

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc8662fribefxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit Single-Chip Microcontroller XC800 Family

1 **Summary of Features**

- High-performance XC800 Core •
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 8 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 512 bytes of XRAM
 - 4/8/16 Kbytes of Flash; or 8/16 Kbytes of ROM, with additional 4 Kbytes of Flash (includes memory protection strategy)
- I/O port supply at 3.3 V/5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

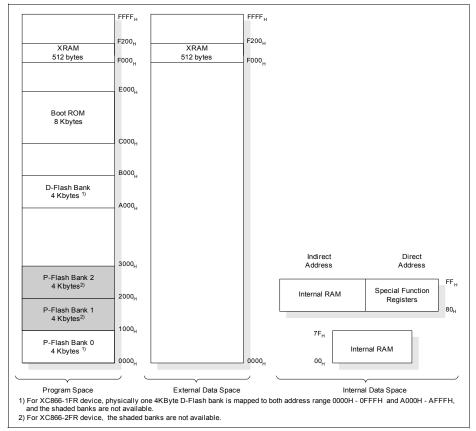
(further features are on next page)

XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P3		I			directional general purpose I/O port. It as alternate functions for the CCU6.
P3.0	32		Hi-Z	CCPOS1_2 CC60_0	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0
P3.1	33		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1
				COUT60_0	Output of Capture/Compare channel 0
P3.2	34		Hi-Z	CCPOS2_2 CC61_0	CCU6 Hall Input 2 Input/Output of Capture/Compare channel 1
P3.3	35		Hi-Z	COUT61_0	Output of Capture/Compare channel 1
P3.4	36		Hi-Z	CC62_0	Input/Output of Capture/Compare channel 2
P3.5	37		Hi-Z	COUT62_0	Output of Capture/Compare channel 2
P3.6	30		PD	CTRAP_0	CCU6 Trap Input
P3.7	31		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Table 3Pin Definitions and Functions (cont'd)


3.2 Memory Organization

İnfineon

The XC866 CPU operates in the following five address spaces:

- · 8 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 512 bytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- a 128-byte Special Function Register area
- 4/8/16 Kbytes of Flash program memory (Flash devices); or 8/16 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices)

Figure 6 illustrates the memory address spaces of the XC866-4FR device.

Figure 6 Memory Map of XC866 Flash Devices

Table 5 Flash Protection Type for XC866-2FR and XC866-4FR devices

PASSWORD	Type of Protection	Flash Banks to Erase when Unprotected
1XXXXXXX _B	Flash Protection Mode 1	All Banks
0XXXXXXAB	Flash Protection Mode 0	P-Flash Bank

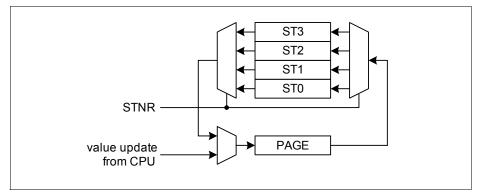
For XC866-1FR device and ROM devices:

The selection of protection type is summarized in Table 6.

Table 6 Flash Protection Type for XC866-1FR device and ROM devices

PASSWORD	Type of Protection (Applicable to the whole Flash)	Sectors to Erase when Unprotected	Comments
1XXXXXX _B	Read/Program/Erase	All Sectors	Compatible to Protection mode 1
00001XXX _B	Erase	Sector 0	
00010XXX _B	Erase	Sector 0 and 1	
00011XXX _B	Erase	Sector 0 to 2	
00100XXX _B	Erase	Sector 0 to 3	
00101XXX _B	Erase	Sector 0 to 4	
00110XXX _B	Erase	Sector 0 to 5	
00111XXX _B	Erase	Sector 0 to 6	
01000XXX _B	Erase	Sector 0 to 7	
01001XXX _B	Erase	Sector 0 to 8	
01010XXX _B	Erase	All Sectors	
Others	Erase	None	

Although no protection scheme can be considered infallible, the XC866 memory protection strategy provides a very high level of protection for a general purpose microcontroller.



In order to access a register located in a page different from the actual one, the current page must be left. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and finally, the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

- Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or
- Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC866 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

3.2.4 XC866 Register Overview

The SFRs of the XC866 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Table 7** to **Table 15**, with the addresses of the bitaddressable SFRs appearing in bold typeface.

