

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc866l-2fri-be

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2007-10 Published by Infineon Technologies AG, 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Data Sheet n History:	2007-10	V1.2
V1.0	2006-02	
Subjects (najor changes since last revision))
Device sur	nmary table is updated for Flash	4-Kb and ROM variants.
Footnote is	added to MBC pin; description o	f V_{DDP} pin is updated.
	•	s type of register bit field
Access typ	e of PAGE bits of all module page	registers are corrected to rwh.
Access typ	e of Px_DIR register bits are corr	ected to rwh
New bullet	point on Flash delivery state is a	dded to the feature list.
Digital pov	er supply voltage are differentiate	ed for 5V and 3.3V variants.
	5	/oltage on GPIO pins during
Figure on	Power-on reset timing is updated.	
	n History: S Version: V 0.1 V1.0, V1.1, Subjects (n Device sum Footnote is Section on PASSWD.F Access type New bullet Digital pow VDDP powe	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

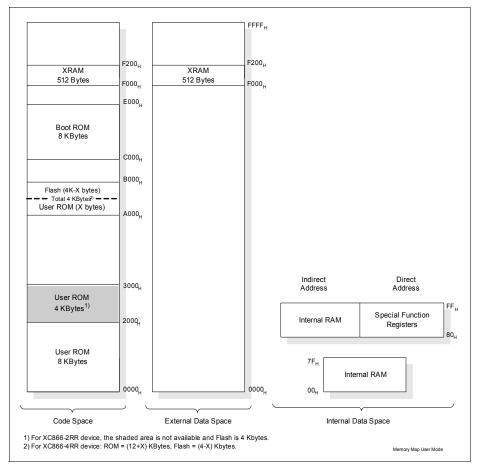
 \ge

XC866

General Device Information

Table 3	Pin D	efinitio	ons and	Functions (c	ont'd)
Symbol	Pin Number	Туре	Reset State	Function	
P2		I		can be used inputs of the	bit general purpose input-only port. It as alternate functions for the digital JTAG and CCU6. It is also used as the s for the ADC.
P2.0	15		Hi-Z	EXINT1 T12HR_2	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input
				TCK_1 CC61_3 AN0	JTAG Clock Input Input of Capture/Compare channel 1 Analog Input 0
P2.1	16		Hi-Z	CCPOS1_0 EXINT2 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input
				TDI_1 CC62_3 AN1	JTAG Serial Data Input Input of Capture/Compare channel 2 Analog Input 1
P2.2	17		Hi-Z	CCPOS2_0 CTRAP_1 CC60_3 AN2	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0 Analog Input 2
P2.3	20		Hi-Z	AN3	Analog Input 3
P2.4	21		Hi-Z	AN4	Analog Input 4
P2.5	22		Hi-Z	AN5	Analog Input 5
P2.6	23		Hi-Z	AN6	Analog Input 6
P2.7	26		Hi-Z	AN7	Analog Input 7

XC866


General Device Information

Symbol	Pin Number	Туре	Reset State	Function
V _{DDP}	18	-	-	I/O Port Supply (3.3 V/5.0 V) Also used by EVR and analog modules.
V _{SSP}	19	-	-	I/O Port Ground
V _{DDC}	8	-	-	Core Supply Monitor (2.5 V)
V _{ssc}	7	-	_	Core Supply Ground
V _{AREF}	25	-	-	ADC Reference Voltage
V _{AGND}	24	-	_	ADC Reference Ground
XTAL1	6	I	Hi-Z	External Oscillator Input (NC if not needed)
XTAL2	5	0	Hi-Z	External Oscillator Output (NC if not needed)
TMS	11	I	PD	Test Mode Select
RESET	38	I	PU	Reset Input
MBC ¹⁾	1	I	PU	Monitor & BootStrap Loader Control

Table 3 Pin Definitions and Functions (cont'd)

¹⁾ An external pull-up device in the range of 4.7 k Ω to 100 k Ω is required to enter user mode. Alternatively MBC can be tied to high if alternate functions (for debugging) of the pin are not utilized.

Figure 7 illustrates the memory address spaces of the XC866-4RR device.

