

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc8661friabkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.2 Logic Symbol

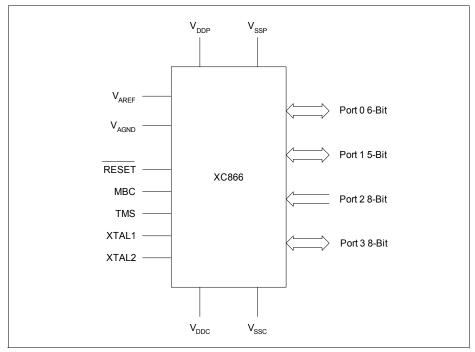


Figure 3 XC866 Logic Symbol

XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function				
P1		I/O		Port 1 Port 1 is a 5-bit bidirectional general purpose I/C port. It can be used as alternate functions for the JTAG, CCU6, UART, and the SSC.				
P1.0	27		PU	RXD_0 T2EX	UART Receive Data Input Timer 2 External Trigger Input			
P1.1	28		PU	EXINT3 TDO_1 TXD_0	External Interrupt Input 3 JTAG Serial Data Output UART Transmit Data Output/ Clock Output			
P1.5	29		PU	CCPOS0_1 EXINT5 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 TImer 2 External Flag Output UART Transmit Data Output			
P1.6	9		PU	CCPOS1_1 T12HR_0 EXINT6	CCU6 Hall Input 1 CCU6 Timer 12 Hardware Run Input External Interrupt Input 6			
P1.7	10		PU	CCPOS2_1 T13HR_0	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input			
_				P1.5 and P1.6 can be used as a software chip select output for the SSC.				

Table 3Pin Definitions and Functions (cont'd)

XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function			
P2		I		Port 2 Port 2 is an 8-bit general purpose input-only port. In can be used as alternate functions for the digital inputs of the JTAG and CCU6. It is also used as the analog inputs for the ADC.			
P2.0	15		Hi-Z	CCPOS0_0 EXINT1 T12HR_2	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input		
				TCK_1 CC61_3 AN0	JTAG Clock Input Input of Capture/Compare channel 1 Analog Input 0		
P2.1	16		Hi-Z	CCPOS1_0 EXINT2 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input		
				TDI_1 CC62_3 AN1	JTAG Serial Data Input Input of Capture/Compare channel 2 Analog Input 1		
P2.2	17		Hi-Z	CCPOS2_0 CTRAP_1 CC60_3 AN2	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0 Analog Input 2		
P2.3	20		Hi-Z	AN3	Analog Input 3		
P2.4	21		Hi-Z	AN4	Analog Input 4		
P2.5	22		Hi-Z	AN5	Analog Input 5		
P2.6	23		Hi-Z	AN6	Analog Input 6		
P2.7	26		Hi-Z	AN7	Analog Input 7		

Table 3Pin Definitions and Functions (cont'd)

3 Functional Description

3.1 Processor Architecture

The XC866 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC866 CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. Access to the Flash memory, however, requires an additional wait state (one machine cycle). The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC866 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and SFRs.

Figure 5 shows the CPU functional blocks.

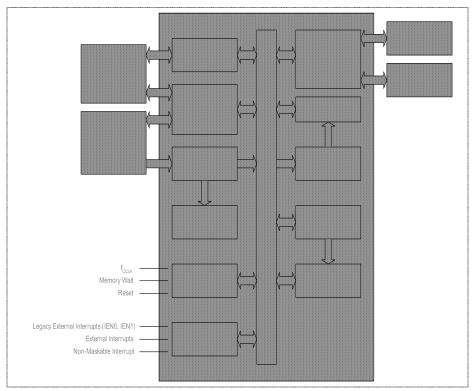


Figure 5 CPU Block Diagram

3.2.1 Memory Protection Strategy

The XC866 memory protection strategy includes:

- Read-out protection: The Flash Memory can be enabled for read-out protection and ROM memory is always protected.
- Program and erase protection: The Flash memory in all devices can be enabled for program and erase protection.