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	I	Bit	7	6	5	4	3	2	1	0	
RMAP =	0 or 1				1			1		1		
81 _H	SP Rese	t: 07 _H	Bit Field				S	P				
	Stack Pointer Register		Туре				r	w				
82 _H	DPL Rese	t: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0	
	Data Pointer Register Low		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
83 _H	DPH Rese	t: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0	
	Data Pointer Register High		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
87 _H		t: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE	
	Power Control Register		Туре	rw		r		rw	rw	r	rw	
88 _H		t: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
	Timer Control Register		Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw	
89 _H		t: 00 _H	Bit Field	GATE1	0	Τ	1M	GATE0	0	T	M	
	Timer Mode Register		Туре	rw	r	r	w	rw	r	r	w	
8A _H		Reset: 00 _H Bit Field VAL										
	Timer 0 Register Low		Туре				rv	vh				
8B _H		t: 00 _H	Bit Field				V	AL				
	Timer 1 Register Low		Туре				rv	vh				
8C _H		t: 00 _H	Bit Field	VAL rwh								
	Timer 0 Register High		Туре									
8D _H		t: 00 _H	Bit Field	VAL								
	Timer 1 Register High		Туре				rv	vh				
98 _H			Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Register		Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
99 _H		t: 00 _H	Bit Field				V	AL				
	Serial Data Buffer Register		Туре	rwh								
A2 _H		t: 00 _H	Bit Field		0		TRAP_		0		DPSEL	
	Extended Operation Register		_				EN				0	
			Туре		r		rw		r		rw	
A8 _H	IEN0 Rese Interrupt Enable Register 0		Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0	
			Туре	rw	r	rw	rw	rw	rw	rw	rw	
B8 _H	IP Rese Interrupt Priority Register		Bit Field)	PT2	PS	PT1	PX1	PT0	PX0	
	. , .		Туре		r	rw	rw	rw	rw	rw	rw	
B9 _H	IPH Rese Interrupt Priority Register High		Bit Field)	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	
	, , , , ,		Туре		r	rw	rw	rw	rw	rw	rw	
D0 _H	PSW Rese Program Status Word Register		Bit Field	CY	AC	F0	RS1	RS0	OV	F1	P	
50	· ·		Туре	rw	rwh	rwh	rw	rw	rwh	rwh	rh	
E0 _H	ACC Rese Accumulator Register	· · · · · ·	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0	
=0	÷		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
E8 _H	IEN1 Rese Interrupt Enable Register 1	t: 00 _H	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC	
			Туре	rw	rw	rw	rw	rw	rw	rw	rw	

Table 7 CPU Register Overview

Table 7CPU Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
F0 _H	В	Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Interrupt Priority Regis	Reset: 00 _H iter 1	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Interrupt Priority Regis	Reset: 00 _H ter 1 High	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSCH	PADC H
			Туре	rw	rw	rw	rw	rw	rw	rw	rw

The system control SFRs can be accessed in the standard memory area (RMAP = 0).

Table 8 System Control Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	0 or 1		1			1			1		
8F _H	SYSCON0 Reset: 00 _H	Bit Field				0				RMAP	
	System Control Register 0	Туре				r					
RMAP =	0		1								
BF _H	SCU_PAGE Reset: 00 _H	Bit Field	C)P	ST	STNR 0			PAGE		
	Page Register for System Control	Туре	1	N	١	v	r		rwh		
RMAP =	0, Page 0										
B3 _H	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field		0	JTAG TDIS	JTAG TCKS	(0	EXINT 0IS	URRIS	
		Туре		r	rw	rw		r	rw	rw	
B4 _H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0	
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
B5 _H	IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field	0 ADCS RC1		ADCS RC1	ADCS RC0	RIR	TIR	EIR		
		Туре		r	rwh		rwh rwh		rwh	rwh	
B7 _H	EXICON0 Reset: 00 _H	Bit Field	EXI	NT3	EXINT2		EXINT1		EXI	NT0	
	External Interrupt Control Register 0	Туре	r	w		w	rw			w	
BA _H	EXICON1 Reset: 00 _H	Bit Field		0		NT6	EXINT5		EXI	NT4	
	External Interrupt Control Register 1	Туре	r		rw		rw		rw		
BB _H	NMICON Reset: 00 _H NMI Control Register	Bit Field	0	NMI ECC	NMI VDDP	NMI VDD	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT	
		Туре	r	rw	rw	rw	rw	rw	rw	rw	
BC _H	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT	
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
BD _H	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BREN		BRPRE		R	
	Baud Rate Control Register	Туре	r	w	r	rw		rw		rw	
BE _H	BG Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer/Reload Register	Туре					N				
E9 _H	FDCON Reset: 00 _H Fractional Divider Control Register	Bit Field	BGS	SYNEN	ERRSY N	EOFSY N	BRK	NDOV	FDM	FDEN	
	Туре		rw	rw	rwh	rwh	rwh	rwh	rw	rw	
EA _H	FDSTEP Reset: 00 _H	Bit Field	ld STEP								
	Fractional Divider Reload Register	Туре гw									
EB _H	FDRES Reset: 00 _H	Bit Field	d RESULT								
	Fractional Divider Result Register	Туре	rh								

