

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc8664frabefxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.2 Logic Symbol

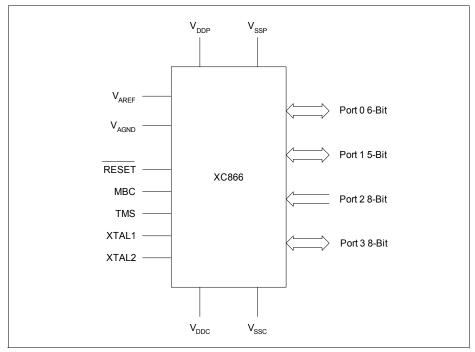
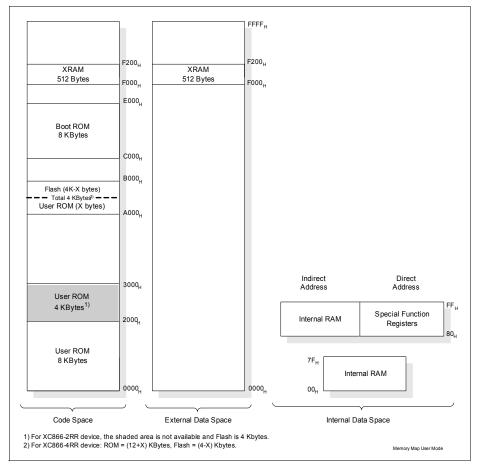


Figure 3 XC866 Logic Symbol


XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P3		I			directional general purpose I/O port. It as alternate functions for the CCU6.
P3.0	32		Hi-Z	CCPOS1_2 CC60_0	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0
P3.1	33		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1
				COUT60_0	Output of Capture/Compare channel 0
P3.2	34		Hi-Z	CCPOS2_2 CC61_0	CCU6 Hall Input 2 Input/Output of Capture/Compare channel 1
P3.3	35		Hi-Z	COUT61_0	Output of Capture/Compare channel 1
P3.4	36		Hi-Z	CC62_0	Input/Output of Capture/Compare channel 2
P3.5	37		Hi-Z	COUT62_0	Output of Capture/Compare channel 2
P3.6	30		PD	CTRAP_0	CCU6 Trap Input
P3.7	31		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Table 3Pin Definitions and Functions (cont'd)

Figure 7 illustrates the memory address spaces of the XC866-4RR device.

Figure 7 Memory Map of XC866 ROM Devices

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_H to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

SYSCON0 System Control Register 0 Reset Value: 00_H 2 1 0 7 6 5 4 3 0 1 0 RMAP r rw r rw

Field	Bits	Туре	Description
RMAP	0	rw	 Special Function Register Map Control The access to the standard SFR area is enabled. The access to the mapped SFR area is enabled.
1	2	rw	Reserved Returns the last value if read; should be written with 1.
0	1,[7:3]	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit must be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

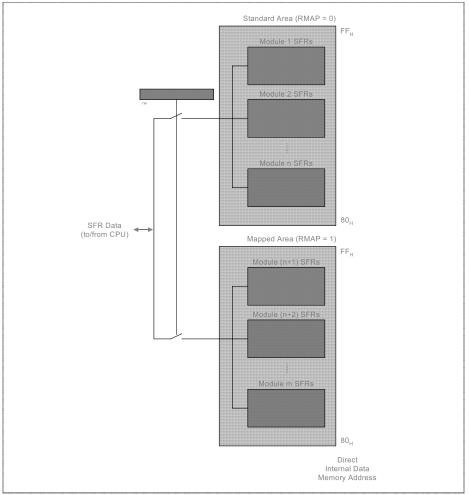


Figure 8 Address Extension by Mapping

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation OX Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

Table 7CPU Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
F0 _H	В	Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Interrupt Priority Regis	Reset: 00 _H iter 1	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Interrupt Priority Regis	Reset: 00 _H ter 1 High	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSCH	PADC H
			Туре	rw	rw	rw	rw	rw	rw	rw	rw

The system control SFRs can be accessed in the standard memory area (RMAP = 0).

