

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc866-4fri-bc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet n History:	2007-10	V1.2
V1.0	2006-02	
Subjects (najor changes since last revision))
Device sur	nmary table is updated for Flash	4-Kb and ROM variants.
Footnote is	added to MBC pin; description o	f V_{DDP} pin is updated.
	•	s type of register bit field
Access typ	e of PAGE bits of all module page	registers are corrected to rwh.
Access typ	e of Px_DIR register bits are corr	ected to rwh
New bullet	point on Flash delivery state is a	dded to the feature list.
Digital pov	er supply voltage are differentiate	ed for 5V and 3.3V variants.
	5	/oltage on GPIO pins during
Figure on	Power-on reset timing is updated.	
	n History: S Version: V 0.1 V1.0, V1.1, Subjects (n Device sum Footnote is Section on PASSWD.F Access type New bullet Digital pow VDDP powe	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

 \ge

Summary of Features

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery

For the available ordering codes for the XC866, please refer to your responsible sales representative or your local distributor.

As this document refers to all the derivatives, some descriptions may not apply to a specific product. For simplicity all versions are referred to by the term XC866 throughout this document.

General Device Information

2.3 Pin Configuration

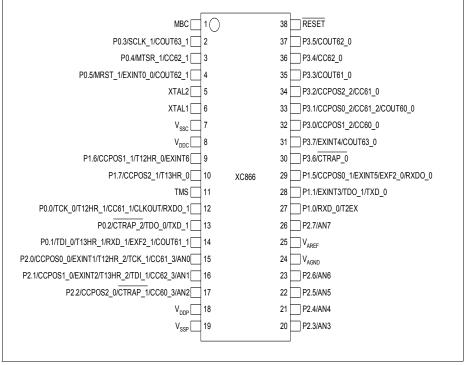
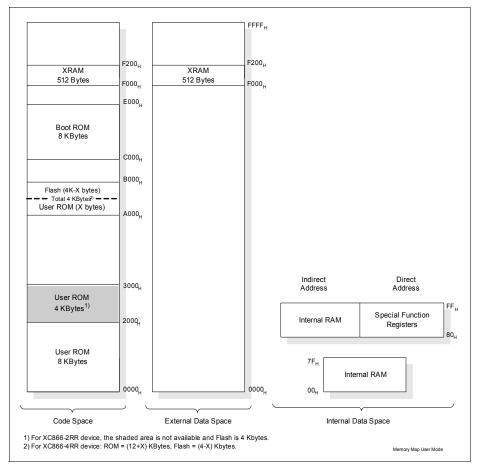


Figure 4 XC866 Pin Configuration, PG-TSSOP-38 Package (top view)

XC866

General Device Information

Table 3	Pin D	efinitio	ons and	Functions (c	ont'd)
Symbol	Pin Number	Туре	Reset State	Function	
P2		I		can be used inputs of the	bit general purpose input-only port. It as alternate functions for the digital JTAG and CCU6. It is also used as the s for the ADC.
P2.0	15		Hi-Z	EXINT1 T12HR_2	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input
				TCK_1 CC61_3 AN0	JTAG Clock Input Input of Capture/Compare channel 1 Analog Input 0
P2.1	16		Hi-Z	CCPOS1_0 EXINT2 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input
				TDI_1 CC62_3 AN1	JTAG Serial Data Input Input of Capture/Compare channel 2 Analog Input 1
P2.2	17		Hi-Z	CCPOS2_0 CTRAP_1 CC60_3 AN2	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0 Analog Input 2
P2.3	20		Hi-Z	AN3	Analog Input 3
P2.4	21		Hi-Z	AN4	Analog Input 4
P2.5	22		Hi-Z	AN5	Analog Input 5
P2.6	23		Hi-Z	AN6	Analog Input 6
P2.7	26		Hi-Z	AN7	Analog Input 7



