

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc866l-4fri-bc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit Single-Chip Microcontroller XC800 Family

1 **Summary of Features**

- High-performance XC800 Core •
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 8 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 512 bytes of XRAM
 - 4/8/16 Kbytes of Flash; or 8/16 Kbytes of ROM, with additional 4 Kbytes of Flash (includes memory protection strategy)
- I/O port supply at 3.3 V/5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(further features are on next page)

Summary of Features

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery

For the available ordering codes for the XC866, please refer to your responsible sales representative or your local distributor.

As this document refers to all the derivatives, some descriptions may not apply to a specific product. For simplicity all versions are referred to by the term XC866 throughout this document.

3.2.1 Memory Protection Strategy

The XC866 memory protection strategy includes:

- Read-out protection: The Flash Memory can be enabled for read-out protection and ROM memory is always protected.
- Program and erase protection: The Flash memory in all devices can be enabled for program and erase protection.

Flash memory protection is available in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

Mode	0	1
Activation	Program a valid password via BSL m	ode 6
Selection	MSB of password = 0	MSB of password = 1
P-Flash contents can be read by	Read instructions in the P-Flash	Read instructions in the P-Flash or D-Flash
P-Flash program and erase	Not possible	Not possible
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash or D-Flash
D-Flash program	Possible	Not possible
D-Flash erase	Possible, on the condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible

Table 4 Flash Protection Modes

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the read-protected Flash contents, see **Table 5** and **Table 6**, and the programmed password is erased. The Flash protection is then disabled upon the next reset.

For XC866-2FR and XC866-4FR devices:

The selection of protection type is summarized in Table 5.

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_H to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

SYSCON0 System Control Register 0 Reset Value: 00_H 2 1 0 7 6 5 4 3 0 1 0 RMAP r rw r rw

Field	Bits	Туре	Description
RMAP	0	rw	 Special Function Register Map Control The access to the standard SFR area is enabled. The access to the mapped SFR area is enabled.
1	2	rw	Reserved Returns the last value if read; should be written with 1.
0	1,[7:3]	r	Reserved Returns 0 if read; should be written with 0.

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B1 _H	P3_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 1 Register	Туре	rw							
RMAP =	0, Page 3									
80 _H F	P0_OD Reset: 00 _H P0 Open Drain Control Register	Bit Field		C	P5	P4	P3	P2	P1	P0
		Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Open Drain Control Register	Туре	rw	rw	rw		r		rw	rw
B0 _H	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Open Drain Control Register	Туре	rw							

The ADC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 11 ADC Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0								1		1
D1 _H	ADC_PAGE Rese	ət: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
	Page Register for ADC		Туре	١	v	Ň	v	r	rwh		
RMAP =	0, Page 0										
CA _H	ADC_GLOBCTR Rese	et: 30 _H	Bit Field	ANON	DW	C	ГС		(D	
	Global Control Register		Туре	rw	rw	n	N			r	
CB _H	ADC_GLOBSTR Reset: 00 _H Global Status Register		Bit Field	1)		CHNR		0	SAM PLE	BUSY
			Туре		r		rh		r	rh	rh
CCH	ADC_PRAR Rese	ət: 00 _H	Bit Field	ASEN1	ASEN0	0	ARBM	CSM1	PRIO1	CSM0	PRIO0
	Priority and Arbitration Register	r	Туре	rw	rw	r	rw	rw	rw	rw	rw
CD _H	ADC_LCBR Rese	et: B7 _H	Bit Field		BOU	ND1			BOL	IND0	
	Limit Check Boundary Register		Туре		n	N			r	w	
CEH	ADC_INPCR0 Rese	et: 00 _H	Bit Field				S	ГС			
	Input Class Register 0		Туре				r	N			
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control Register		Bit Field	SYNEN 1	SYNEN SYNEN ETRSEL		1	ETRSEL0			
			Туре	rw	rw	rw rw		rw			
RMAP =	0, Page 1										
CA _H	ADC_CHCTR0 Rese	ət: 00 _H	Bit Field	0	LCC		0		RES	RSEL	
	Channel Control Register 0		Туре	r		rw		r		r	w
CBH	ADC_CHCTR1 Rese	ət: 00 _H	Bit Field	0		LCC		0		RESRSEL	
	Channel Control Register 1		Туре	r		rw		-	r	rw	
CCH	ADC_CHCTR2 Rese	et: 00 _H	Bit Field	0		LCC		(0	RESRSEL	
	Channel Control Register 2		Туре	r		rw			r	r	w
CD _H	ADC_CHCTR3 Rese	ət: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 3		Туре	r		rw		1	r	r	w
CEH	ADC_CHCTR4 Rese	ət: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 4		Туре	r		rw			r	r	w
CF _H	ADC_CHCTR5 Rese	ət: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 5		Туре	r		rw			r	r	w
D2 _H	ADC_CHCTR6 Rese	ət: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 6		Туре	r		rw			r	r	w
D3 _H	ADC_CHCTR7 Rese	et: 00 _H	Bit Field	0		LCC		0 R		RES	RSEL
	Channel Control Register 7		Туре	r		rw			r	r	w
RMAP =	0, Page 2										