Table 8 System Control Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	0 or 1		1			1			1		
8F _H	SYSCON0 Reset: 00 _H	Bit Field				0			RMAP		
	System Control Register 0	Туре				r				rw	
RMAP =	0		1								
BF _H	SCU_PAGE Reset: 00 _H	Bit Field	C)P	ST	NR	0		PAGE		
	Page Register for System Control	Туре	1	N	١	v	r		rwh		
RMAP =	0, Page 0										
B3 _H	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field		0	JTAG TDIS	JTAG TCKS	(0	EXINT 0IS	URRIS	
		Туре		r	rw	rw		r	rw	rw	
B4 _H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0	
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
B5 _H	IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field		0		ADCS RC1	ADCS RC0	RIR	TIR	EIR	
		Туре		r		rwh	rwh	rwh	rwh rwh		
B7 _H	EXICON0 Reset: 00 _H	Bit Field	EXI	NT3	EXI	NT2	EXI	NT1	EXI	NT0	
	External Interrupt Control Register 0	Туре	r	w		w		w		w	
BA _H	EXICON1 Reset: 00 _H	Bit Field		0	EXI	NT6	EXI	NT5	EXI	NT4	
	External Interrupt Control Register 1	Туре		r	r	w	r	w	r	w	
BB _H	NMICON Reset: 00 _H NMI Control Register	Bit Field	0	NMI ECC	NMI VDDP	NMI VDD	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT	
		Туре	r	rw	rw	rw	rw	rw	rw	rw	
BC _H	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT	
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
BD _H	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BREN		BRPRE		R	
	Baud Rate Control Register	Туре	r	w	r	rw		rw		rw	
BE _H	BG Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer/Reload Register	Туре					N				
E9 _H	FDCON Reset: 00 _H Fractional Divider Control Register	Bit Field	BGS	SYNEN	ERRSY N	EOFSY N	BRK	NDOV	FDM	FDEN	
		Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw	
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	EP				
	Fractional Divider Reload Register	Туре					N				
EB _H	FDRES Reset: 00 _H	Bit Field				RES	ULT				
	Fractional Divider Result Register	Туре	1			r	h				

C1 _H	T2_T2MOD Timer 2 Mode Register	Reset: 00 _H	Bit Field	T2 REGS	T2 RHEN	EDGE SEL	PREN	T2PRE	DCEN		
			Туре	rw	rw	rw	rw	rw	rw		
C2 _H	T2_RC2L	Reset: 00 _H	Bit Field				RC2	[7:0]			
	Timer 2 Reload/Capture	Туре	rwh								
C3 _H	T2_RC2H	Reset: 00 _H Bit Field RC2[15:8]									
	Timer 2 Reload/Capture	Register High	Туре				rv	/h			
C4 _H	T2_T2L	Reset: 00 _H	Bit Field				THL	2[7:0]			
	Timer 2 Register Low		Туре				rv	/h			
C5 _H	T2_T2H	Reset: 00 _H	Bit Field				THL2	[15:8]			
	Timer 2 Register High		Туре				rv	vh			

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 13 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	0			1						1	
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0	PAGE			
	Page Register for CCU6	Туре	١	v	١	N	r		rwh		
RMAP =	0, Page 0										
9A _H	CCU6_CC63SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC	63SL				
	Channel CC63 Low	Туре				r	w				
9B _H	CCU6_CC63SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC6	63SH				
	Channel CC63 High	Туре				r	w				
9C _H	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	(0	DTRES	T12 RES	T12RS	T12RR	
		Туре	w	w		r	w	w	w	w	
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0		T13 RES	T13RS	T13RR	
		Туре	w	w		r		w	w	w	
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0			MCI	MPS			
	Register Low	Туре	w	r			r	w			
9F _H	CCU6_MCMOUTSH Reset: 00 _H	Bit Field	STRHP	0		CURHS	;		EXPHS		
	Multi-Channel Mode Output Shadow Register High	Туре	w	r		rw			rw		
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12P M	RT12O M	RCC62 F	RCC62 R	RCC61 F	RCC61 R	RCC60 F	RCC60 R	
	Reset Register Low	Туре	w	w	w	w	w	w	w	w	
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWHE	RCHE	0	RTRPF	RT13 PM	RT13 CM	
	Reset Register High	Туре	w	w	w	w	r	w	w	w	
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 S		0		MCC62 S	MCC61 S	MCC60 S	
	Low	Туре	r	w		r		w	w	w	
A7 _H	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 R		0		MCC62 R	MCC61 R	MCC60 R	
	High	Туре	r	w		r		w	w	w	
FA _H	CCU6_CC60SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC	60SL				
	Channel CC60 Low	Туре				n	wh				