Flash memory protection is available in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

Mode	0	1					
Activation	Program a valid password via BSL mode 6						
Selection	MSB of password = 0	MSB of password = 1					
P-Flash contents can be read by	Read instructions in the P-Flash	Read instructions in the P-Flash or D-Flash					
P-Flash program and erase	Not possible	Not possible					
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash or D-Flash					
D-Flash program	Possible	Not possible					
D-Flash erase	Possible, on the condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible					

Table 4 Flash Protection Modes

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the read-protected Flash contents, see **Table 5** and **Table 6**, and the programmed password is erased. The Flash protection is then disabled upon the next reset.

For XC866-2FR and XC866-4FR devices:

The selection of protection type is summarized in Table 5.

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_H to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

SYSCON0 System Control Register 0 Reset Value: 00_H 2 1 0 7 6 5 4 3 0 1 0 RMAP r rw r rw

Field	Bits	Туре	Description
RMAP	0	rw	 Special Function Register Map Control The access to the standard SFR area is enabled. The access to the mapped SFR area is enabled.
1	2	rw	Reserved Returns the last value if read; should be written with 1.
0	1,[7:3]	r	Reserved Returns 0 if read; should be written with 0.

The page register has the following definition:

MOD_PAGE

Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
o	P	ST	NR	0		PAGE	
, v	N	v	V	r		rwh	۰ <u>ــــــــــــــــــــــــــــــــــــ</u>

Field	Bits	Туре	Description					
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.					
STNR	[5:4]	w	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected.					
			01 ST1 is selected. 10 ST2 is selected.					
			11 ST3 is selected.					

Table 16	Flash Data Retention an	d Endurance (Operat	ing Conditions apply)
Retention	Endurance ¹⁾	Size	Remarks
Program Fla	sh		
20 years	1,000 cycles	up to 16 Kbytes ²⁾	for 16-Kbyte Variant
20 years	1,000 cycles	up to 8 Kbytes ²⁾	for 8-Kbyte Variant
20 years	1,000 cycles	up to 4 Kbytes ²⁾	for 4-Kbyte Variant
Data Flash			
20 years	1,000 cycles	4 Kbytes	
5 years	10,000 cycles	1 Kbyte	
2 years	70,000 cycles	512 bytes	
2 years	100,000 cycles	128 bytes	
1			

Table 16 shows the Flash data retention and endurance targets.

¹⁾ One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in **Table 16** is valid only if the following conditions are fulfilled:

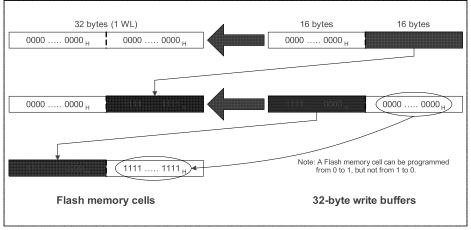
- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.

- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.

- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.

²⁾ If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the device variant. Having more Data Flash will mean less Flash is available for Program Flash.

3.3.1 Flash Bank Sectorization


The XC866 product family offers four Flash devices with either 8 Kbytes or 16 Kbytes of embedded Flash memory. These Flash memory sizes are made up of two or four 4-Kbyte Flash banks, respectively. Each Flash device consists of Program Flash (P-Flash) bank(s) and a single Data Flash (D-Flash) bank with different sectorization shown in **Figure 11**. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations. The XC866 ROM devices offer a single 4-Kbyte D-Flash bank.

3.3.2 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. Hence, it is possible to program the same WL, for example, with 16 bytes of data in two times (see **Figure 12**).

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

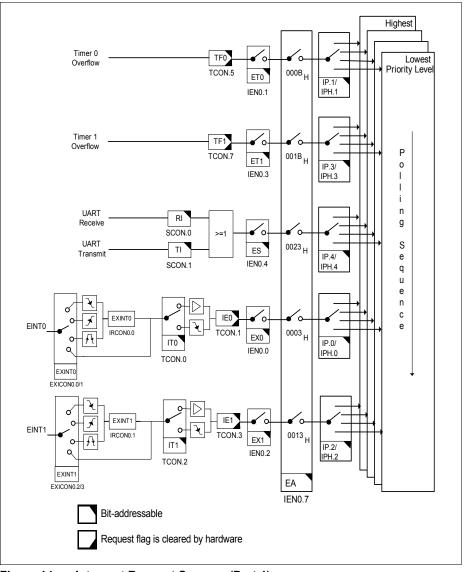
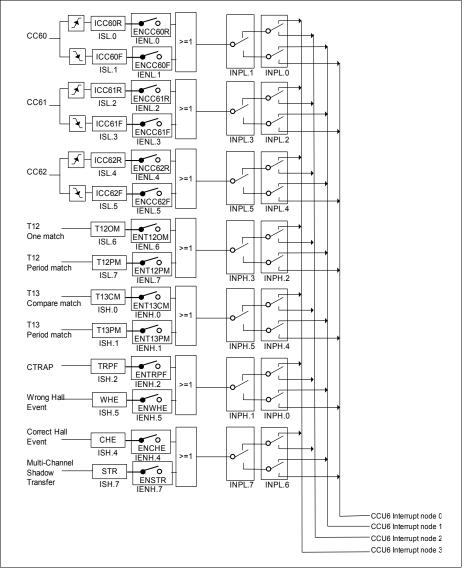