Figure 7 Memory Map of XC866 ROM Devices

Field	Bits	Туре	Description
OP	[7:6]	W	 Operation OX Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

Table 11 ADC Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
CA _H	ADC_RESR0L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 0 Low		Туре	r	h	r	rh	rh		rh	
CB _H	ADC_RESR0H	Reset: 00 _H	Bit Field				RESU	LT[9:2]	1		
	Result Register 0 High		Туре				r	ħ			
CCH	ADC_RESR1L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 1 Low		Туре	r	h	r	rh	rh		rh	
CD _H	ADC RESR1H	Reset: 00 _H	Bit Field			i	RESU	LT[9:2]			
	Result Register 1 High		Туре				r	h i			
CEH	ADC RESR2L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 2 Low		Туре	r	h	r	rh	rh		rh	
CF _H	ADC RESR2H	Reset: 00 _H	Bit Field			i	RESU	LT[9:2]			
- 11	Result Register 2 High		Туре					h i			
D2 _H	ADC_RESR3L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 3 Low		Туре	r		r	rh	rh		rh	
D3 _H	ADC RESR3H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 3 High		Туре					h i			
RMAP =	= 0, Page 3		.) [-								
CA _H	ADC RESRAOL	Reset: 00 _H	Bit Field	RF	ESULT[2	·01	VF	DRC		CHNR	
0, H	Result Register 0, View A		Туре			.0]	rh	rh		rh	
CBH	ADC RESRAOH	Reset: 00 _H	Bit Field					_T[10:3]			
ODH	Result Register 0, View A		Туре					h			
CCH	ADC RESRA1L	Reset: 00 _H	Bit Field	RF	ESULT[2	·01	VF .	DRC		CHNR	
OOH	Result Register 1, View A		Туре	T.L	rh	.0]	rh	rh		rh	
CD _H	ADC RESRA1H	Reset: 00 _H	Bit Field					_T[10:3]			
ODH	Result Register 1, View A		Туре					h			
CEH	ADC RESRA2L	Reset: 00 _H	Bit Field	D	ESULT[2	·01	VF	DRC		CHNR	
СГН	Result Register 2, View A		Type	INL	rh	.0]	rh	rh		rh	
CF _H	ADC RESRA2H	Reset: 00 _H	Bit Field					_T[10:3]			
CFH	Result Register 2, View A		Туре					h			
D2 _H	ADC RESRA3L	Reset: 00 _H	Bit Field	D	ESULT[2	.01	VF	DRC		CHNR	
DZH	Result Register 3, View A		Type	R	rh	.0]	rh	rh		rh	
D2	ADC RESRA3H		Bit Field		m					m	
D3 _H	Result Register 3, View A	Reset: 00 _H						_T[10:3]			
			Туре				I	'n			
	O, Page 4	D	Bit Field	VECTR	WFR	0	IEN	1	0		DRCT
CA _H	Result Control Register (Reset: 00 _H	BIT FIEID	VECTR	WFR	0	IEN		0		R
	result control register e	,	Туре	rw	rw	r	rw		r		rw
CB _H	ADC RCR1	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT
CDH	Result Control Register 1		DILFIEIU	VFUIR	WER	0	IEIN		0		R
	3		Туре	rw	rw	r	rw		r		rw
CCH	ADC RCR2	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT
Result Control Register 2										R	
			Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT
	Result Control Register 3	3									R
			Туре	rw	rw	r	rw		r		rw
			Bit Field)		VFC3	VFC2	VFC1	VFC0
CEH	ADC_VFCR Valid Flag Clear Register	Reset: 00 _H	BILFIEID			5		VI 05	VI 02	VICI	VI C0