Table 11 ADC Register Overview (cont'd)

CHINF 1 rh	CHINF 0	
1 rh	0	
rh		
	rh	
CHINC	CHINC	
1	0	
W	W	
CHINS	CHINS	
1	0	
rw	rw	
EVINE	EVINE	
1	0	
rh	rh	
EVINC	EVINC	
1	0	
w	w	
EVINS	EVINS	
1	0	
r w		
0 EVINP EV		
rw	rw	
0		
EN	IGT	
n	w	
EN	IGT	
n	w	
EQCHN	R	
rh		
EQCHN	R	
rh		
EQCHN	R	
w		
	HINC 1 W HINS 1 W HINS 1 W HINS 1 W HINP 1 F T W VINF 1 F W VINF 1 F F C C C C C C C C C C C C C C C C C	

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12Timer 2 Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
С0 _Н	T2_T2CON Timer 2 Control Register	Reset: 00 _H	Bit Field	TF2	EXF2	()	EXEN2	TR2	0	CP/ RL2
			Туре	rwh	rwh		r	rw	rwh	r	rw

Table 12	Timer 2 Register Overview	(cont'd))
		(cont u)	1

C1 _H	T2_T2MOD Timer 2 Mode Register	Reset: 00 _H	Bit Field	T2 REGS	T2 RHEN	EDGE SEL	PREN	T2PRE	DCEN	
			Туре	rw	rw	rw	rw	rw	rw	
C2 _H	T2_RC2L	Reset: 00 _H	Bit Field				RC2	[7:0]		
	Timer 2 Reload/Capture Register		Туре	rwh						
C3 _H	T2_RC2H	Reset: 00 _H	Bit Field	RC2[15:8]						
	Timer 2 Reload/Capture	Register High	Туре		rwh					
C4 _H	T2_T2L	Reset: 00 _H	Bit Field	THL2[7:0]						
	Timer 2 Register Low		Туре	rwh						
C5 _H T2_ Tim	T2_T2H Timer 2 Register High	Reset: 00 _H	Bit Field	THL2[15:8]						
			Туре	rwh						

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 13 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	0										
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE		
	Page Register for CCU6	Туре	N N	v	w r			rwh			
RMAP =	0, Page 0										
9A _H	H CCU6_CC63SRL Reset: 00 _H Capture/Compare Shadow Register for		CC63SL								
	Channel CC63 Low	Туре	rw								
9B _H	CCU6_CC63SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field		CC63SH							
	Channel CC63 High	Туре				r	w				
9C _H	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	()	DTRES	T12 RES	T12RS	T12RR	
		Туре	w	w	I	r	w	w	w	w	
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0		T13 RES	T13RS	T13RR	
		Туре	w	w	r		w	w	w		
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0	MCMPS						
	Register Low	Туре	w	r	rw						
9F _H	CCU6_MCMOUTSH Reset: 00 _H	Bit Field	STRHP	0	CURHS				EXPHS		
	Multi-Channel Mode Output Shadow Register High	Туре	w	r		rw		rw			
A4 _H	CCU6_ISRL Reset: 00 _H	Bit Field	RT12P	RT120	RCC62	RCC62	RCC61	RCC61	RCC60	RCC60	
	Capture/Compare Interrupt Status	Turne	M	M	F	R	F	R	F	R	
A.E.		Type Dit Field	W	W	W	W	w	W	W	W DT12	
AoH	Cobo_ISKH Reset: 00 _H Capture/Compare Interrupt Status	BILFIEID	ROIR	RIDLE	RWITE	RCHE	0	RIRPF	PM	CM	
	Reset Register High	Туре	w	w	w	w	r	w	w	w	
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 S		0		MCC62 S	MCC61 S	MCC60 S	
	Low	Туре	r	w		r		w	w	w	
A7 _H	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 R		0		MCC62 R	MCC61 R	MCC60 R	
	High		r	w	r w			w	w		
FA _H	CCU6_CC60SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CCE	BOSL				
	Channel CC60 Low	Туре				rv	vh				

