

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc866l-2fra-be

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Features (continued):

infineon

- Reset generation
 - Power-On reset
 - Hardware reset
 - Brownout reset for core logic supply
 - Watchdog timer reset
 - Power-Down Wake-up reset
- On-chip OSC and PLL for clock generation
 - PLL loss-of-lock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0
 - clock gating control to each peripheral
- Programmable 16-bit Watchdog Timer (WDT)
- Four ports
 - 19 pins as digital I/O
 - 8 pins as digital/analog input
- 8-channel, 10-bit ADC
- Three 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2
- · Capture/compare unit for PWM signal generation (CCU6)
- Full-duplex serial interface (UART)
- Synchronous serial channel (SSC)
- · On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 8-Kbyte Boot ROM)
- 64 bytes of monitor RAM
- PG-TSSOP-38 pin package
- Temperature range T_A:
 - SAF (-40 to 85 °C)
 - SAK (-40 to 125 °C)

Summary of Features

XC866 Variant Devices

The XC866 product family features devices with different configurations and program memory sizes, temperature and quality profiles (Automotive or Industrial), offering cost-effective solution for different application requirements.

The configuration of LIN BSL for XC866 devices are summarized in Table 1.

Table 1	Device Configuration for LIN BSL
---------	----------------------------------

Device Name	LIN BSL Support
XC866	No
XC866L	Yes

The list of XC866 devices and their differences are summarized in Table 2.

Device Type	Device Name	Power Supply (V)	P-Flash Size (Kbytes)	D-Flash Size (Kbytes)	ROM Size (Kbytes)	Quality Profile ¹⁾
Flash ²⁾	SAK-XC866*-4FRA	5.0	12	4	_	Automotive
	SAK-XC866*-4FRI	5.0	12	4	-	Industrial
	SAK-XC866*-2FRA	5.0	4	4	-	Automotive
	SAK-XC866*-2FRI	5.0	4	4	-	Industrial
	SAK-XC866*-1FRA	5.0	_	4	-	Automotive
	SAK-XC866*-1FRI	5.0	-	4	_	Industrial
	SAF-XC866*-4FRA	5.0	12	4	-	Automotive
	SAF-XC866*-4FRI	5.0	12	4	-	Industrial
	SAF-XC866*-2FRA	5.0	4	4	_	Automotive
	SAF-XC866*-2FRI	5.0	4	4	-	Industrial
	SAF-XC866*-1FRA	5.0	_	4	-	Automotive
	SAF-XC866*-1FRI	5.0	_	4	-	Industrial
	SAK-XC866*-4FRA 3V	3.3	12	4	-	Automotive
	SAK-XC866*-4FRI 3V	3.3	12	4	-	Industrial
	SAK-XC866*-2FRA 3V	3.3	4	4	_	Automotive
	SAK-XC866*-2FRI 3V	3.3	4	4	-	Industrial
	SAK-XC866*-1FRA 3V	3.3	-	4	_	Automotive

Table 2 Device Summary

Summary of Features

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery

For the available ordering codes for the XC866, please refer to your responsible sales representative or your local distributor.

As this document refers to all the derivatives, some descriptions may not apply to a specific product. For simplicity all versions are referred to by the term XC866 throughout this document.

General Device Information

2.3 Pin Configuration

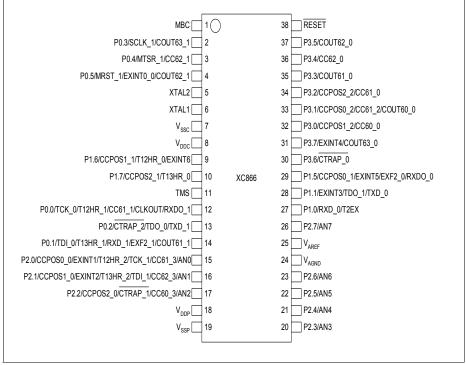


Figure 4 XC866 Pin Configuration, PG-TSSOP-38 Package (top view)

XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function
V _{DDP}	18	-	-	I/O Port Supply (3.3 V/5.0 V) Also used by EVR and analog modules.
V _{SSP}	19	-	-	I/O Port Ground
V _{DDC}	8	-	-	Core Supply Monitor (2.5 V)
V _{ssc}	7	-	-	Core Supply Ground
V _{AREF}	25	-	-	ADC Reference Voltage
V _{AGND}	24	_	-	ADC Reference Ground
XTAL1	6	I	Hi-Z	External Oscillator Input (NC if not needed)
XTAL2	5	0	Hi-Z	External Oscillator Output (NC if not needed)
TMS	11	I	PD	Test Mode Select
RESET	38	I	PU	Reset Input
MBC ¹⁾	1	I	PU	Monitor & BootStrap Loader Control

Table 3Pin Definitions and Functions (cont'd)

¹⁾ An external pull-up device in the range of 4.7 k Ω to 100 k Ω is required to enter user mode. Alternatively MBC can be tied to high if alternate functions (for debugging) of the pin are not utilized.

3.2.1 Memory Protection Strategy

The XC866 memory protection strategy includes:

- Read-out protection: The Flash Memory can be enabled for read-out protection and ROM memory is always protected.
- Program and erase protection: The Flash memory in all devices can be enabled for program and erase protection.

Flash memory protection is available in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

Mode	0	1					
Activation	Program a valid password via BSL mode 6						
Selection	MSB of password = 0	MSB of password = 1					
P-Flash contents can be read by	Read instructions in the P-Flash	Read instructions in the P-Flash or D-Flash					
P-Flash program and erase	Not possible	Not possible					
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash or D-Flash					
D-Flash program	Possible	Not possible					
D-Flash erase	Possible, on the condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible					

Table 4 Flash Protection Modes

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the read-protected Flash contents, see **Table 5** and **Table 6**, and the programmed password is erased. The Flash protection is then disabled upon the next reset.

For XC866-2FR and XC866-4FR devices:

The selection of protection type is summarized in Table 5.

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FF _H	CCU6_TRPCTRH Reset: 00 _H	Bit Field		TRPEN			TR	PEN			
	Trap Control Register High		N	13							
		Туре	rw	rw			r	w			
RMAP =	0, Page 3										
9A _H	CCU6_MCMOUTL Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	0	R	MCMP						
	Low	Туре	r	rh			r	h			
9B _H	CCU6_MCMOUTH Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	()	CURH			EXPH			
	High	Туре	1	r		rh			rh		
9C _H	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12PM	T12OM	ICC62F	R	ICC61F	R	ICC60F	ICC60 R	
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13PM	T13CM	
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	ISTRP ISCC62		ISC	ISCC61 ISCC		C60		
	Port Input Select Register 0 Low	Туре	rw rw			r	rw rw				
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST12HR ISPOS2			ISPOS1 ISPOS0					
		Туре	rw rw rw				w	rw			
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field	0 IST13HI					3HR			
	Port Input Select Register 2	Туре	r rw						w		
FA _H	CCU6_T12L Reset: 00 _H	Bit Field	T12CVL								
	Timer T12 Counter Register Low	Туре	rwh								
FB _H	CCU6_T12H Reset: 00 _H	Bit Field	T12CVH								
	Timer T12 Counter Register High	Туре	rwh								
FC _H	CCU6_T13L Reset: 00 _H	Bit Field	T13CVL								
	Timer T13 Counter Register Low	Туре	rwh								
FD _H	CCU6_T13H Reset: 00 _H	Bit Field				T13	CVH				
	Timer T13 Counter Register High	Туре				n	vh				
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CCPO S2	CCPO S1	CCPO S0	CC62 ST	CC61 ST	CC60 ST	
		Туре	r	rh	rh	rh	rh	rh	rh	rh	
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS	
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14SSC Register Overview

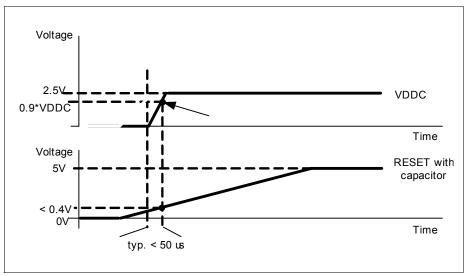
Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0		•								
A9 _H	SSC_PISEL	Reset: 00 _H	Bit Field			0			CIS	SIS	MIS
	Port Input Select Register		Туре	r				rw	rw	rw	
AA _H	SSC_CONL	Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Control Register Low Programming Mode		Туре	rw	rw	rw	rw		r	w	
	Operating Mode		Bit Field	0			BC				
			Туре			r			r	h	