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FB _H	CCU6_CC60SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field		I	I	CC6	0SH	I	1	1
	Channel CC60 High	Туре				rv	vh			
FC _H	CCU6_CC61SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CCE	i1SL			
	Channel CC61 Low	Туре				rv	vh			
FD _H	CCU6_CC61SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field					1SH			
	Channel CC61 High	Туре					vh			
FE _H	CCU6_CC62SRL Reset: 00 _H Capture/Compare Shadow Register for Channel CC62 Low	Bit Field					2SL			
		Туре					vh			
FF _H	CCU6_CC62SRH Reset: 00 _H Capture/Compare Shadow Register for Channel CC62 High	Bit Field					2SH			
-	Ũ	Туре				rv	vh			
	0, Page 1	Bit Field				000	2)//			
9A _H	CCU6_CC63RL Reset: 00 _H Capture/Compare Register for Channel CC63 Low						3VL			
00		Type					h			
9B _H	CCU6_CC63RH Reset: 00 _H Capture/Compare Register for Channel CC63 High	Bit Field					3VH			
	-	Type					h D) (I			
9C _H	CCU6_T12PRL Reset: 00 _H Timer T12 Period Register Low	Bit Field					PVL			
	-	Туре					vh			
9D _H	CCU6_T12PRH Reset: 00 _H Timer T12 Period Register High	Bit Field					PVH			
		Туре					vh			
9E _H	CCU6_T13PRL Reset: 00 _H Timer T13 Period Register Low	Bit Field					PVL			
	8	Туре					vh			
9F _H	CCU6_T13PRH Reset: 00 _H Timer T13 Period Register High	Bit Field					PVH			
		Туре					vh			
A4 _H	CCU6_T12DTCL Reset: 00 _H Dead-Time Control Register for Timer	Bit Field					ГM			
	T12 Low	Туре				r	N			
A5 _H	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for Timer	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0
	T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	СТМ	CDIR	STE12	T12R	T12 PRE		T12CLK	
		Туре	rw	rh	rh	rh	rw		rw	
A7 _H	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field	()	STE13	T13R	T13 PRE		T13CLK	
		Туре		r	rh	rh	rw		rw	
FA _H	CCU6_CC60RL Reset: 00 _H Capture/Compare Register for Channel	Bit Field					60VL			
	CC60 Low	Туре					h			
FB _H	CCU6_CC60RH Reset: 00 _H Capture/Compare Register for Channel CC60 High	Bit Field					0VH			
	e e	Туре					h			
FC _H	CCU6_CC61RL Reset: 00 _H Capture/Compare Register for Channel	Bit Field					51VL			
	CC61 Low	Туре				r	h			

P-Flash	D-Flash
	Sector 0: 1-Kbyte
	Sector 1: 1-Kbyte
Sector 0: 3.75-Kbyte	Sector 2: 512-byte
	Sector 3: 512-byte
	Sector 4: 256-byte
	Sector 5: 256-byte
	Sector 6: 128-byte
	Sector 7: 128-byte
Sector 1: 128-byte	Sector 8: 128-byte
Sector 2: 128-byte	Sector 9: 128-byte

Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

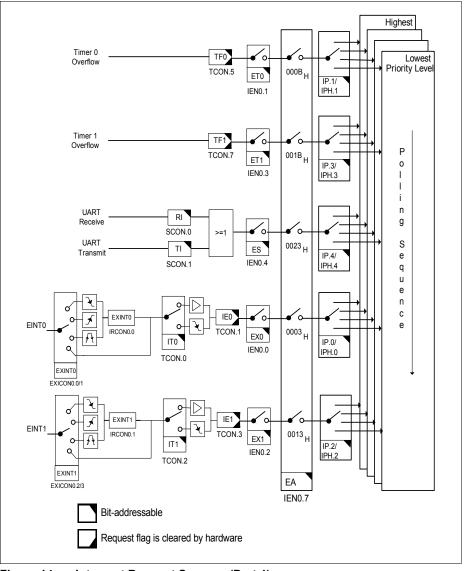


Figure 14 Interrupt Request Sources (Part 1)

