 00	H Bit Field	RB_VALUE							
	Receiver Buffer Register Low	Туре	rh							
AE _H	SSC_BRL Reset: 00					BR_VA	_UE[7:0]			
	Baudrate Timer Reload Register Lo	^w Туре				r	N			
AF _H	SSC_BRH Reset: 00					BR_VAL	UE[15:8]			
	Baudrate Timer Reload Register Hig	Ih Type				r	N			

Table 14 SSC Register Overview

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1		I.							
E9 _H	MMCR2 Reset: 0U _H Monitor Mode Control Register 2	Bit Field	EXBC_ P	EXBC	MBCO N_P	MBCO N	MMEP _P	MMEP	MMOD E	JENA
		Туре	w	rw	w	rwh	w	rwh	rh	rh
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	MSTEP _P	MSTEP	MRAM S_P	MRAM S	TRF	RRF
		Туре	w	rwh	w	rw	w	rwh	rh	rh
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F
		Туре	rw	rh	rwh	rwh	rwh	rwh	rwh	rwh
F3 _H	MMBPCR Reset: 00 _H BreakPoints Control Register	Bit Field	SWBC	HW	HWB3C HWB2C		B2C	HWB1 C	31 HWB0C	
		Туре	rw	r	rw r		w	rw	r	w
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control Register	Bit Field	DVECT	DRETR	(Ċ	MMUIE _P	MMUIE	RRIE_ P	RRIE
		Туре	rwh	rwh		r	w	rw	w	rw
F5 _H	MMDR Reset: 00 _H Monitor Mode Data Register	Bit Field				MN	IRR			
	Receive	Туре				r	h			
	Transmit	Bit Field				MN	1TR			
		Туре				١	N			
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select Register	Bit Field		0		BPSEL _P		BP	SEL	
		Туре		r		w		r	w	
F7 _H	HWBPDR Reset: 00 _H	Bit Field				HW	BPxx			
	Hardware Breakpoints Data Register		rw							

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- · Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 32-byte for P-Flash
- 1-sector minimum erase width
- · 1-byte read access
- · Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: 3 × t_{CCLK} = 112.5 ns²⁾
- Program time: 209440 / f_{SYS} = 2.6 ms³)
- Erase time: 8175360 / f_{SYS} = 102 ms³)

P-Flash: 32-byte wordline can only be programmed once, i.e., one gate disturb allowed. D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ f_{svs} = 80 MHz ± 7.5% (f_{CCLK} = 26.7 MHz ± 7.5 %) is the maximum frequency range for Flash read access.

³⁾ $f_{sys} = 80 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

Table 16	Flash Data Retention an	d Endurance (Operat	ing Conditions apply)
Retention	Endurance ¹⁾	Size	Remarks
Program Fla	sh		
20 years	1,000 cycles	up to 16 Kbytes ²⁾	for 16-Kbyte Variant
20 years	1,000 cycles	up to 8 Kbytes ²⁾	for 8-Kbyte Variant
20 years	1,000 cycles	up to 4 Kbytes ²⁾	for 4-Kbyte Variant
Data Flash			
20 years	1,000 cycles	4 Kbytes	
5 years	10,000 cycles	1 Kbyte	
2 years	70,000 cycles	512 bytes	
2 years	100,000 cycles	128 bytes	
1			

Table 16 shows the Flash data retention and endurance targets.

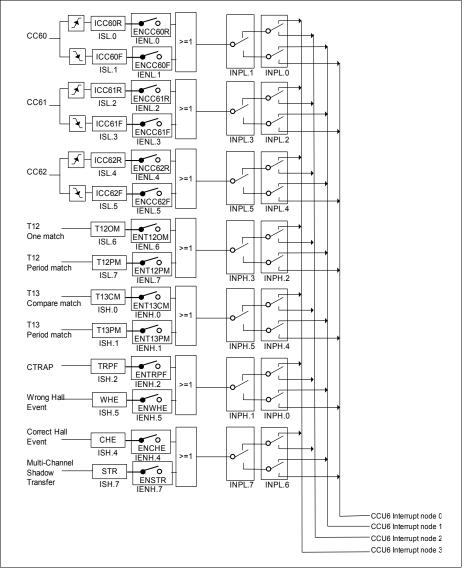
¹⁾ One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in **Table 16** is valid only if the following conditions are fulfilled:

- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.

- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.

- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.

²⁾ If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the device variant. Having more Data Flash will mean less Flash is available for Program Flash.


3.3.1 Flash Bank Sectorization

The XC866 product family offers four Flash devices with either 8 Kbytes or 16 Kbytes of embedded Flash memory. These Flash memory sizes are made up of two or four 4-Kbyte Flash banks, respectively. Each Flash device consists of Program Flash (P-Flash) bank(s) and a single Data Flash (D-Flash) bank with different sectorization shown in **Figure 11**. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations. The XC866 ROM devices offer a single 4-Kbyte D-Flash bank.

XC866

Functional Description

Figure 17 Interrupt Request Sources (Part 4)

3.4.2 Interrupt Source and Vector

Each interrupt source has an associated interrupt vector address. This vector is accessed to service the corresponding interrupt source request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC866 interrupt sources to the interrupt vector addresses and the corresponding interrupt source enable bits are summarized in **Table 17**.

Interrupt Source	Vector Address	Assignment for XC866	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash NMI	NMIFLASH	
		VDDC Prewarning NMI	NMIVDD	
		VDDP Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2	ET2	
		Fractional Divider (Normal Divider Overflow)		
		LIN		

Table 17 Interrupt Vector Addresses

XINTR6	0033 _H	ADC	EADC	IEN1
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
XINTR11	005B _H	CCU6 INP1	ECCIP1	
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
XINTR13	006B _H	CCU6 INP3	ECCIP3	

Table 17 Interrupt Vector Addresses (cont'd)

XC866

Functional Description

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC866 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC866 will be aborted in a user-specified time period. In debug mode, the WDT is suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features:

- 16-bit Watchdog Timer
- · Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of f_{PCLK}/2 or f_{PCLK}/128
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{PCLK}/2$ or $f_{PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 27** shows the block diagram of the WDT unit.