General Device Information

Table 5			ins and		ontaj					
Symbol	Pin Number	Туре	Reset State	Function						
P3		I		Port 3 Port 3 is a bidirectional general purpose I/O pc can be used as alternate functions for the CC						
P3.0	32		Hi-Z	CCPOS1_2 CC60_0	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0					
P3.1	33		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1					
				COUT60_0	Output of Capture/Compare channel 0					
P3.2	34		Hi-Z	CCPOS2_2 CC61_0	CCU6 Hall Input 2 Input/Output of Capture/Compare channel 1					
P3.3	35		Hi-Z	COUT61_0	Output of Capture/Compare channel 1					
P3.4	36		Hi-Z	CC62_0	Input/Output of Capture/Compare channel 2					
P3.5	37		Hi-Z	COUT62_0	Output of Capture/Compare channel 2					
P3.6	30		PD	CTRAP_0	CCU6 Trap Input					
P3.7	31		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3					

Table 3Pin Definitions and Functions (cont'd)

Figure 7 illustrates the memory address spaces of the XC866-4RR device.

Figure 7 Memory Map of XC866 ROM Devices

Table 11 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh	rh						
CB _H	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w
CCH	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	w	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw	rw						
CEH	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	()	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag Register	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	()	EVINC 1	EVINC 0
		Туре	w	w	w	w		r	w EVINS	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(0 E		EVINS 0
		Туре	w	w	w	w		r	w	w
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer Register	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	()	EVINP 1	EVINP 0
		Туре	rw	rw	rw	rw	r		rw	rw
	0, Page 6									
CA _H	ADC_CRCR1 Reset: 00 _H Conversion Request Control Register 1	Bit Field	CH7	CH6	CH5	CH4		(0	
		Туре	rwh	rwh	rwh	rwh			r	
CB _H	ADC_CRPR1 Reset: 00 _H Conversion Request Pending	Bit Field	CHP7	CHP6	CHP5	CHP4			0	
	Register 1	Туре	rwh	rwh	rwh	rwh			r	
CCH	ADC_CRMR1 Reset: 00 _H Conversion Request Mode Register 1	Bit Field	Rsv	LDEV	CLR PND	SCAN	ENSI	ENTR	EN	GT
		Туре	r	w	w	rw	rw	rw		w
CD _H	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field Type	CEV w	TREV w	FLUSH w	CLRV w	TRMD rw	ENTR rw		GT w
CEH	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPTY	EV			0	
05		Type Dit Field		r	rh	rh	0		r	D
CF _H	ADC_Q0R0 Reset: 00 _H Queue 0 Register 0	Bit Field Type	EXTR rh	ENSI rh	RF rh	V rh	0 r	F	REQCHN rh	ĸ
D2 _H	ADC QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	R	REQCHN	R
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF)	F	REQCHN	R
	Queue Input Register 0	Туре	w	W	w	1	r		W	

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12Timer 2 Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
C0 _H	T2_T2CON Timer 2 Control Register	Reset: 00 _H	Bit Field	TF2	EXF2	()	EXEN2	TR2	0	CP/ RL2
			Туре	rwh	rwh		r	rw	rwh	r	rw

Table 12Timer 2 Register Overview (cont'd)

C1 _H	T2_T2MOD Timer 2 Mode Register	Reset: 00 _H	Bit Field	T2 REGS	T2 RHEN	EDGE SEL	PREN	T2PRE	DCEN			
			Туре	rw	rw	rw	rw	rw	rw			
C2 _H	T2_RC2L	Reset: 00 _H	Bit Field				RC2	[7:0]				
	Timer 2 Reload/Capture	Register Low	Туре				rv	/h				
C3 _H	T2_RC2H	Reset: 00 _H	Bit Field				RC2	[15:8]				
	Timer 2 Reload/Capture	Register High	Туре	rwh								
C4 _H	T2_T2L	Reset: 00 _H	Bit Field				THL	2[7:0]				
	Timer 2 Register Low		Туре	rwh								
C5 _H	T2_T2H	Reset: 00 _H	Bit Field				THL2	[15:8]				
	Timer 2 Register High		Туре				rv	vh				