Table 11 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
CA _H	ADC_CHINFR Reset: 00 _H	Bit Field	CHINF									
	Channel Interrupt Flag Register	_	7	6	5	4	3	2	1	0		
		Туре	rh									
CBH	ADC_CHINCR Reset: 00 _H	Bit Field	CHINC	CHINC	CHINC		CHINC	CHINC 2	CHINC 1	CHINC 0		
	Channel Interrupt Clear Register	Turne	7	6	5	4	3			-		
00		Type	W	W	W	W	W	W	W	W		
CCH	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0		
		Туре	w	w	w	w	w	w	w	w		
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0		
	Register	Туре	rw									
CEH	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	()	EVINF 1	EVINF 0		
		Туре	rh	rh	rh	rh	1	r	rh	rh		
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag Register	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	-		0		EVINC 1	EVINC 0
		Туре	w	w	w	w	r		w	w		
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(0		EVINS 0		
		Туре	w	w	w	w	_	r	w	w		
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer Register	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	()	EVINP 1	EVINP 0		
		Туре	rw	rw	rw	rw	_	r	rw	rw		
RMAP =	0, Page 6											
CA _H	ADC_CRCR1 Reset: 00 _H Conversion Request Control Register 1	Bit Field	CH7	CH6	CH5	CH4		(0			
		Туре	rwh	rwh	rwh	rwh			r			
CB _H	ADC_CRPR1 Reset: 00 _H Conversion Request Pending	Bit Field	CHP7	CHP6	CHP5	CHP4		(0			
	Register 1	Туре	rwh	rwh	rwh	rwh			r			
CCH	ADC_CRMR1 Reset: 00 _H Conversion Request Mode Register 1	Bit Field	Rsv	LDEV	CLR PND	SCAN	ENSI	ENTR	EN	GT		
		Туре	r	w	w	rw	rw	rw	r	w		
CD _H	ADC_QMR0 Reset: 00 _H	Bit Field	CEV	TREV	FLUSH	CLRV	TRMD	ENTR	EN	GT		
	Queue Mode Register 0	Туре	w	w	w	w	rw	rw	r	w		
CEH	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPTY	EV			0			
		Туре	r	r	rh	rh			r	_		
CF _H	ADC_Q0R0 Reset: 00 _H Queue 0 Register 0	Bit Field	EXTR	ENSI	RF	V			REQCHN	к		
D 0	-	Type	rh	rh	rh	rh	r		rh			
D2 _H	ADC_QBUR0 Reset: 00 _H Queue Backup Register 0	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	к		
		Туре	rh	rh	rh	rh	r	_	rh	_		
D2 _H	ADC_QINR0 Reset: 00 _H Queue Input Register 0	Bit Field	EXTR	ENSI	RF)	F	REQCHN	к		
	Queue input register o	Туре	w	w	w		r		w			

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12Timer 2 Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
C0 _H	T2_T2CON Timer 2 Control Register	Reset: 00 _H	Bit Field	TF2	EXF2	()	EXEN2	TR2	0	CP/ RL2
			Туре	rwh	rwh		r	rw	rwh	r	rw

