

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc8662frabefxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2007-10 Published by Infineon Technologies AG, 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Summary of Features

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery

For the available ordering codes for the XC866, please refer to your responsible sales representative or your local distributor.

As this document refers to all the derivatives, some descriptions may not apply to a specific product. For simplicity all versions are referred to by the term XC866 throughout this document.

General Device Information

2.2 Logic Symbol

Figure 3 XC866 Logic Symbol

3.2.1 Memory Protection Strategy

The XC866 memory protection strategy includes:

- Read-out protection: The Flash Memory can be enabled for read-out protection and ROM memory is always protected.
- Program and erase protection: The Flash memory in all devices can be enabled for program and erase protection.

Flash memory protection is available in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- · Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

Mode	0	1
Activation	Program a valid password via BSL m	ode 6
Selection	MSB of password = 0	MSB of password = 1
P-Flash contents can be read by	Read instructions in the P-Flash	Read instructions in the P-Flash or D-Flash
P-Flash program and erase	Not possible	Not possible
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash or D-Flash
D-Flash program	Possible	Not possible
D-Flash erase	Possible, on the condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible

Table 4 Flash Protection Modes

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the read-protected Flash contents, see **Table 5** and **Table 6**, and the programmed password is erased. The Flash protection is then disabled upon the next reset.

For XC866-2FR and XC866-4FR devices:

The selection of protection type is summarized in Table 5.

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing D0_H to PASSWD register disables the bit protection scheme.

The access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include NDIV, WDTEN, PD, and SD.

PASSWD Password Register

Reset Value: 07_H

7	6	5	4	3	2	1	0
		PASS			PROTECT _S	MOE)E
		W			rh	rw	

Field	Bits	Туре	Description
MODE	[1:0]	rw	Bit Protection Scheme Control bits00Scheme Disabled11Scheme Enabled (default)Others: Scheme EnabledThese two bits cannot be written directly. To changethe value between 11 _B and 00 _B , the bit field PASSmust be written with 11000 _B ; only then, will theMODE[1:0] be registered.
PROTECT_S	2	rh	Bit Protection Signal Status bitThis bit shows the status of the protection.0Software is able to write to all protected bits.1Software is unable to write to any protected bits.
PASS	[7:3]	W	Password bitsThe Bit Protection Scheme only recognizes three patterns.11000BEnables writing of the bit field MODE.10011BOpens access to writing of all protected bits.10101BCloses access to writing of all protected bits.