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FF _H	CCU6_TRPCTRH Reset: 00 _H	Bit Field		TRPEN			TR	PEN		
	Trap Control Register High		N	13						
		Туре	rw	rw			r	w		
RMAP =	0, Page 3									
9A _H	CCU6_MCMOUTL Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	0	R			MC	MP		
	Low	Туре	r	rh			r	h		
9B _H	CCU6_MCMOUTH Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	()		CURH			EXPH	
	High	Туре	1	r		rh			rh	
9C _H	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12PM	T12OM	ICC62F	R	ICC61F	R	ICC60F	ICC60 R
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13PM	T13CM
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61	C61 ISCC60	
	Port Input Select Register 0 Low	Туре	r	w	r	w	r	w	rw	
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISPOS0	
		Туре	n	w	r	w	r	w	n	w
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field			(C			IST1	3HR
	Port Input Select Register 2	Туре				r			n	w
FA _H	CCU6_T12L Reset: 00 _H	Bit Field				T12	CVL			
	Timer T12 Counter Register Low	Туре				n	vh			
FB _H	CCU6_T12H Reset: 00 _H	Bit Field	T12CVH							
	Timer T12 Counter Register High	Туре				n	vh			
FC _H	CCU6_T13L Reset: 00 _H	Bit Field				T13	CVL			
	Timer T13 Counter Register Low	Туре				n	vh			
FD _H	CCU6_T13H Reset: 00 _H	Bit Field				T13	CVH			
	Timer T13 Counter Register High	Туре				n	vh			
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CCPO S2	CCPO S1	CCPO S0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14SSC Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0		•								
A9 _H	SSC_PISEL	Reset: 00 _H	Bit Field			0			CIS	SIS	MIS
	Port Input Select Regist	er	Туре			r			rw	rw	rw
AA _H	SSC_CONL	Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Control Register Low Programming Mode		Туре	rw	rw	rw	rw		r	w	
	Operating Mode		Bit Field			0			B	С	
			Туре			r			r	h	

P-Flash	D-Flash
	Sector 0: 1-Kbyte
	Sector 1: 1-Kbyte
Sector 0: 3.75-Kbyte	Sector 2: 512-byte
	Sector 3: 512-byte
	Sector 4: 256-byte
	Sector 5: 256-byte
	Sector 6: 128-byte
	Sector 7: 128-byte
Sector 1: 128-byte	Sector 8: 128-byte
Sector 2: 128-byte	Sector 9: 128-byte

Figure 11 Flash Bank Sectorization

İnfineon

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

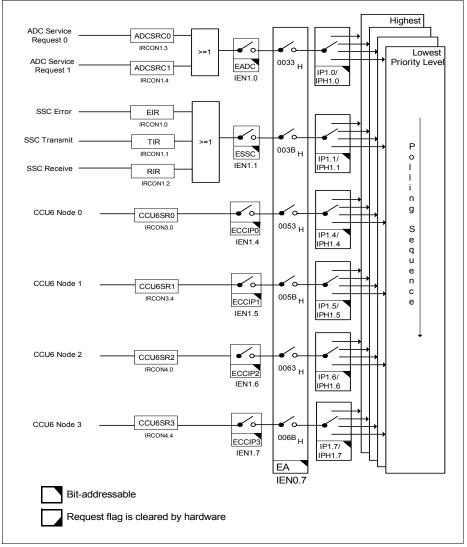


Figure 16 Interrupt Request Sources (Part 3)

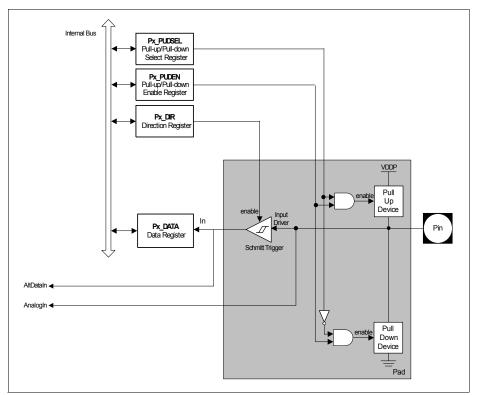


Figure 19 General Structure of Input Port

3.7.1 Module Reset Behavior

Table 19 shows how the functions of the XC866 are affected by the various reset types. A "∎" means that this function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset	
CPU Core						
Peripherals						
On-Chip Static RAM	Not affected, reliable	Not affected, reliable			Affected, un- reliable	
Oscillator, PLL		Not affected				
Port Pins						
EVR The voltage regulator is switched or		Not affected				
FLASH						
NMI	Disabled	Disabled				

Table 19 Effect of Reset on Device Functions

3.7.2 Booting Scheme

When the XC866 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. **Table 20** shows the available boot options in the XC866.