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FF _H	CCU6_TRPCTRH Reset: 00 _H	Bit Field		TRPEN			TR	PEN			
	Trap Control Register High		N	13							
		Туре	rw	rw			r	w			
RMAP =	0, Page 3										
9A _H	CCU6_MCMOUTL Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	0	R							
	Low	Туре	r	rh			h				
9B _H	CCU6_MCMOUTH Reset: 00 _H Multi-Channel Mode Output Register					EXPH					
	High	Туре	1	r		rh			rh		
9C _H	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12PM	T12OM	ICC62F	R	ICC61F	R	ICC60F	ICC60 R	
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13PM	T13CM	
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	ISTRP		ISCC62 IS		C61	ISC	C60	
	Port Input Select Register 0 Low	Туре	rw		rw		r	w	r	w	
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISPOS		
		Туре	n	w	rw		rw		rw		
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field			(C			IST1	3HR	
	Port Input Select Register 2	Туре				r			n	w	
FA _H	CCU6_T12L Reset: 00 _H	Bit Field				T12	CVL				
	Timer T12 Counter Register Low	Туре				n	vh				
FB _H	CCU6_T12H Reset: 00 _H	Bit Field				T12	CVH				
	Timer T12 Counter Register High	Туре				n	vh				
FC _H	CCU6_T13L Reset: 00 _H	Bit Field				T13	CVL				
	Timer T13 Counter Register Low	Туре				n	vh				
FD _H	CCU6_T13H Reset: 00 _H	Bit Field				T13	CVH				
	Timer T13 Counter Register High	Туре				n	vh				
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CCPO S2	CCPO S1	CCPO S0	CC62 ST	CC61 ST	CC60 ST	
		Туре	r	rh	rh	rh	rh	rh	rh	rh	
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS	
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

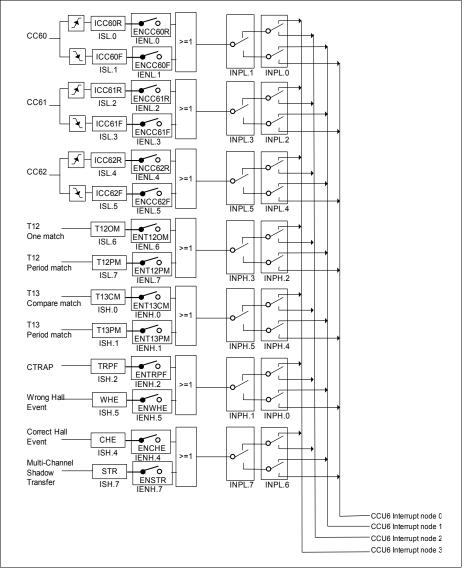
Table 14SSC Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0		•								
A9 _H			Bit Field			0			CIS	SIS	MIS
	Port Input Select Register	Туре			r	rw	rw	rw			
AA _H	SSC_CONL Reset: 00 _H Control Register Low Programming Mode	Reset: 00 _H	Bit Field	LB	PO	PH	HB		BM		
		Туре	rw	rw	rw	rw	rw				
	Operating Mode		Bit Field	0					BC		
			Туре	r				rh			

	SSC_CONH Reset: 00 Control Register High	H Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
	Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw	
	Operating Mode	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
		Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
AC _H	SSC_TBL Reset: 00	H Bit Field				TB_V	ALUE				
	Transmitter Buffer Register Low	Туре	rw								
AD _H	SSC_RBL Reset: 00	H Bit Field	RB_VALUE								
	Receiver Buffer Register Low	Туре				r	h				
AE _H	SSC_BRL Reset: 00					BR_VA	_UE[7:0]				
	Baudrate Timer Reload Register Lo	^w Туре				r	N				
AF _H	SSC_BRH Reset: 00					BR_VAL	UE[15:8]				
	Baudrate Timer Reload Register Hig	Ih Type				r	N				

Table 14 SSC Register Overview

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).


Table 15OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	1		I.								
E9 _H MMCR2 Monitor Mode Cont	MMCR2 Reset: 0U _H Monitor Mode Control Register 2	Bit Field	EXBC_ P	EXBC	MBCO N_P	MBCO N	MMEP _P	MMEP	MMOD E	JENA	
		Туре	w	rw	w	rwh	w	rwh	rh	rh	
F1 _H	1 _H MMCR Reset: 00 _H Monitor Mode Control Register		MEXIT _P	MEXIT	MSTEP _P	MSTEP	MRAM S_P	MRAM S	TRF	RRF	
		Туре	w	rwh	w	rw	w	rwh	rh	rh	
F2 _H	P _H MMSR Reset: 00 _H Monitor Mode Status Register		MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F	
		Туре	rw	rh	rwh	rwh	rwh	rwh	rwh	rwh	
F3 _H	3 _H MMBPCR Reset: 00 _H BreakPoints Control Register		SWBC	HWB3C HW		B2C HWB1 C		HWB0C			
		Туре	rw	r	rw r		w	rw	r	w	
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control Register	Bit Field	DVECT	DRETR	(Ċ	MMUIE _P	MMUIE	RRIE_ P	RRIE	
		Туре	rwh	rwh		r	w	rw	w	rw	
F5 _H	MMDR Reset: 00 _H Monitor Mode Data Register	Bit Field	MMRR								
	Receive	Туре	rh								
	Transmit	Bit Field	MMTR								
		Туре	w								
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select Register	Bit Field		0 BPSEL _P			BPSEL				
		Туре	r w					rw			
F7 _H	HWBPDR Reset: 00 _H	Bit Field				HW	BPxx				
	Hardware Breakpoints Data Register	Туре	rw								