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- · Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 32-byte for P-Flash
- 1-sector minimum erase width
- · 1-byte read access
- · Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: 3 × t_{CCLK} = 112.5 ns²⁾
- Program time: 209440 / f_{SYS} = 2.6 ms³)
- Erase time: 8175360 / f_{SYS} = 102 ms³)


P-Flash: 32-byte wordline can only be programmed once, i.e., one gate disturb allowed. D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ f_{svs} = 80 MHz ± 7.5% (f_{CCLK} = 26.7 MHz ± 7.5 %) is the maximum frequency range for Flash read access.

³⁾ $f_{sys} = 80 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

infineon

Functional Description

Figure 22 V_{DDP}, V_{DDC} and V_{RESET} during Power-on Reset

The second type of reset in XC866 is the hardware reset. This reset function can be used <u>during</u> normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset. To ensure the recognition of the hardware reset, pin RESET must be held low for at least 100 ns.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

	-)	('sys	•••	-,		
Oscillator	fosc	Ν	Р	κ	fsys	
On-chip	10 MHz	16	1	2	80 MHz	
External	10 MHz	16	1	2	80 MHz	
	8 MHz	20	1	2	80 MHz	
	5 MHz	32	1	2	80 MHz	

Table 21 System frequency (f_{svs} = 80 MHz)

Table 22 shows the VCO range for the XC866.

Table 22 VCO Range	VCO Range
--------------------	-----------

f _{VCOmin}	f _{VCOmax}	f _{VCOFREEmin}	f _{VCOFREEmax}	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in **Figure 24** can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor.

Figure 24 shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

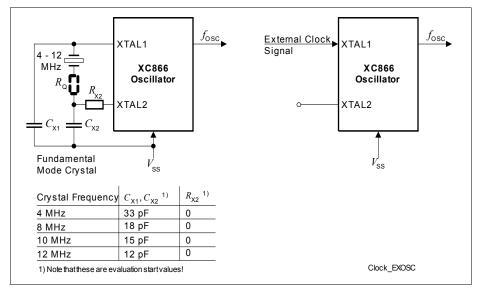


Figure 24 External Oscillator Circuitries

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

For power saving purposes, the clocks may be disabled or slowed down according to **Table 23**.

Table 23System frequency (f_{sys} = 80 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals, including CCU6, are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

3.9 Power Saving Modes

The power saving modes of the XC866 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- · Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- · Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 26**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- · Idle mode
- Slow-down mode
- Power-down mode

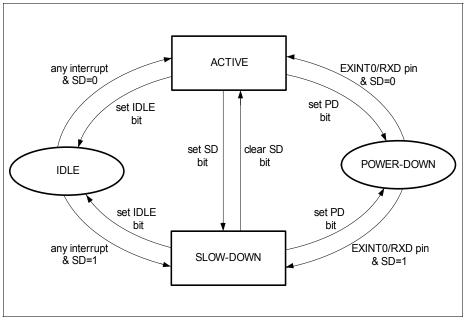


Figure 26 Transition between Power Saving Modes

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert WDTTO) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value (<WDTREL> $* 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- the input frequency to the WDT can be selected to be either f_{PCLK}/2 or f_{PCLK}/128
- the reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, P_{WDT} , between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1+WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

If the Window-Boundary Refresh feature of the WDT is enabled, the period P_{WDT} between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 28**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB should not be smaller than WDTREL.

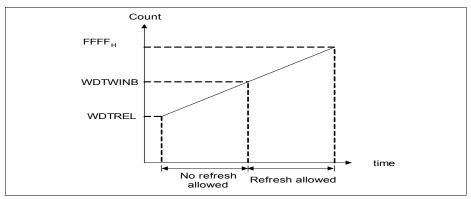


Figure 28 WDT Timing Diagram

3.11.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

[3.1]

Mode 1, 3 baud rate= $\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$

3.12 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 29**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP.