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0			1			1	1		
B2 _H	PORT_PAGE Reset: 00 _H	Bit Field	C)P	ST	'NR	0		PAGE	
	Page Register for PORT	Туре	1	w	,	N	r		rwh	
RMAP =	0, Page 0									
80 _H	P0_DATA Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре		r	rwh	rwh	rwh	rwh	rwh	rwh
86 _H	P0_DIR Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	PU Direction Register	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Data Register	Туре	rwh	rwh	rwh		r		rwh	rwh
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	F I Direction Register	Туре	rw	rw	rw		r		rw	rw
A0 _H	P2_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
А1 _Н	P2_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
в0 _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B1 _H	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Гуре	rw	rw	rw	rw	rw	rw	rw	rw
RMAP =	0, Page 1	D: C: U		_		54	50	50	54	50
80 _H	P0_PUDSEL Reset: FF _H P0_Pull_Ip/Pull_Down Select Register	Bit Field		0	P5	P4	P3	P2	P1	P0
00		Type		r	rw	rw	rw	rw	rw D1	rw
80H	P0_P0DEN Reset: C4 _H	Bit Field		0	P5	P4	P3	P2	P1	PU
00		Type Dit Field	D7	r DC	TW DE	rw	rw	rw	rw D1	rw D0
90 ^H	P1_PUDSEL Reset: FF _H P1 Pull-Up/Pull-Down Select Register	Bit Field	P7	Pb	P5		0		P1	PU
01		Type Dit Field		TW DC	TW DE		0		IW D1	TW DO
aiH	P1_PUDEN Reset: FFH P1 Pull-Up/Pull-Down Enable Register	Bit Field	P7	Po	P5		0		PI	PU
A.0		Type Bit Field	D7	TW D6	D5	D4	1	D2	D1	DO IN
AUH	P2 Pull-Up/Pull-Down Select Register		F7	FU	FU	F4	FJ	F2	F I	FU
Δ1	R2 RUDEN Bosot: 00.	Type Bit Field	P7	P6	D5	D4	IW D3	D2	D1	P0
ЛЧ	P2 Pull-Up/Pull-Down Enable Register	Type	F 7	F U	F J	F 4	F J	F 2	F I	F U
B0	P3 PUDSEL Reset: BE	Bit Field	P7	P6	P5	P4	P3	P2	P1	PO
BOH	P3 Pull-Up/Pull-Down Select Register	Type	F /	FU DW	F J	F 4	F J	F 2	P I	F U
B1	P3 PUDEN Reset: 40	Bit Field	P7	P6	P5	P4	P3	P2	P1	PO
ын	P3 Pull-Up/Pull-Down Enable Register	Type	DW	rw.	TV NV	rw	rw	TZ TW	rw.	rw.
RMAP =	0. Page 2	турс	100	1 44	100	100	1 44	1.44	1 44	1 44
80	PO ALTSELO Reset: 00	Bit Field		0	P5	P4	P3	P2	P1	PO
ου _Η	P0 Alternate Select 0 Register	Type		r	rw	rw	rw	rw	rw	rw
86	P0 ALTSEL1 Reset: 00	Bit Field		0	P5	P4	P3	P2	P1	PO
~~H	P0 Alternate Select 1 Register	Type		r	rw	rw	rw	rw	rw	rw
90	P1 ALTSEL0 Reset: 00	Bit Field	P7	P6	P5	- ···	0		P1	P0
- °H	P1 Alternate Select 0 Register	Type	rw	rw	rw		r		rw	rw
91	P1 ALTSEL1 Reset: 00	Bit Field	P7	P6	P5		0		P1	P0
Ч	P1 Alternate Select 1 Register	Type	rw	rw	rw		r		rw	rw
B0.,	P3 ALTSEL0 Reset: 00	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
- •H	P3 Alternate Select 0 Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
	1		1	1	1	i.	1	1		

Table 11 ADC Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0		
CA _H	ADC_RESR0L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR			
	Result Register 0 Low		Туре	r	h	r	rh	rh		rh			
CB _H	ADC_RESR0H	Reset: 00 _H	Bit Field				RESU	LT[9:2]					
	Result Register 0 High		Туре				r	h					
CCH	ADC_RESR1L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR			
	Result Register 1 Low		Туре	r	h	r	rh	rh		rh			
CD _H	ADC_RESR1H	Reset: 00 _H	Bit Field				RESU	LT[9:2]					
	Result Register 1 High		Туре				r	h					
CEH	ADC_RESR2L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR			
	Result Register 2 Low		Туре	r	h	r	rh	rh		rh			
CF _H	ADC_RESR2H	Reset: 00 _H	Bit Field				RESU	LT[9:2]					
	Result Register 2 High		Туре				r	h					
D2 _H	ADC_RESR3L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR			
	Result Register 3 Low		Туре	r	h	r	rh	rh		rh			
D3 _H	ADC_RESR3H	Reset: 00 _H	Bit Field				RESU	LT[9:2]					
	Result Register 3 High		Туре				r	h					
RMAP =	0, Page 3												
CA _H	ADC_RESRA0L	Reset: 00 _H	Bit Field	RE	ESULT[2	2:0]	VF	DRC		CHNR			
	Result Register 0, View A	A Low	Туре		rh		rh	rh		rh			
CBH	ADC_RESRA0H	Reset: 00 _H	Bit Field		RESULT[10:3]								
	Result Register 0, View A	A High	Туре				r	h					
CCH	ADC_RESRA1L	Reset: 00 _H	Bit Field	RE	ESULT[2	2:0]	VF	DRC		CHNR			
	Result Register 1, View A Low		Туре		rh		rh	rh		rh			
CD _H	ADC_RESRA1H Reset: 00 _H		Bit Field				RESUL	.T[10:3]					
	Result Register 1, View A High		Туре				r	h					
CEH	ADC_RESRA2L	Reset: 00 _H	Bit Field	RESULT[2:0] VI			VF	DRC		CHNR			
	Result Register 2, View A	A Low	Туре		rh		rh	rh rh					
CF _H	ADC_RESRA2H	Reset: 00 _H	Bit Field				RESUL	.T[10:3]					
	Result Register 2, View A	A High	Туре				r	h					
D2 _H	ADC_RESRA3L	Reset: 00 _H	Bit Field	RE	ESULT[2	2:0]	VF DRC CHNR			CHNR			
	Result Register 3, View A	A LOW	Туре		rh		rh	rh		rh			
D3 _H	ADC_RESRA3H	Reset: 00 _H	Bit Field				RESUL	.T[10:3]					
	Result Register 3, View A	A High	Туре				r	h					
RMAP =	0, Page 4												
CA _H	ADC_RCR0 Result Control Register 0	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R		
			Туре	rw	rw	r	rw		r		rw		
СВ _Н	ADC_RCR1 Result Control Register 1	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R		
			Туре	rw	rw	r	rw		r		rw		
CCH	ADC_RCR2 Result Control Register 2	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R		
			Туре	rw	rw	r	rw		r		rw		
CD _H	ADC_RCR3 Result Control Register 3	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R		
			Туре	rw	rw	r	rw		r		rw		
CEH	ADC_VFCR	Reset: 00 _H	Bit Field			0		VFC3	VFC2	VFC1	VFC0		
	Valid Flag Clear Register		Туре			r		w	w	w	w		
RMAP =	0, Page 5												