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 13 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	0			1	1			1		1	
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE		
	Page Register for CCU6	Туре	١	w w r rwh							
RMAP =	0, Page 0										
9A _H	CCU6_CC63SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field	CC63SL								
	Channel CC63 Low	Туре				r	w				
9B _H	CCU6_CC63SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC6	3SH				
	Channel CC63 High	Туре				r	w				
9C _H	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	()	DTRES	T12 RES	T12RS	T12RR	
		Туре	w	w		r	w	w	w	w	
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0		T13 RES	T13RS	T13RR	
		Туре	w	w		r		w	w	w	
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0	MCMPS						
	Register Low	Туре	w	r			r	w			
9F _H	CCU6_MCMOUTSH Reset: 00 _H	Bit Field	STRHP	0	CURHS EXP				EXPHS		
	Multi-Channel Mode Output Shadow Register High	Туре	w	r		rw		rw			
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12P M	RT12O M	RCC62 F	RCC62 R	RCC61 F	RCC61 R	RCC60 F	RCC60 R	
	Reset Register Low	Туре	w	w	w	w	w	w	w	w	
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWHE	RCHE	0	RTRPF	RT13 PM	RT13 CM	
	Reset Register High	Туре	w	w	w	w	r	w	w	w	
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 S		0		MCC62 S	MCC61 S	MCC60 S	
	Low	Туре	r	w		r		w	w	w	
A7 _H	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 R		0		MCC62 R	MCC61 R	MCC60 R	
	High	Туре	r	w		r		w	w	w	
FA _H	CCU6_CC60SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC	60SL				
	Channel CC60 Low	Туре				n	wh				

Table 13 CCU6 Register Overview (cont'd)

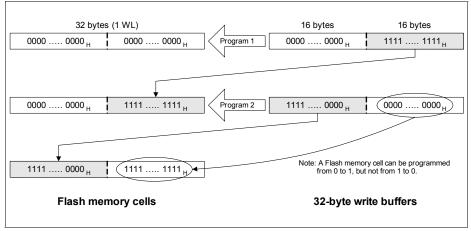
Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
FD _H	CCU6_CC61RH Reset: 00 _H Capture/Compare Register for Channel	Bit Field				CC6	51VH					
	CC61 High	Туре				r	'n					
FE _H	CCU6_CC62RL Reset: 00 _H Capture/Compare Register for Channel	Bit Field	CC62VL									
	CC62 Low	Туре	rh									
FF _H	CCU6_CC62RH Reset: 00 _H Capture/Compare Register for Channel	Bit Field				CCE	62VH					
	CC62 High	Туре				r	'n					
	0, Page 2	1										
9A _H	CCU6_T12MSELL Reset: 00 _H T12 Capture/Compare Mode Select Register Low	Bit Field			EL61				EL60			
	•	Туре	5510	r	W				W			
9B _H	CCU6_T12MSELH Reset: 00 _H T12 Capture/Compare Mode Select Register High	Bit Field	DBYP		HSYNC				EL62			
		Туре	rw	ENT 10	rw	FNOO	ENICO		W	ENGO		
9C _H	CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable Register Low	Bit Field	ENT12 PM	ENT12 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R		
	•	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable Register High	Bit Field	ENSTR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT13 PM	ENT13 CM		
05		Type	rw	rw	rw	rw CC62	r	rw	rw	rw		
9E _H	CCU6_INPL Reset: 40 _H Capture/Compare Interrupt Node Pointer Register Low	Bit Field		CHE			INPCC61 INP			CC60		
05	÷	Type Bit Field	rw rw 0 INPT13				w 7T12		w ERR			
9F _H	CCU6_INPH Reset: 39 _H Capture/Compare Interrupt Node Pointer Register High	Type		r		w		rw		W		
A4 _H	CCU6_ISSL Reset: 00 _H	Bit Field	ST12P	ST120		SCC62		SCC61		SCC60		
	Capture/Compare Interrupt Status Set Register Low	Туре	M	M	F	R	F	R	F	R		
A5 _H	CCU6_ISSH Reset: 00 _H	Bit Field	SSTR	SIDLE	SWHE	SCHE			ST13	ST13		
AJH	Capture/Compare Interrupt Status Set Register High	Туре	w	W	w	w	w	w	PM	CM		
A6 _H	CCU6 PSLR Reset: 00 _H	Bit Field	PSL63	0	vv	vv		SL	vv	vv		
A0H	Passive State Level Register	Туре	rwh	r				vh				
A7 _H	CCU6_MCMCTR Reset: 00 _H	Bit Field)	SW	SYN	0		SWSEL			
	Multi-Channel Mode Control Register	Туре		r	r	w	r		rw			
FA _H	CCU6_TCTR2L Reset: 00 _H Timer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC	;	T13 SSC	T12 SSC		
		Туре	r	r	w		rw		rw	rw		
FB _H	CCU6_TCTR2H Reset: 00 _H	Bit Field			0		T13F	RSEL	T12	RSEL		
	Timer Control Register 2 High	Туре			r			w	r	w		
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MC MEN	0			T12MODEN					
		Туре	rw	r				w				
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT13 O	0			T13M	ODEN				
		Туре	rw	r			r	w				
FE _H	CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low	Bit Field			0				TRPM1	-		
	Trap Control Register Low	Туре			r			rw	rw	rw		