Sector 2: 128-byte	Sector 9: 128-byte
Sector 1: 128-byte	Sector 8: 128-byte
	Sector 7: 128-byte
	Sector 6: 128-byte
	Sector 5: 256-byte
	Sector 4: 256-byte
	Sector 3: 512-byte
Sector 0: 3.75-Kbyte	Sector 2: 512-byte
	Sector 1: 1-Kbyte
	Sector 0: 1-Kbyte
P-Flash	D-Flash

Figure 11 Flash Bank Sectorization

İnfineon

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

Figure 15 Interrupt Request Sources (Part 2)

Figure 16 Interrupt Request Sources (Part 3)

XINTR6	0033 _H	ADC	EADC	IEN1
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
XINTR11	005B _H	CCU6 INP1	ECCIP1	
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
XINTR13	006B _H	CCU6 INP3	ECCIP3	

Table 17 Interrupt Vector Addresses (cont'd)

The clock system provides three ways to generate the system clock:

PLL Base Mode

The system clock is derived from the VCO base (free running) frequency clock divided by the K factor.

$$f_{SYS} = f_{VCObase} \times \frac{1}{K}$$

Prescaler Mode (VCO Bypass Operation)

In VCO bypass operation, the system clock is derived from the oscillator clock, divided by the P and K factors.

$$f_{SYS} = f_{OSC} \times \frac{1}{P \times K}$$

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

Table 3-1 shows the settings of bits OSCDISC and VCOBYP for different clock mode selection.

OSCDISC	VCOBYP	Clock Working Modes
0	0	PLL Mode
0	1	Prescaler Mode
1	0	PLL Base Mode
1	1	PLL Base Mode

Table 3-1 Clock Mode Selection

Note: When oscillator clock is disconnected from PLL, the clock mode is PLL Base mode regardless of the setting of VCOBYP bit.

System Frequency Selection

For the XC866, the values of P and K are fixed to "1" and "2", respectively. In order to obtain the required system frequency, f_{sys} , the value of N can be selected by bit NDIV for different oscillator inputs. **Table 21** provides examples on how f_{sys} = 80 MHz can be obtained for the different oscillator sources.

• 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR VALUE + 1)} \times \frac{STEP}{256}$$

The maximum baud rate that can be generated is limited to $f_{PCLK}/32$. Hence, for a module clock of 26.7 MHz, the maximum achievable baud rate is 0.83 MBaud.

Standard LIN protocal can support a maximum baud rate of 20kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20kHz to 115.2kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 26 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 26.7 MHz is used.

Baud rate	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	Deviation Error		
19.2 kBaud	1 (BRPRE=000 _B)	87 (57 _H)	-0.22 %		
9600 Baud	1 (BRPRE=000 _B)	174 (AE _H)	-0.22 %		
4800 Baud	2 (BRPRE=001 _B)	174 (AE _H)	-0.22 %		
2400 Baud	4 (BRPRE=010 _B)	174 (AE _H)	-0.22 %		

 Table 26
 Typical Baud rates for UART with Fractional Divider disabled

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 27** lists the resulting deviation errors from generating a baud rate of

3.17 Capture/Compare Unit 6

The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines.

The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only.

The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.

