

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc866l-4fri-bc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

infineon

Summary of Features

Table 2Device Summary

	-					
	SAK-XC866*-1FRI 3V	3.3	-	4	-	Industrial
	SAF-XC866*-4FRA 3V	3.3	12	4	-	Automotive
	SAF-XC866*-4FRI 3V	3.3	12	4	-	Industrial
	SAF-XC866*-2FRA 3V	3.3	4	4	_	Automotive
	SAF-XC866*-2FRI 3V	3.3	4	4	-	Industrial
	SAF-XC866*-1FRA 3V	3.3	-	4	-	Automotive
	SAF-XC866*-1FRI 3V	3.3	-	4	-	Industrial
ROM	SAK-XC866*-4RRA	5.0	-	4	16	Automotive
	SAK-XC866*-4RRI	5.0	-	4	16	Industrial
	SAK-XC866*-2RRA	5.0	-	4	8	Automotive
	SAK-XC866*-2RRI	5.0	-	4	8	Industrial
	SAF-XC866*-4RRA	5.0	-	4	16	Automotive
	SAF-XC866*-4RRI	5.0	-	4	16	Industrial
	SAF-XC866*-2RRA	5.0	_	4	8	Automotive
	SAF-XC866*-2RRI	5.0	-	4	8	Industrial
	SAK-XC866*-4RRA 3V	3.3	-	4	16	Automotive
	SAK-XC866*-4RRI 3V	3.3	-	4	16	Industrial
	SAK-XC866*-2RRA 3V	3.3	-	4	8	Automotive
	SAK-XC866*-2RRI 3V	3.3	_	4	8	Industrial
	SAF-XC866*-4RRA 3V	3.3	-	4	16	Automotive
	SAF-XC866*-4RRI 3V	3.3	-	4	16	Industrial
	SAF-XC866*-2RRA 3V	3.3	-	4	8	Automotive
	SAF-XC866*-2RRI 3V	3.3	-	4	8	Industrial

1) Industrial is not for Automotive usage

²⁾ The flash memory (P-Flash and D-Flash) can be used for code or data.

Note: The asterisk (*) above denotes the device configuration letters from Table 1.

General Device Information

2.4 Pin Definitions and Functions

İnfineon

Table 3 Pin Definitions and Functions

Symbol	Pin Number	Туре	Reset State	Function	
P0		I/O		port. It can b	-bit bidirectional general purpose I/O be used as alternate functions for the 6, UART, and the SSC.
P0.0	12		Hi-Z	TCK_0 T12HR_1	JTAG Clock Input CCU6 Timer 12 Hardware Run Input
				CC61_1 CLKOUT RXDO_1	Input/Output of Capture/Compare channel 1 Clock Output UART Transmit Data Output
P0.1	14		Hi-Z	TDI_0 T13HR_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input
				RXD_1 COUT61_1	UART Receive Data Input
P0.2	13		PU	EXF2_1 CTRAP_2 TDO_0 TXD_1	Timer 2 External Flag Output CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/ Clock Output
P0.3	2		Hi-Z	SCK_1 COUT63_1	SSC Clock Input/Output Output of Capture/Compare channel 3
P0.4	3		Hi-Z	MTSR_1 CC62_1	SSC Master Transmit Output/ Slave Receive Input Input/Output of Capture/Compare channel 2
P0.5	4		Hi-Z	MRST_1 EXINT0_0 COUT62_1	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 Output of Capture/Compare channel 2

3 Functional Description

3.1 Processor Architecture

The XC866 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC866 CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. Access to the Flash memory, however, requires an additional wait state (one machine cycle). The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC866 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and SFRs.

Figure 5 shows the CPU functional blocks.

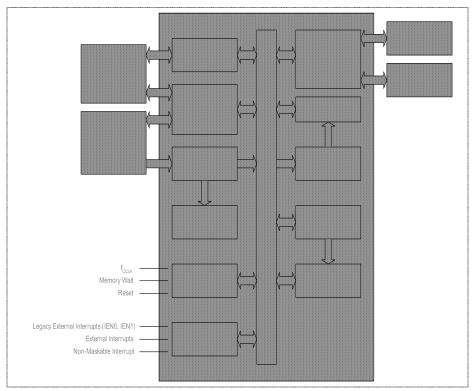


Figure 5 CPU Block Diagram

Table 5 Flash Protection Type for XC866-2FR and XC866-4FR devices

PASSWORD	Type of Protection	Flash Banks to Erase when Unprotected	
1XXXXXXX _B	Flash Protection Mode 1	All Banks	
0XXXXXXAB	Flash Protection Mode 0	P-Flash Bank	

For XC866-1FR device and ROM devices:

The selection of protection type is summarized in Table 6.