Figure 14 Interrupt Request Sources (Part 1)

XC866

Functional Description

Figure 17 Interrupt Request Sources (Part 4)

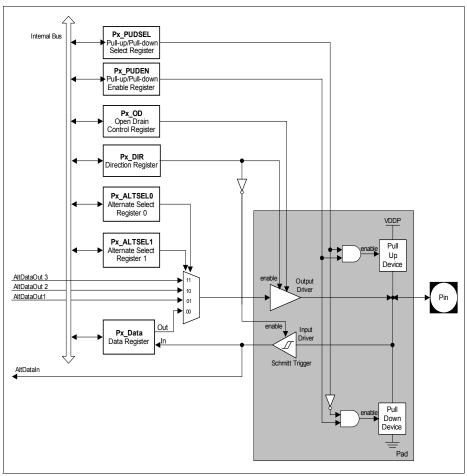


Figure 18 General Structure of Bidirectional Port

3.16 Timer 2

Timer 2 Modes

Table 29

Timer 2 is a 16-bit general purpose timer (THL2) that has two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode. If the prescalar is disabled, Timer 2 counts with an input clock of PCLK/12. Timer 2 continues counting as long as it is enabled.

Table 29	Timer 2 wodes
Mode	Description
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event

XC866

Functional Description

3.18 Analog-to-Digital Converter

The XC866 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2.

Features:

- Successive approximation
- 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)
- Eight analog channels
- · Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- · Single conversion mode
- Autoscan functionality
- · Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- · Two independent conversion request sources with programmable priority
- Selectable conversion request trigger
- · Flexible interrupt generation with configurable service nodes
- · Programmable sample time
- · Programmable clock divider
- · Cancel/restart feature for running conversions
- · Integrated sample and hold circuitry
- · Compensation of offset errors
- · Low power modes

3.19 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- · use the built-in debug functionality of the XC800 Core
- · add a minimum of hardware overhead
- provide support for most of the operations by a Monitor Program
- use standard interfaces to communicate with the Host (a Debugger)

Features:

- · Set breakpoints on instruction address and within a specified address range
- Set breakpoints on internal RAM address
- · Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks
- Step through the program code

The OCDS functional blocks are shown in **Figure 35**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals. After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack). The OCDS system is accessed through the JTAG¹, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC866 has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either Port 0 (primary) or Ports 1 and 2 (secondary). User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

Table 38Power Down Current (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		typ. ¹⁾	max. ²⁾		Remarks
V _{DDP} = 5V Range	k		1		
Power-Down Mode ³⁾	I _{PDP}	1	10	μA	$T_{A} = +25 \ ^{\circ}C.^{4)}$
		-	30	μA	T_{A} = + 85 °C, XC866- 4FR, XC866-2FR ⁴⁾⁵⁾
		-	35	μA	T _A = + 85 °C, XC866- 1FR, ROM device ⁴⁾⁵⁾

¹⁾ The typical I_{PDP} values are measured at V_{DDP} = 5.0 V.

²⁾ The maximum I_{PDP} values are measured at V_{DDP} = 5.5 V.

- ³⁾ I_{PDP} (power-down mode) has a maximum value of 200 μ A at T_A = + 125 °C.
- ⁴⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0 = V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

⁵⁾ Not subject to production test, verified by design/characterization.