Table 11 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CA _H	ADC_CHINFR Reset: 00 _H	Bit Field	CHINF	CHINF	CHINF	CHINF	CHINF	CHINF	CHINF	CHINF
	Channel Interrupt Flag Register		7	6	5	4	3	2	1	0
		Туре	rh	rh	rh	rh	rh	rh	rh	rh
CB _H	ADC_CHINCR Reset: 00 _H	Bit Field	CHINC	CHINC	CHINC	CHINC	CHINC	CHINC	CHINC	CHINC
	Channel Interrupt Clear Register		7	6	5	4	3	2	1	0
		Туре	w	w	w	w	w	w	w	w
CCH	ADC_CHINSR Reset: 00 _H	Bit Field	CHINS	CHINS	CHINS	CHINS	CHINS	CHINS	CHINS	CHINS
	Channel Interrupt Set Register	Tune	/	0	5	4	3	2	1	0
00		Type Dit Field	W		W	W	W CLUND	W	W CLUND	W
CDH	Channel Interrupt Node Pointer	BILFIEID	CHINP 7	6	5		3	2		
	Register	Type	rw	rw	rw	rw	rw	- rw	rw	rw
CEu	ADC EVINER Reset: 00.	Bit Field	EVINE	EVINE	EVINE	EVINE		0	EVINE	EVINE
0-1	Event Interrupt Flag Register	Dictiona	7	6	5	4			1	0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H	Bit Field	EVINC	EVINC	EVINC	EVINC	(0	EVINC	EVINC
	Event Interrupt Clear Flag Register		7	6	5	4			1	0
		Туре	w	w	w	w	r		w	w
D2 _H	ADC_EVINSR Reset: 00 _H	Bit Field	EVINS	EVINS	EVINS	EVINS	l	0		EVINS
	Event Interrupt Set Flag Register		7	6	5	4			1	0
		Туре	w	w	w	w		r	w	w
D3 _H	ADC_EVINPR Reset: 00 _H	Bit Field	EVINP	EVINP	EVINP	EVINP		D	EVINP	EVINP
	Event Interrupt Node Pointer Register	T	1	6	5	4		-	1	0
DMAD	0. David 0	туре	rw	rw	rw	rw		ſ	rw	rw
RIVIAP =	0, Page 6	Dis Final d	0117	0110	0115	0114			•	
CAH	Conversion Request Control Register 1	BILFIEID		Спо	Спр		0			
		Туре	rwh	rwh	rwh	rwh			r	
СВн	ADC CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		(D	
	Conversion Request Pending									
	Register 1	Туре	rwh	rwh	rwh	rwh			r	
CCH	ADC_CRMR1 Reset: 00 _H	Bit Field	Rsv	LDEV	CLR	SCAN	ENSI	ENTR	EN	GT
	Conversion Request Mode Register 1				PND					
		Туре	r	w	w	rw	rw	rw	r	w
CD _H	ADC_QMR0 Reset: 00 _H	Bit Field	CEV	TREV	FLUSH	CLRV	TRMD	ENTR	EN	GT
	Queue Mode Register 0	Туре	w	w	w	w	rw	rw	n	w
CEH	ADC_QSR0 Reset: 20 _H	Bit Field	Rsv	0	EMPTY	EV	0			
	Queue Status Register 0	Туре	r	r	rh	rh	r			
CF _H	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0 REQCHNR		R	
	Queue 0 Register 0	Туре	rh	rh	rh	rh	r	r rh		
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	R
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	R
	Queue Input Register 0	Туре	w	w	w		r		w	