Table 6 Flash Protection Type for XC866-1FR device and ROM devices

PASSWORD	Type of Protection (Applicable to the whole Flash)	Sectors to Erase when Unprotected	Comments
1XXXXXX _B	Read/Program/Erase	All Sectors	Compatible to Protection mode 1
00001XXX _B	Erase	Sector 0	
00010XXX _B	Erase	Sector 0 and 1	
00011XXX _B	Erase	Sector 0 to 2	
00100XXX _B	Erase	Sector 0 to 3	
00101XXX _B	Erase	Sector 0 to 4	
00110XXX _B	Erase	Sector 0 to 5	
00111XXX _B	Erase	Sector 0 to 6	
01000XXX _B	Erase	Sector 0 to 7	
01001XXX _B	Erase	Sector 0 to 8	
01010XXX _B	Erase	All Sectors	
Others	Erase	None	

Although no protection scheme can be considered infallible, the XC866 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_H to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

SYSCON0 System Control Register 0 Reset Value: 00_H 2 1 0 7 6 5 4 3 0 1 0 RMAP r rw r rw

Field	Bits	Туре	Description	
RMAP	0	rw	 Special Function Register Map Control The access to the standard SFR area is enabled. The access to the mapped SFR area is enabled. 	
1	2	rw	Reserved Returns the last value if read; should be written with 1.	
0	1,[7:3]	r	Reserved Returns 0 if read; should be written with 0.	

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing D0_H to PASSWD register disables the bit protection scheme.

The access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include NDIV, WDTEN, PD, and SD.

PASSWD Password Register

Reset Value: 07_H

7	6	5	4	3	2	1	0
	PASS				PROTECT	МС	DE
	W					r	w

Field	Bits	Туре	Description	
MODE	[1:0]	rw	Bit Protection Scheme Control bits00Scheme Disabled11Scheme Enabled (default)Others: Scheme EnabledThese two bits cannot be written directly. To changethe value between 11_B and 00_B , the bit field PASSmust be written with 11000_B ; only then, will theMODE[1:0] be registered.	
PROTECT_S	2	rh	 Bit Protection Signal Status bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits. 	
PASS	[7:3]	w	Password bitsThe Bit Protection Scheme only recognizes threepatterns.11000BEnables writing of the bit field MODE.10011BOpens access to writing of all protected bits.10101BCloses access to writing of all protected bits.	

Table 16 Flash Data Retention and Endurance (Operating Condition						
Retention	Endurance ¹⁾	Size	Remarks			
Program Fla	sh					
20 years	1,000 cycles	up to 16 Kbytes ²⁾	for 16-Kbyte Variant			
20 years	1,000 cycles	up to 8 Kbytes ²⁾	for 8-Kbyte Variant			
20 years	1,000 cycles	up to 4 Kbytes ²⁾	for 4-Kbyte Variant			
Data Flash						
20 years	1,000 cycles	4 Kbytes				
5 years	10,000 cycles	1 Kbyte				
2 years	70,000 cycles	512 bytes				
2 years	100,000 cycles	128 bytes				
1						

Table 16 shows the Flash data retention and endurance targets.

¹⁾ One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in **Table 16** is valid only if the following conditions are fulfilled:

- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.

- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.

- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.

²⁾ If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the device variant. Having more Data Flash will mean less Flash is available for Program Flash.

3.3.1 Flash Bank Sectorization

The XC866 product family offers four Flash devices with either 8 Kbytes or 16 Kbytes of embedded Flash memory. These Flash memory sizes are made up of two or four 4-Kbyte Flash banks, respectively. Each Flash device consists of Program Flash (P-Flash) bank(s) and a single Data Flash (D-Flash) bank with different sectorization shown in **Figure 11**. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations. The XC866 ROM devices offer a single 4-Kbyte D-Flash bank.