Table 39Power Supply Current Parameters (Operating Conditions apply;
 V_{DDP} = 3.3V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		typ. ¹⁾ max. ²⁾		1	Remarks
V _{DDP} = 3.3V Range		-		4	
Active Mode	I _{DDP}	21.5	23.3	mA	3)
Idle Mode	I _{DDP}	16.4	18.9	mA	XC866-4FR, XC866-2FR ⁴⁾
		11.2	13.5	mA	XC866-1FR, ROM device ⁴⁾
Active Mode with slow-down enabled	I _{DDP}	6.8	8	mA	XC866-4FR, XC866-2FR ⁵⁾
		5.4	7.3	mA	XC866-1FR, ROM device ⁵⁾
Idle Mode with slow-down enabled	I _{DDP}	6.8	7.8	mA	XC866-4FR, XC866-2FR ⁶⁾
		4.9	6.9	mA	XC866-1FR, ROM device ⁶⁾

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 3.6 V).

³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.

⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock</u> disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.

⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: <u>CPU</u> clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET</u> = V_{DDP}, no load on ports.

⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to all peripherals enable and running at 833 KHz by setting CLKREL in CMCON to 0101_B,, <u>RESET = V_{DDP}, no load on ports.</u></u>

Table 40Power Down Current (Operating Conditions apply; V_{DDP} = 3.3Vrange)

Parameter	Symbol	Limit	Limit Values		Test Condition
		typ. ¹⁾	max. ²⁾	-	Remarks
$V_{\rm DDP}$ = 3.3V Range		-1	1	1	
Power-Down Mode ³⁾	I _{PDP}	1	10	μA	$T_{\rm A}$ = + 25 °C. ⁴)
		-	30	μA	T _A = + 85 °C, XC866- 4FR, XC866-2FR ⁴⁾⁵⁾
		-	35	μA	T_{A} = + 85 °C, XC866- 1FR, ROM device ⁴⁾⁵⁾

¹⁾ The typical I_{PDP} values are measured at V_{DDP} = 3.3 V.

 $^{2)}\,$ The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

³⁾ I_{PDP} (power-down mode) has a maximum value of 200 μ A at T_A = + 125 °C.

⁴⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0= V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

⁵⁾ Not subject to production test, verified by design/characterization.

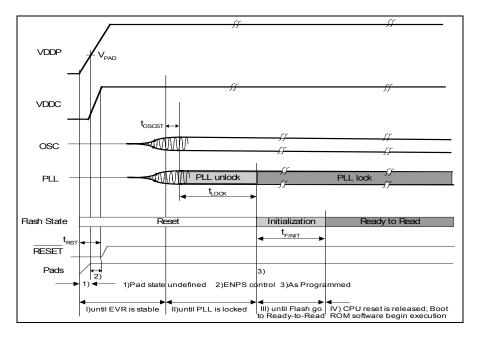

4.3.3 Power-on Reset and PLL Timing

Table 42	Power-On Reset and PLL Timing (Operating Conditions apply)
----------	--

Parameter	Symbol	Limit Values			Unit	Test Conditions
		min.	typ.	max.		
Pad operating voltage	V _{PAD} CC	2.3	-	-	V	
On-Chip Oscillator start-up time	t _{OSCST} CC	_	-	500	ns	
Flash initialization time	t _{FINIT} CC	-	160	-	μs	
RESET hold time ¹⁾	t _{RST} SR	-	500	_	μs	V_{DDP} rise time (10% – 90%) \leq 500µs
PLL lock-in in time	t _{LOCK} CC	-	-	200	μs	
PLL accumulated jitter	D _P	-	-	0.7	ns	2)

¹⁾ RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5V).

²⁾ PLL lock at 80 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 40 and P = 1.

Figure 42 Power-on Reset Timing

Package and Reliability

5.2 Package Outline

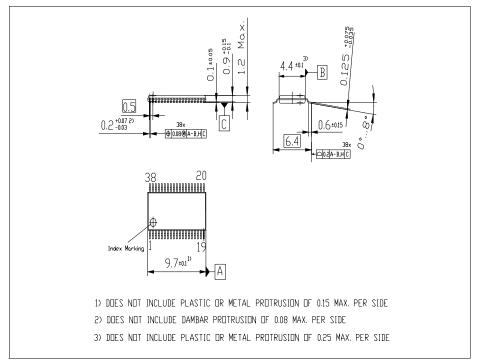


Figure 46 PG-TSSOP-38-4 Package Outline