XC866

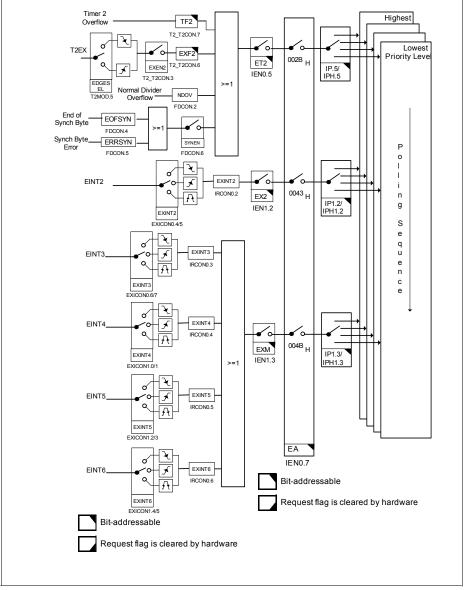


Figure 15 Interrupt Request Sources (Part 2)

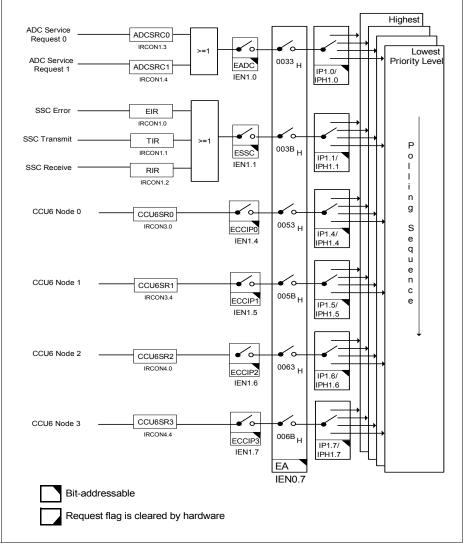


Figure 16 Interrupt Request Sources (Part 3)

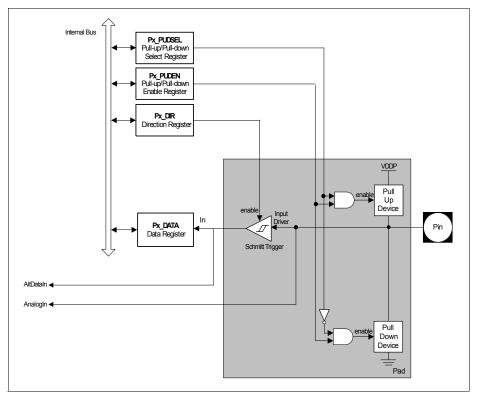


Figure 19 General Structure of Input Port

3.7.1 Module Reset Behavior

Table 19 shows how the functions of the XC866 are affected by the various reset types. A "∎" means that this function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, reliable	Not affected, reliable	Not affected, reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected			
FLASH					
NMI	Disabled	Disabled			

Table 19 Effect of Reset on Device Functions

3.7.2 Booting Scheme

When the XC866 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. Table 20 shows the available boot options in the XC866.

MBC	TMS	P0.0	Type of Mode	PC Start Value
1	0	х	User Mode; on-chip OSC/PLL non-bypassed	0000 _H
0	0	х	BSL Mode; on-chip OSC/PLL non-bypassed	0000 _H
0	1	0	OCDS Mode ¹⁾ ; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	Standalone User (JTAG) Mode ²⁾ ; on-chip OSC/PLL non-bypassed (normal)	0000 _H

Table 20 XC866 Boot Selection

¹⁾ The OCDS mode is not accessible if Flash is protected.

²⁾ Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

115.2 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

Table 27 Deviation Error for UART with Fractional Divider enabled

f _{PCLK}	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	STEP	Deviation Error
26.67 MHz	1	10 (A _H)	177 (B1 _H)	+0.03 %
13.33 MHz	1	7 (7 _H)	248 (F8 _H)	+0.11 %
6.67 MHz	1	3 (3 _H)	212 (D4 _H)	-0.16 %

3.14 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features:

- · Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- · Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