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12Timer 2 Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
С0 _Н	T2_T2CON Timer 2 Control Register	Reset: 00 _H	Bit Field	TF2	EXF2	(D	EXEN2	TR2	0	CP/ RL2
			Туре	rwh	rwh		r	rw	rwh	r	rw

AB _H	SSC_CONH Reset: 00 _H Control Register High	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
	Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw	
	Operating Mode	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
		Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
ACH	SSC_TBL Reset: 00 _H	Bit Field	TB_VALUE								
	Transmitter Buffer Register Low		rw								
AD _H	SSC_RBL Reset: 00 _H	Bit Field	RB_VALUE								
	Receiver Buffer Register Low	Туре		rh							
AE _H	SSC_BRL Reset: 00 _H	Bit Field				BR_VA	_UE[7:0]				
	Baudrate Timer Reload Register Low		rw								
AF _H	SSC_BRH Reset: 00 _H	Bit Field				BR_VAL	UE[15:8]	J			
	Baudrate Timer Reload Register High	Туре				r	N				

Table 14 SSC Register Overview

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1		1		1					
E9 _H	MMCR2 Reset: 0U _H Monitor Mode Control Register 2	Bit Field	EXBC_ P	EXBC	MBCO N_P	MBCO N	MMEP _P	MMEP	MMOD E	JENA
		Туре	w	rw	w	rwh	w	rwh	rh	rh
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	MSTEP _P	MSTEP	MRAM S_P	MRAM S	TRF	RRF
		Туре	w	rwh	w	rw	w	rwh	rh	rh
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F
		Туре	rw	rh	rwh	rwh	rwh	rwh	rwh	rwh
F3 _H	MMBPCR Reset: 00 _H BreakPoints Control Register	Bit Field	SWBC	HWB3C HW		HWB2C I		HW	B0C	
		Туре	rw	r	rw i		N	rw	r	N
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control Register	Bit Field	DVECT	DRETR	()	MMUIE _P	MMUIE	RRIE_ P	RRIE
		Туре	rwh	rwh		r	w	rw	w	rw
F5 _H	MMDR Reset: 00 _H Bit Field MMRR Monitor Mode Data Register MMRR MMRR									
	Receive	Туре				r	h			
	Transmit	Bit Field				MN	ITR			
		Туре				١	v			
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select Register	Bit Field	0 BPSEL BPSEL _P				SEL			
		Туре		r		w rw				
F7 _H	HWBPDR Reset: 00 _H	Bit Field				HW	3Pxx			
	Hardware Breakpoints Data Register Type					r	N			

Sector 2: 128-byte	Sector 9: 128-byte
Sector 1: 128-byte	Sector 8: 128-byte
	Sector 7: 128-byte
	Sector 6: 128-byte
	Sector 5: 256-byte
	Sector 4: 256-byte
	Sector 3: 512-byte
Sector 0: 3.75-Kbyte	Sector 2: 512-byte
	Sector 1: 1-Kbyte
	Sector 0: 1-Kbyte
P-Flash	D-Flash

Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

XC866

Functional Description

Figure 15 Interrupt Request Sources (Part 2)

Figure 18 General Structure of Bidirectional Port

For power saving purposes, the clocks may be disabled or slowed down according to **Table 23**.

Table 23System frequency (f_{sys} = 80 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals, including CCU6, are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

3.13 LIN Protocol

The UART can be used to support the Local Interconnect Network (LIN) protocol for both master and slave operations. The LIN baud rate detection feature provides the capability to detect the baud rate within LIN protocol using Timer 2. This allows the UART to be synchronized to the LIN baud rate for data transmission and reception.