Timer T12 Features:

- Three capture/compare channels, each channel can be used either as a capture or as a compare channel
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches)
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- · Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of the required T12/13 registers
- · Generation of center-aligned and edge-aligned PWM
- · Supports single-shot mode
- · Supports many interrupt request sources
- · Hysteresis-like control mode

Timer T13 Features:

- · One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Can be synchronized to T12
- · Interrupt generation at period-match and compare-match
- Supports single-shot mode

Additional Features:

- · Implements block commutation for Brushless DC-drives
- Position detection via Hall-sensor pattern
- · Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC-drives
- · Output levels can be selected and adapted to the power stage

3.18.1 ADC Clocking Scheme

A common module clock f_{ADC} generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

The internal clock for the analog part f_{ADCI} is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures f_{ADCI} does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 33 ADC Clocking Scheme

For module clock f_{ADC} = 26.7 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 30**.

Module Clock f _{ADC}	СТС	Prescaling Ratio	Analog Clock f _{ADCI}		
26.7 MHz	00 _B	÷ 2	13.3 MHz (N.A)		
	01 _B	÷ 3	8.9 MHz		
	10 _B	÷ 4	6.7 MHz		
	11 _B (default)	÷ 32	833.3 kHz		

Table 30f_ADCI Frequency Selection

As f_{ADCI} cannot exceed 10 MHz, bit field CTC should not be set to 00_B when f_{ADC} is 26.7 MHz. During slow-down mode where f_{ADC} may be reduced to 13.3 MHz, 6.7 MHz etc., CTC can be set to 00_B as long as the divided analog clock f_{ADCI} does not exceed 10 MHz. However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

3.18.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (t_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

Figure 34 ADC Conversion Timing

Electrical Parameters

Table 34 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	Test Conditions
			min.	max.		Remarks
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{\text{DDC}}$	V	
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V	
Pull-up current	I _{PU}	SR	_	-10	μA	$V_{IH,min}$
			-150	-	μA	$V_{IL,max}$
Pull-down current	I_{PD}	SR	_	10	μA	$V_{IL,max}$
			150	—	μA	$V_{\rm IH,min}$
Input leakage current ²⁾	I _{OZ1}	CC	-1	1	μA	0 < V_{IN} < V_{DDP} , $T_{\text{A}} \le 125^{\circ}\text{C}$, XC866-4FR and XC866-2FR
			-2.5	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C, XC866-1FR$ and ROM device
Input current at XTAL1	I_{ILX}	CC	-10	10	μA	
Overload current on any pin	I _{OV}	SR	-5	5	mA	
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	-	25	mA	3)
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M	SR	-	15	mA	
Maximum current for all pins (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	$\Sigma I_{M} $	SR	-	60	mA	
Maximum current into V_{DDP}	I _{MVDE}	SR	_	80	mA	
	I _{MVSS}	SR	_	80	mA	

Electrical Parameters

Table 36ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol	Limit Values			Unit	Test Conditions/
		min.	typ.	max.		Remarks
Switched capacitance at the analog voltage inputs	C _{AINSW} CC	_	5	7	pF	2)4)
Input resistance of the reference input	<i>R</i> _{AREF} CC	-	1	2	kΩ	2)
Input resistance of the selected analog channel	R _{AIN} CC	-	1	1.5	kΩ	2)

¹⁾ TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V , V_{DDP} = 5.0 V.

²⁾ Not subject to production test, verified by design/characterization.

³⁾ This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.

⁴⁾ The sampling capacity of the conversion C-Network is pre-charged to V_{AREF}/2 before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than V_{AREF}/2.

Electrical Parameters

Table 38Power Down Current (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition Remarks
		typ. ¹⁾	max. ²⁾		
V _{DDP} = 5V Range		-			
Power-Down Mode ³⁾	I _{PDP}	1	10	μA	$T_{\rm A}$ = + 25 °C. ⁴)
		-	30	μA	<i>T</i> _A = + 85 °C, XC866- 4FR, XC866-2FR ⁴⁾⁵⁾
		-	35	μA	<i>T</i> _A = + 85 °C, XC866- 1FR, ROM device ⁴⁾⁵⁾

¹⁾ The typical I_{PDP} values are measured at V_{DDP} = 5.0 V.

²⁾ The maximum I_{PDP} values are measured at V_{DDP} = 5.5 V.

- ³⁾ I_{PDP} (power-down mode) has a maximum value of 200 μ A at T_A = + 125 °C.
- ⁴⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0 = V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

⁵⁾ Not subject to production test, verified by design/characterization.

Package and Reliability

5.2 Package Outline

Figure 46 PG-TSSOP-38-4 Package Outline