The output frequency in normal divider mode is derived as follows:

 $f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$ [3.2]

Table 34 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			min.	min. max.		Remarks
Pull-up current	I _{PU}	SR	-	-5	μA	V _{IH,min}
			-50	-	μA	V _{IL,max}
Pull-down current	I_{PD}	SR	-	5	μA	V _{IL,max}
			50	-	μA	V _{IH,min}
Input leakage current ²⁾	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C$, XC866-4FR and XC866-2FR
			-2.5	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C, XC866-1FR$ and ROM device
Input current at XTAL1	I_{ILX}	CC	- 10	10	μA	
Overload current on any pin	I _{OV}	SR	-5	5	mA	
Absolute sum of overload currents	ΣI_{OV}	 SR	-	25	mA	3)
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)
Maximum current per pin (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	I _M	SR	-	15	mA	
Maximum current for all pins (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	$\Sigma I_{M} $	SR	-	60	mA	
Maximum current into V_{DDP}	I _{MVDI}	DP SR	-	80	mA	
$\overline{ \mbox{Maximum current out of } }_{V_{\rm SS}}$	I _{MVS}	SR	-	80	mA	

¹⁾ Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

²⁾ <u>An additional error current (l_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.</u>

³⁾ Not subjected to production test, verified by design/characterization.

⁴⁾ Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when VDDP is powered off.

4.2.4 Power Supply Current

Table 37Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition Remarks
		typ. ¹⁾	max. ²⁾		
V _{DDP} = 5V Range			4	1	I
Active Mode	I _{DDP}	22.6	24.5	mA	3)
Idle Mode	I _{DDP}	17.2	19.7	mA	XC866-4FR, XC866-2FR ⁴⁾
		12.5	14	mA	XC866-1FR, ROM device ⁴⁾
Active Mode with slow-down enabled	I _{DDP}	7.2	8.2	mA	XC866-4FR, XC866-2FR ⁵⁾
		5.6	7.5	mA	XC866-1FR, ROM device ⁵⁾
Idle Mode with slow-down enabled	I _{DDP}	7.1	8	mA	XC866-4FR, XC866-2FR ⁶⁾
		5.1	7.2	mA	XC866-1FR, ROM device ⁶⁾

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

- ³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.
- ⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock disabled</u>, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.
- ⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, RESET = V_{DDP}, no load on ports.
- ⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to all peripherals enabled and running at 833 KHz by setting CLKREL in CMCON to 0101_B, RESET = V_{DDP}, no load on ports.</u>

Table 38Power Down Current (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit	Values		Test Condition Remarks
		typ. ¹⁾	max. ²⁾		
V _{DDP} = 5V Range		-			
Power-Down Mode ³⁾	I _{PDP}	1	10	μA	$T_{A} = +25 \ ^{\circ}C.^{4)}$
		-	30	μA	T_{A} = + 85 °C, XC866- 4FR, XC866-2FR ⁴⁾⁵⁾
		-	35	μA	T _A = + 85 °C, XC866- 1FR, ROM device ⁴⁾⁵⁾

¹⁾ The typical I_{PDP} values are measured at V_{DDP} = 5.0 V.

²⁾ The maximum I_{PDP} values are measured at V_{DDP} = 5.5 V.

- ³⁾ I_{PDP} (power-down mode) has a maximum value of 200 μ A at T_A = + 125 °C.
- ⁴⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0 = V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

⁵⁾ Not subject to production test, verified by design/characterization.

Package and Reliability

5.2 Package Outline

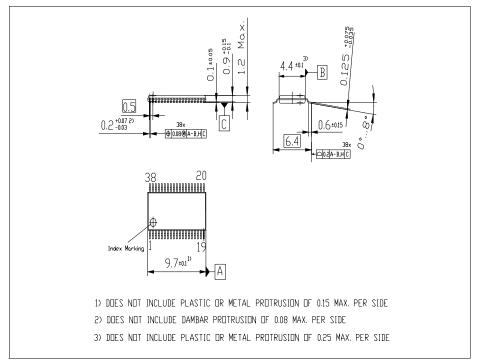


Figure 46 PG-TSSOP-38-4 Package Outline