LIN is a holistic communication concept for local interconnected networks in vehicles. The communication is based on the SCI (UART) data format, a single-master/multipleslave concept, a clock synchronization for nodes without stabilized time base. An attractive feature of LIN is self-synchronization of the slave nodes without a crystal or ceramic resonator, which significantly reduces the cost of hardware platform. Hence, the baud rate must be calculated and returned with every message frame.

The structure of a LIN frame is shown in Figure 30. The frame consists of the:

- header, which comprises a Break (13-bit time low), Synch Byte (55_H), and ID field
- response time
- data bytes (according to UART protocol)
- checksum

Figure 30 Structure of LIN Frame

3.13.1 LIN Header Transmission

LIN header transmission is only applicable in master mode. In the LIN communication, a master task decides when and which frame is to be transferred on the bus. It also identifies a slave task to provide the data transported by each frame. The information needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data.

3.15 Timer 0 and Timer 1

Timers 0 and 1 are count-up timers which are incremented every machine cycle, or in terms of the input clock, every 2 PCLK cycles. They are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 28**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation					
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.					
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.					
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.					
3	Timer 0 operates as two 8-bit timers The timer registers, TL0 and TH0, operate as two separate 8-bit counters. Timer 1 is halted and retains its count even if enabled.					

Table 28 Timer 0 and Timer 1 Modes

3.16 Timer 2

Timer 2 is a 16-bit general purpose timer (THL2) that has two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode. If the prescalar is disabled, Timer 2 counts with an input clock of PCLK/12. Timer 2 continues counting as long as it is enabled.

Table 29	Timer 2 Modes					
Mode	Description					
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event 					
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition 					
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event 					

3.19.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC866 devices are given in Table 31.

Device Type	Device Name	JTAG ID	
Flash	XC866L-4FR	1010 0083 _H	
	XC866-4FR	100F 5083 _H	
	XC866L-2FR	1010 2083 _H	
	XC866-2FR	1010 1083 _H	
	XC866L-1FR	1013 8083 _H	
	XC866-1FR	1013 8083 _H	

Table 31	JTAG ID Summarv

Electrical Parameters

4.2.4 Power Supply Current

Table 37Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		typ. ¹⁾	max. ²⁾	1	Remarks	
V _{DDP} = 5V Range						
Active Mode	I _{DDP}	22.6	24.5	mA	3)	
Idle Mode	I _{DDP}	17.2	19.7	mA	XC866-4FR, XC866-2FR ⁴⁾	
		12.5	14	mA	XC866-1FR, ROM device ⁴⁾	
Active Mode with slow-down enabled	I _{DDP}	7.2	8.2	mA	XC866-4FR, XC866-2FR ⁵⁾	
		5.6	7.5	mA	XC866-1FR, ROM device ⁵⁾	
Idle Mode with slow-down enabled	I _{DDP}	7.1	8	mA	XC866-4FR, XC866-2FR ⁶⁾	
		5.1	7.2	mA	XC866-1FR, ROM device ⁶⁾	

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

- ³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.
- ⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock disabled</u>, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.
- ⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, RESET = V_{DDP}, no load on ports.
- ⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to</u> all peripherals enabled and running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET</u> = V_{DDP}, no load on ports.

Electrical Parameters

Table 40Power Down Current (Operating Conditions apply; V_{DDP} = 3.3Vrange)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		typ. ¹⁾	max. ²⁾		Remarks
V _{DDP} = 3.3V Range			1		
Power-Down Mode ³⁾	I _{PDP}	1	10	μA	$T_{\rm A}$ = + 25 °C. ⁴)
		-	30	μA	T _A = + 85 °C, XC866- 4FR, XC866-2FR ⁴⁾⁵⁾
		-	35	μA	T_{A} = + 85 °C, XC866- 1FR, ROM device ⁴⁾⁵⁾

¹⁾ The typical I_{PDP} values are measured at V_{DDP} = 3.3 V.

 $^{2)}\,$ The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

³⁾ I_{PDP} (power-down mode) has a maximum value of 200 μ A at T_A = + 125 °C.

⁴⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0= V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

⁵⁾ Not subject to production test, verified by design/characterization.

http://www.infineon.com