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
FF _H	CCU6_TRPCTRH Reset: 00 _H	Bit Field		TRPEN			TRF	PEN				
	Trap Control Register High		N	13								
		Туре	rw	v rw rw								
RMAP =	0, Page 3											
9A _H	CCU6_MCMOUTL Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	0	R	MCMP							
	Low	Туре	r	rh			r	h				
9B _H	CCU6_MCMOUTH Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	()		CURH			EXPH			
	High	Туре		r		rh			rh			
9C _H	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12PM	T12OM	ICC62F	R	ICC61F	ICC61 R	ICC60F	ICC60 R		
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh		
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13PM	T13CM		
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh		
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61				
	Port Input Select Register 0 Low	Туре	r	w	r	w	r					
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST1	2HR	ISPOS2 IS		ISP	POS1 ISF		OS0		
		Туре	r	w	n	w	n	w	n	w		
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field			(2			IST1	3HR		
	Port Input Select Register 2	Туре				r			n	w		
FA _H	CCU6_T12L Reset: 00 _H	Bit Field				T12	CVL					
	Timer T12 Counter Register Low	Туре				r.	vh					
FB _H	CCU6_T12H Reset: 00 _H	Bit Field				T12	CVH					
	Timer T12 Counter Register High	Туре				٢٧	vh					
FC _H	CCU6_T13L Reset: 00 _H	Bit Field				T13	CVL					
	Timer T13 Counter Register Low	Туре				r.	vh					
FD _H	CCU6_T13H Reset: 00 _H	Bit Field				T13	CVH					
	Timer T13 Counter Register High	Туре				n	vh					
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CCPO S2	CCPO S1	CCPO S0	CC62 ST	CC61 ST	CC60 ST		
		Туре	r	rh	rh	rh	rh	rh	rh	rh		
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS		
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh		

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14SSC Register Overview


Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0		•								
A9 _H	SSC_PISEL	Reset: 00 _H	Bit Field			0			CIS	SIS	MIS
	Port Input Select Regist	er	Туре			r			rw	rw	rw
AA _H	SSC_CONL	Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Control Register Low Programming Mode		Туре	rw	rw	rw	rw		r	w	
	Operating Mode		Bit Field			0			B	С	
			Туре			r			r	h	

3.3.2 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. Hence, it is possible to program the same WL, for example, with 16 bytes of data in two times (see Figure 12).