XC866

Functional Description

Figure 17 Interrupt Request Sources (Part 4)

3.4.3 Interrupt Priority

Each interrupt source, except for NMI, can be individually programmed to one of the four possible priority levels. The NMI has the highest priority and supersedes all other interrupts. Two pairs of interrupt priority registers (IP and IPH, IP1 and IPH1) are available to program the priority level of each non-NMI interrupt vector.

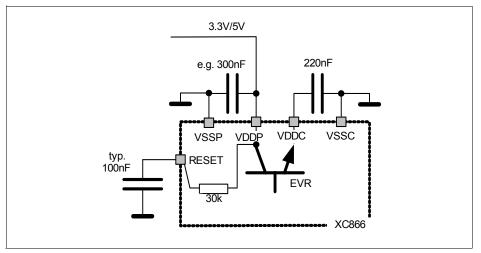
A low-priority interrupt can be interrupted by a high-priority interrupt, but not by another interrupt of the same or lower priority. Further, an interrupt of the highest priority cannot be interrupted by any other interrupt source.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 18**.

Source	Level
Non-Maskable Interrupt (NMI)	(highest)
External Interrupt 0	1
Timer 0 Interrupt	2
External Interrupt 1	3
Timer 1 Interrupt	4
UART Interrupt	5
Timer 2, Fractional Divider, LIN Interrupts	6
ADC Interrupt	7
SSC Interrupt	8
External Interrupt 2	9
External Interrupt [6:3]	10
CCU6 Interrupt Node Pointer 0	11
CCU6 Interrupt Node Pointer 1	12
CCU6 Interrupt Node Pointer 2	13
CCU6 Interrupt Node Pointer 3	14

 Table 18
 Priority Structure within Interrupt Level

3.7 Reset Control

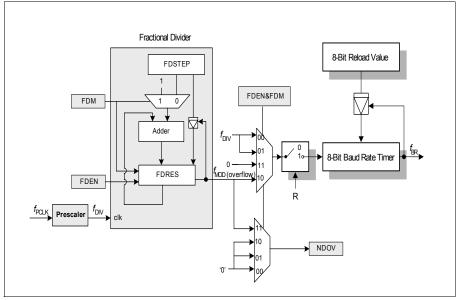

The XC866 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC866 is first powered up, the status of certain pins (see **Table 20**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin $\overrightarrow{\text{RESET}}$ must be asserted until V_{DDC} reaches $0.9^* V_{\text{DDC}}$. The delay of external reset can be realized by an external capacitor at $\overrightarrow{\text{RESET}}$ pin. This capacitor value must be selected so that V_{RESET} reaches 0.4 V, but not before V_{DDC} reaches 0.9* V_{DDC} .

A typical application example is shown in **Figure 21**. V_{DDP} capacitor value is 300 nF. V_{DDC} capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for V_{DDC} to reach 0.9^*V_{DDC} is less than 50 µs once V_{DDP} reaches 2.3V. Hence, based on the condition that 10% to 90% V_{DDP} (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See **Figure 22**.



XC866

3.11.1 Baud-Rate Generator

The baud-rate generator is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 29**.

Figure 29 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.12**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)

3.16 Timer 2

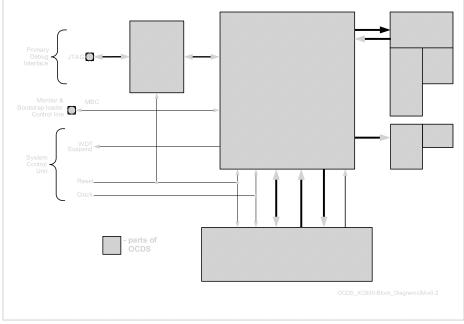

Timer 2 Modes

Table 29

Timer 2 is a 16-bit general purpose timer (THL2) that has two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode. If the prescalar is disabled, Timer 2 counts with an input clock of PCLK/12. Timer 2 continues counting as long as it is enabled.