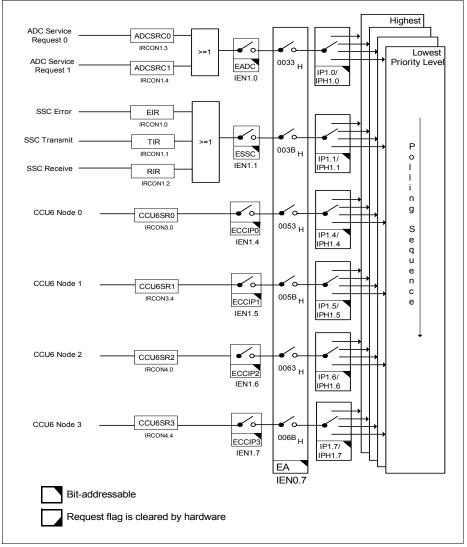


Figure 16 Interrupt Request Sources (Part 3)

XINTR6	0033 _H	ADC	EADC	IEN1
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
XINTR11	005B _H	CCU6 INP1	ECCIP1	
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
XINTR13	006B _H	CCU6 INP3	ECCIP3	

Table 17 Interrupt Vector Addresses (cont'd)

3.4.3 Interrupt Priority

Each interrupt source, except for NMI, can be individually programmed to one of the four possible priority levels. The NMI has the highest priority and supersedes all other interrupts. Two pairs of interrupt priority registers (IP and IPH, IP1 and IPH1) are available to program the priority level of each non-NMI interrupt vector.

A low-priority interrupt can be interrupted by a high-priority interrupt, but not by another interrupt of the same or lower priority. Further, an interrupt of the highest priority cannot be interrupted by any other interrupt source.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 18**.

Source	Level
Non-Maskable Interrupt (NMI)	(highest)
External Interrupt 0	1
Timer 0 Interrupt	2
External Interrupt 1	3
Timer 1 Interrupt	4
UART Interrupt	5
Timer 2, Fractional Divider, LIN Interrupts	6
ADC Interrupt	7
SSC Interrupt	8
External Interrupt 2	9
External Interrupt [6:3]	10
CCU6 Interrupt Node Pointer 0	11
CCU6 Interrupt Node Pointer 1	12
CCU6 Interrupt Node Pointer 2	13
CCU6 Interrupt Node Pointer 3	14

 Table 18
 Priority Structure within Interrupt Level

3.9 Power Saving Modes

The power saving modes of the XC866 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- · Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- · Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 26**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- · Idle mode
- Slow-down mode
- Power-down mode

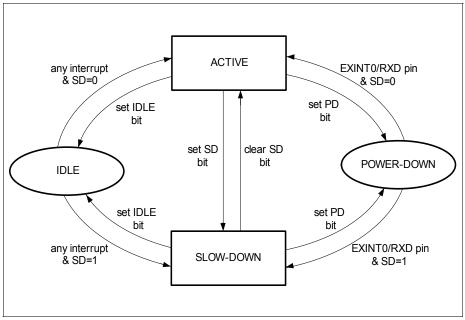


Figure 26 Transition between Power Saving Modes

3.11 Universal Asynchronous Receiver/Transmitter

The Universal Asynchronous Receiver/Transmitter (UART) provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features:

- · Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - fixed or variable baud rate
- · Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART can operate in the four modes as shown in **Table 25**. Data is transmitted on TXD and received on RXD.

Operating Mode	Baud Rate
Mode 0: 8-bit shift register	f _{PCLK} /2
Mode 1: 8-bit shift UART	Variable
Mode 2: 9-bit shift UART	f _{PCLK} /32 or f _{PCLK} /64
Mode 3: 9-bit shift UART	Variable

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{PCLK}/32$ or $f_{PCLK}/64$. The variable baud rate is set by either the underflow rate on the dedicated baud-rate generator, or by the overflow rate on Timer 1.

115.2 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

Table 27 Deviation Error for UART with Fractional Divider enabled

f _{PCLK}	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	STEP	Deviation Error
26.67 MHz	1	10 (A _H)	177 (B1 _H)	+0.03 %
13.33 MHz	1	7 (7 _H)	248 (F8 _H)	+0.11 %
6.67 MHz	1	3 (3 _H)	212 (D4 _H)	-0.16 %

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 31 shows the block diagram of the SSC.