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

XC866

Functional Description

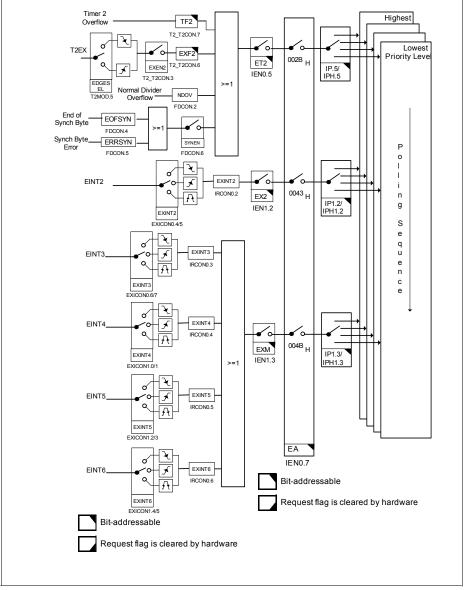


Figure 15 Interrupt Request Sources (Part 2)

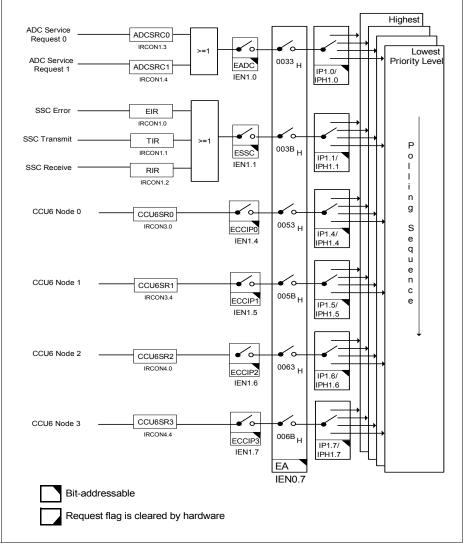


Figure 16 Interrupt Request Sources (Part 3)

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, f_{sys} . During normal system operation, the typical frequencies of the different modules are as follow:

- CPU clock: CCLK, SCLK = 26.7 MHz
- CCU6 clock: FCLK = 26.7 MHz
- Other peripherals: PCLK = 26.7 MHz
- Flash Interface clock: CCLK3 = 80 MHz and CCLK = 26.7 MHz

In addition, different clock frequency can output to pin CLKOUT(P0.0). The clock output frequency can further be divided by 2 using toggle latch (bit TLEN is set to 1), the resulting output frequency has 50% duty cycle. **Figure 25** shows the clock distribution of the XC866.

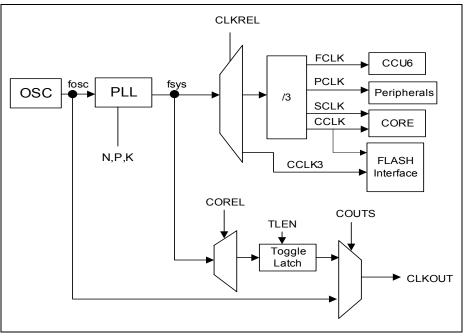
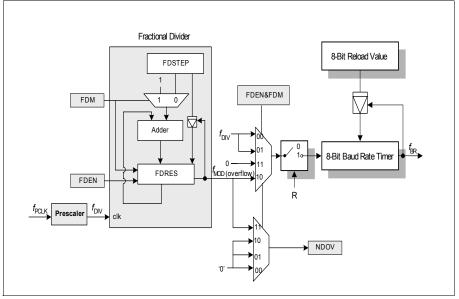



Figure 25 Clock Generation from f_{svs}

3.11.1 Baud-Rate Generator

The baud-rate generator is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see Figure 29.