Table 29	Timer 2 wodes
Mode	Description
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event

3.19.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC866 devices are given in Table 31.

Device Type	Device Name	JTAG ID	
Flash	XC866L-4FR	1010 0083 _H	
	XC866-4FR	100F 5083 _H	
	XC866L-2FR	1010 2083 _H	
	XC866-2FR	1010 1083 _H	
	XC866L-1FR	1013 8083 _H	
	XC866-1FR	1013 8083 _H	

Table 31JTAG ID Summary

ROM	XC866L-4RR	1013 9083 _H
	XC866-4RR	1013 9083 _H
	XC866L-2RR	1013 9083 _H
	XC866-2RR	1013 9083 _H

3.20 Identification Register

The XC866 identity register is located at Page 1 of address B3_H.

ID

Identity Register

Reset Value: 0000 0010_B

7	6	5	4	3	2	1	0
	Ι	PRODID	I	I		VERID	I
	1	r	1	I		r	L

Field	Bits	Туре	Description
VERID	[2:0]	r	Version ID 010 _B
PRODID	[7:3]	r	Product ID 00000 _B

Electrical Parameters

Table 36ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol	Li	mit Valu	es	Unit	Test Conditions/	
		min.	typ.	max.		Remarks	
Switched capacitance at the analog voltage inputs	C _{AINSW} CC	_	5	7	pF	2)4)	
Input resistance of the reference input	R _{AREF} CC	-	1	2	kΩ	2)	
Input resistance of the selected analog channel	R _{AIN} CC	-	1	1.5	kΩ	2)	

¹⁾ TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V , V_{DDP} = 5.0 V.

²⁾ Not subject to production test, verified by design/characterization.

³⁾ This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.

⁴⁾ The sampling capacity of the conversion C-Network is pre-charged to V_{AREF}/2 before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than V_{AREF}/2.

Electrical Parameters

4.3.2 Output Rise/Fall Times

Table 41 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Conditions	
		min.	nin. max.			
V _{DDP} = 5V Range						
Rise/fall times 1) 2)	t _R , t _F	-	10	ns	20 pF. ³⁾	
V _{DDP} = 3.3V Range						
Rise/fall times 1) 2)	t _R , t _F	-	10	ns	20 pF. ⁴⁾	

¹⁾ Rise/Fall time measurements are taken with 10% - 90% of the pad supply.

²⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

³⁾ Additional rise/fall time valid for $C_L = 20pF - 100pF @ 0.125 ns/pF$.

⁴⁾ Additional rise/fall time valid for $C_L = 20pF - 100pF @ 0.225 ns/pF$.

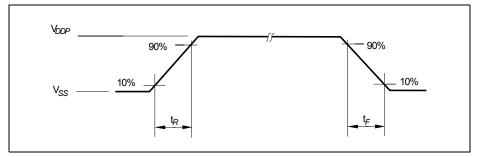


Figure 41 Rise/Fall Times Parameters

Electrical Parameters

4.3.6 SSC Master Mode Timing

Table 46 SSC Master Mode Timing (Operating Conditions apply; C_L = 50 pF)

Parameter	Syn	nbol	Limit	Unit	
			min.	max.	
SCLK clock period	<i>t</i> ₀	CC	2*T _{SSC} 1)	_	ns
MTSR delay from SCLK _	<i>t</i> ₁	CC	0	8	ns
MRST setup to SCLK ٦	<i>t</i> ₂	SR	22	_	ns
MRST hold from SCLK ٦	t_3	SR	0	-	ns

¹⁾ $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 26.7$ MHz, $t_0 = 74.9$ ns. T_{CPU} is the CPU clock period.

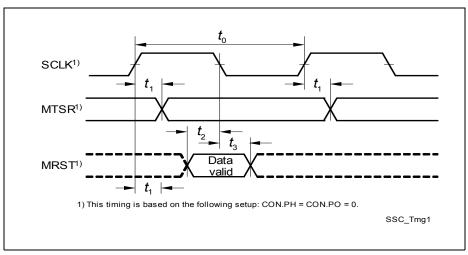


Figure 45 SSC Master Mode Timing