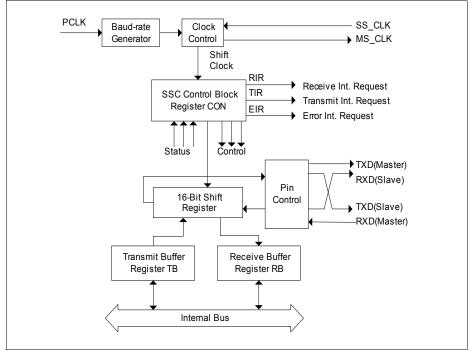


Figure 31 SSC Block Diagram

XC866

Functional Description

3.18 Analog-to-Digital Converter

The XC866 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2.

Features:

- Successive approximation
- 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)
- Eight analog channels
- · Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- · Single conversion mode
- Autoscan functionality
- · Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- · Two independent conversion request sources with programmable priority
- Selectable conversion request trigger
- · Flexible interrupt generation with configurable service nodes
- · Programmable sample time
- · Programmable clock divider
- · Cancel/restart feature for running conversions
- · Integrated sample and hold circuitry
- · Compensation of offset errors
- · Low power modes

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC866.

Note: The electrical parameters are valid for the XC866-4FR and XC866-2FR. The electrical parameters for the ROM variants and XC866-1FR are preliminary, differences from XC866-4FR and XC866-2FR are stated explicitly.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC866 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• cc

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC866 and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC866 is designed in.

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC866 can be subjected to without permanent damage.

Table 32	Absolute Maximum Rating Parameters
----------	------------------------------------

Parameter	Symbol	Lim	Limit Values		Notes
		min.	max.		
Ambient temperature	T _A	-40	125	°C	under bias
Storage temperature	T _{ST}	-65	150	°C	
Junction temperature	TJ	-40	150	°C	under bias
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	
Voltage on core supply pin with respect to $V_{\rm SS}$	V _{DDC}	-0.5	3.25	V	
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	Whatever is lower
Input current on any pin during overload condition	I _{IN}	-10	10	mA	
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA	

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Table 34 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.		Remarks	
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V		
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{\text{DDC}}$	V _{DDC} + 0.5	V		
Pull-up current	I _{PU}	SR	-	-10	μA	V _{IH,min}	
			-150	-	μA	V _{IL,max}	
Pull-down current	I_{PD}	SR	-	10	μA	V _{IL,max}	
			150	-	μA	V _{IH,min}	
Input leakage current ²⁾	I _{OZ1}	CC	-1	1	μA	0 < $V_{\rm IN}$ < $V_{\rm DDP}$, $T_{\rm A} \le 125^{\circ}$ C , XC866-4FR and XC866-2FR	
			-2.5	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C, XC866-1FR$ and ROM device	
Input current at XTAL1	I_{ILX}	CC	-10	10	μA		
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	-	25	mA	3)	
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)	
$\begin{tabular}{l} \hline Maximum current per \\ pin (excluding $V_{\rm DDP}$ and $V_{\rm SS}$) \end{tabular}$	I _M	SR	-	15	mA		
Maximum current for all pins (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	$\Sigma I_{M} $	SR	-	60	mA		
Maximum current into V_{DDP}	I _{MVDE}	SR	-	80	mA		
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	80	mA		

Table 39Power Supply Current Parameters (Operating Conditions apply;
 V_{DDP} = 3.3V range)

Parameter	Symbol	Limit	Limit Values		Test Condition
		typ. ¹⁾	max. ²⁾	1	Remarks
V _{DDP} = 3.3V Range		-		4	
Active Mode	I _{DDP}	21.5	23.3	mA	3)
Idle Mode	I _{DDP}	16.4	18.9	mA	XC866-4FR, XC866-2FR ⁴⁾
		11.2	13.5	mA	XC866-1FR, ROM device ⁴⁾
Active Mode with slow-down enabled	I _{DDP}	6.8	8	mA	XC866-4FR, XC866-2FR ⁵⁾
		5.4	7.3	mA	XC866-1FR, ROM device ⁵⁾
Idle Mode with slow-down enabled	I _{DDP}	6.8	7.8	mA	XC866-4FR, XC866-2FR ⁶⁾
		4.9	6.9	mA	XC866-1FR, ROM device ⁶⁾

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 3.6 V).

³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.

⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock</u> disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.

⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: <u>CPU</u> clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET</u> = V_{DDP}, no load on ports.

⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to all peripherals enable and running at 833 KHz by setting CLKREL in CMCON to 0101_B,, <u>RESET = V_{DDP}, no load on ports.</u></u>

http://www.infineon.com