Figure 29 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See Section 3.12.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)

3.15 Timer 0 and Timer 1

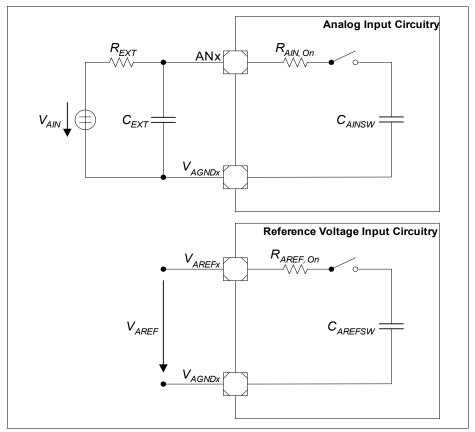
Timers 0 and 1 are count-up timers which are incremented every machine cycle, or in terms of the input clock, every 2 PCLK cycles. They are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 28**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.
3	Timer 0 operates as two 8-bit timersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.

Table 28 Timer 0 and Timer 1 Modes

XC866

3.18 Analog-to-Digital Converter


The XC866 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2.

Features:

- Successive approximation
- 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)
- Eight analog channels
- · Four independent result registers
- Result data protection for slow CPU access
 (wait-for-read mode)
- · Single conversion mode
- · Autoscan functionality
- · Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- · Two independent conversion request sources with programmable priority
- Selectable conversion request trigger
- · Flexible interrupt generation with configurable service nodes
- Programmable sample time
- · Programmable clock divider
- · Cancel/restart feature for running conversions
- · Integrated sample and hold circuitry
- · Compensation of offset errors
- · Low power modes

Electrical Parameters

4.2.3.1 ADC Conversion Timing

Conversion time, $t_C = t_{ADC} \times (1 + r \times (3 + n + STC))$, where r = CTC + 2 for CTC = 00_B , 01_B or 10_B , r = 32 for CTC = 11_B , CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), $t_{ADC} = 1 / f_{ADC}$

Electrical Parameters

4.2.4 Power Supply Current

Table 37Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit Values		Unit	Test Condition
		typ. ¹⁾	max. ²⁾	+	Remarks
V _{DDP} = 5V Range					
Active Mode	I _{DDP}	22.6	24.5	mA	3)
Idle Mode	I _{DDP}	17.2	19.7	mA	XC866-4FR, XC866-2FR ⁴⁾
		12.5	14	mA	XC866-1FR, ROM device ⁴⁾
Active Mode with slow-down enabled	I _{DDP}	7.2	8.2	mA	XC866-4FR, XC866-2FR ⁵⁾
		5.6	7.5	mA	XC866-1FR, ROM device ⁵⁾
Idle Mode with slow-down enabled	I _{DDP}	7.1	8	mA	XC866-4FR, XC866-2FR ⁶⁾
		5.1	7.2	mA	XC866-1FR, ROM device ⁶⁾

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

- ³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.
- ⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock disabled</u>, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.
- ⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, RESET = V_{DDP}, no load on ports.
- ⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to</u> all peripherals enabled and running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET</u> = V_{DDP}, no load on ports.

Electrical Parameters

Table 40Power Down Current (Operating Conditions apply; V_{DDP} = 3.3Vrange)

Parameter	Symbol	Limit Values		Unit	Test Condition
		typ. ¹⁾	max. ²⁾		Remarks
V _{DDP} = 3.3V Range		- 4	1	1	
Power-Down Mode ³⁾	I _{PDP}	1	10	μA	$T_{\rm A}$ = + 25 °C. ⁴)
		-	30	μA	T_{A} = + 85 °C, XC866- 4FR, XC866-2FR ⁴⁾⁵⁾
		-	35	μA	T_{A} = + 85 °C, XC866- 1FR, ROM device ⁴⁾⁵⁾

¹⁾ The typical I_{PDP} values are measured at V_{DDP} = 3.3 V.

 $^{2)}\,$ The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

³⁾ I_{PDP} (power-down mode) has a maximum value of 200 μ A at T_A = + 125 °C.

⁴⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0= V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

⁵⁾ Not subject to production test, verified by design/characterization.