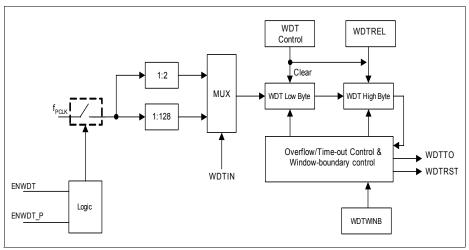


Figure 27 WDT Block Diagram

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert WDTTO) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value (<WDTREL> $* 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- the input frequency to the WDT can be selected to be either f_{PCLK}/2 or f_{PCLK}/128
- the reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, P_{WDT} , between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1+WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

If the Window-Boundary Refresh feature of the WDT is enabled, the period P_{WDT} between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 28**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB should not be smaller than WDTREL.

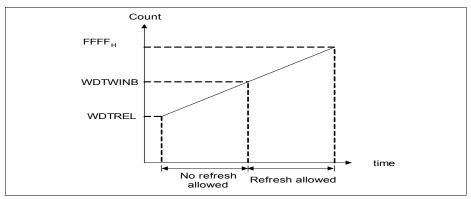


Figure 28 WDT Timing Diagram

3.14 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features:

- · Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- · Variable baud rate
- · Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Table 31JTAG ID Summary

ROM	XC866L-4RR	1013 9083 _H
	XC866-4RR	1013 9083 _H
	XC866L-2RR	1013 9083 _H
	XC866-2RR	1013 9083 _H

3.20 Identification Register

The XC866 identity register is located at Page 1 of address B3_H.

ID

Identity Register

Reset Value: 0000 0010_B

7	6	5	4	3	2	1	0
	Ι	PRODID	I	I		VERID	I
	r					r	L

Field	Bits	Туре	Description
VERID	[2:0]	r	Version ID 010 _B
PRODID	[7:3]	r	Product ID 00000 _B

Electrical Parameters

Table 36ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol	Li	mit Valu	es	Unit	Test Conditions/	
		min.	typ.	max.		Remarks	
Switched capacitance at the analog voltage inputs	C _{AINSW} CC	_	5	7	pF	2)4)	
Input resistance of the reference input	R _{AREF} CC	-	1	2	kΩ	2)	
Input resistance of the selected analog channel	R _{AIN} CC	-	1	1.5	kΩ	2)	

¹⁾ TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V , V_{DDP} = 5.0 V.

²⁾ Not subject to production test, verified by design/characterization.

³⁾ This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.

⁴⁾ The sampling capacity of the conversion C-Network is pre-charged to V_{AREF}/2 before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than V_{AREF}/2.

Electrical Parameters

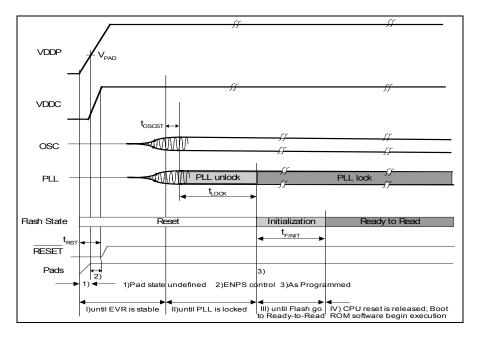

4.3.3 Power-on Reset and PLL Timing

Table 42	Power-On Reset and PLL Timing (Operating Conditions apply)
----------	--

Parameter	Symbol	Limit Values			Unit	Test Conditions
		min.	typ.	max.		
Pad operating voltage	V _{PAD} CC	2.3	-	-	V	
On-Chip Oscillator start-up time	t _{OSCST} CC	_	-	500	ns	
Flash initialization time	t _{FINIT} CC	-	160	-	μs	
RESET hold time ¹⁾	t _{RST} SR	_	500	_	μs	V_{DDP} rise time (10% – 90%) \leq 500µs
PLL lock-in in time	t _{LOCK} CC	-	-	200	μs	
PLL accumulated jitter	D _P	-	-	0.7	ns	2)

¹⁾ RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5V).

²⁾ PLL lock at 80 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 40 and P = 1.

Figure 42 Power-on Reset Timing

Electrical Parameters

Table 45	JTAG Timing (Operating Conditions apply; C_{L} = 50 pF)
----------	---

Parameter		mbol	Lir	Unit	
			min	max	
TMS setup to TCK 🦨	<i>t</i> ₁	SR	8.0	-	ns
TMS hold to TCK _	t_2	SR	5.0	-	ns
TDI setup to TCK 🦨	<i>t</i> ₁	SR	11.0	-	ns
TDI hold to TCK 🦨	t_2	SR	6.0	-	ns
TDO valid output from TCK -	t_3	СС	-	23	ns
TDO high impedance to valid output from TCK 🥆	t_4	СС	-	26	ns
TDO valid output to high impedance from TCK ٦	t_5	CC	-	18	ns

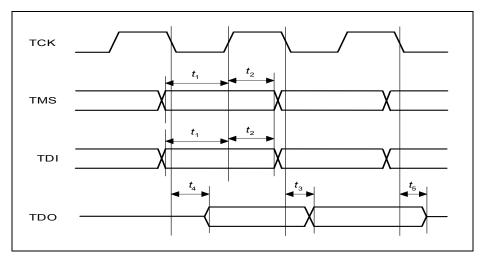


Figure 44 JTAG Timing