XC866

Electrical Parameters

Table 34 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symb	ol	Limit	Values	Unit	Test Conditions	
			min.	min. max.		Remarks	
V _{DDP} = 3.3V Range							
Output low voltage	V _{OL}	СС	-	1.0	V	I _{OL} = 8 mA	
			_	0.4	V	I _{OL} = 2.5 mA	
Output high voltage	V _{OH}	СС	V _{DDP} - 1.0	-	V	I _{OH} = -8 mA	
			V _{DDP} - 0.4	-	V	I _{OH} = -2.5 mA	
nput low voltage on port pins all except P0.0 & P0.1)	V _{ILP} :	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
nput low voltage on 20.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
n <u>put lo</u> w voltage on RESET pin	V _{ILR}	SR	_	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
nput low voltage on MS pin	V _{ILT}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
put high voltage on ort pins ill except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode	
put high voltage on 0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode	
put high voltage on ESET pin	V _{IHR}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode	
iput high voltage on MS pin	V _{IHT} :	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode	
iput Hysteresis ¹⁾ on ort pins	HYS	СС	$0.03 \times V_{ m DDP}$	-	V	CMOS Mode	
iput Hysteresis ¹⁾ on TAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V		
nput low voltage at TAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{\text{DDC}}$	V		
nput high voltage at (TAL1	V _{IHX}	SR	$0.7 \times V_{\text{DDC}}$	V _{DDC} + 0.5	V		

Electrical Parameters

4.2.4 Power Supply Current

Table 37Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		typ. ¹⁾	max. ²⁾		Remarks	
V _{DDP} = 5V Range						
Active Mode	I _{DDP}	22.6	24.5	mA	3)	
Idle Mode	I _{DDP}	17.2	19.7	mA	XC866-4FR, XC866-2FR ⁴⁾	
		12.5	14	mA	XC866-1FR, ROM device ⁴⁾	
Active Mode with slow-down enabled	I _{DDP}	7.2	8.2	mA	XC866-4FR, XC866-2FR ⁵⁾	
		5.6	7.5	mA	XC866-1FR, ROM device ⁵⁾	
Idle Mode with slow-down enabled	I _{DDP}	7.1	8	mA	XC866-4FR, XC866-2FR ⁶⁾	
		5.1	7.2	mA	XC866-1FR, ROM device ⁶⁾	

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

- ³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.
- ⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock disabled</u>, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.
- ⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, RESET = V_{DDP}, no load on ports.
- ⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to</u> all peripherals enabled and running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET</u> = V_{DDP}, no load on ports.

Electrical Parameters

4.3 AC Parameters

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in Figure 38, Figure 39 and Figure 40.

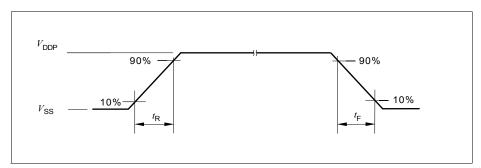


Figure 38 Rise/Fall Time Parameters

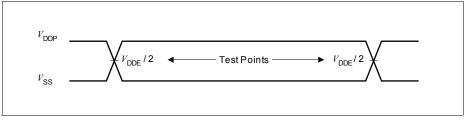
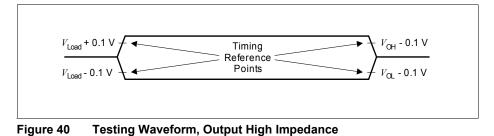



Figure 39 Testing Waveform, Output Delay

Electrical Parameters

4.3.2 Output Rise/Fall Times

Table 41 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Conditions	
		min.	max.			
V _{DDP} = 5V Range						
Rise/fall times 1) 2)	t _R , t _F	-	10	ns	20 pF. ³⁾	
V _{DDP} = 3.3V Range						
Rise/fall times 1) 2)	t _R , t _F	-	10	ns	20 pF. ⁴⁾	

¹⁾ Rise/Fall time measurements are taken with 10% - 90% of the pad supply.

²⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

³⁾ Additional rise/fall time valid for $C_L = 20pF - 100pF @ 0.125 ns/pF$.

⁴⁾ Additional rise/fall time valid for $C_L = 20pF - 100pF @ 0.225 ns/pF$.

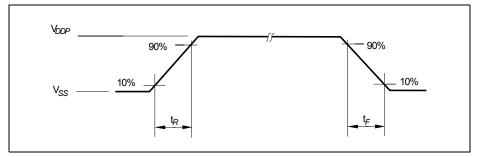


Figure 41 Rise/Fall Times Parameters