MBC	TMS	P0.0	PC Start Value		
1	0	x User Mode; on-chip OSC/PLL non-bypassed		0000 _H	
0	0	х	BSL Mode; on-chip OSC/PLL non-bypassed	0000 _H	
0	1	0	OCDS Mode ¹⁾ ; on-chip OSC/PLL non- bypassed	0000 _H	
1	1	0	Standalone User (JTAG) Mode ²⁾ ; on-chip OSC/PLL non-bypassed (normal)	0000 _H	

Table 20 XC866 Boot Selection

¹⁾ The OCDS mode is not accessible if Flash is protected.

²⁾ Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC866. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features:

- · Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support

The CGU consists of an oscillator circuit and a PLL.In the XC866, the oscillator can be from either of these two sources: the on-chip oscillator (10 MHz) or the external oscillator (4 MHz to 12 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

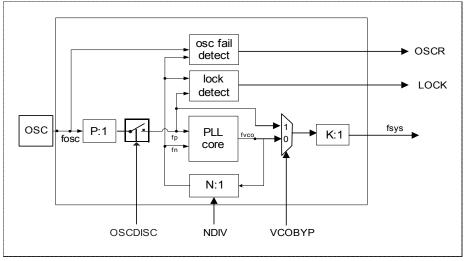


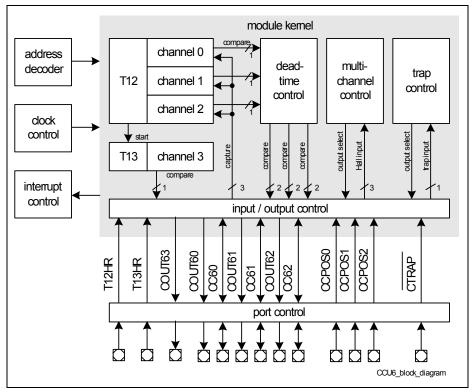
Figure 23 CGU Block Diagram

3.11.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

[3.1]

Mode 1, 3 baud rate= $\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$


3.12 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 29**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP.

The output frequency in normal divider mode is derived as follows:

 $f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$ [3.2]

The block diagram of the CCU6 module is shown in Figure 32.

Figure 32 CCU6 Block Diagram

3.18.1 ADC Clocking Scheme

A common module clock f_{ADC} generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

The internal clock for the analog part f_{ADCI} is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures f_{ADCI} does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

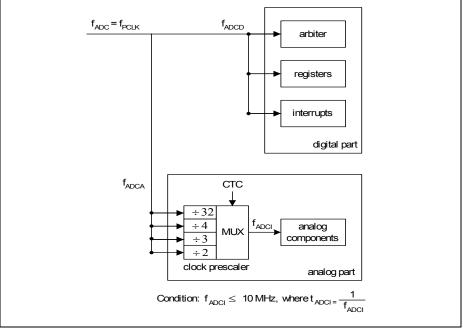


Figure 33 ADC Clocking Scheme

Electrical Parameters

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins (V_{SS}) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Limit Values			Unit	Test Conditions/
			min.	typ .	max.		Remarks
Analog reference voltage	VARE	- SR	V _{AGND} + 1	V _{DDP}	V _{DDP} + 0.05	V	
Analog reference ground	V _{AGN}	D SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	
Analog input voltage range	V _{AIN}	SR	V _{AGND}	-	V _{AREF}	V	
ADC clocks	f _{ADC}		-	20	40	MHz	module clock
	f _{ADCI}		-	-	10	MHz	internal analog clock See Figure 33
Sample time	t _S	СС	(2 + INPCR0.STC) × t _{ADCI}			μs	
Conversion time	t _C	СС	See Se	ction 4.	2.3.1	μs	
Total unadjusted	TUE ¹)CC	-	-	±1	LSB	8-bit conversion. ²⁾
error			-	-	±2	LSB	10-bit conversion.
Differential Nonlinearity	DNL	СС	-	±1	-	LSB	10-bit conversion ²⁾
Integral Nonlinearity	INL	СС	-	±1	-	LSB	10-bit conversion ²⁾
Offset	OFF	СС	-	±1	-	LSB	10-bit conversion ²⁾
Gain	GAIN	СС	-	±1	-	LSB	10-bit conversion ²⁾
Switched capacitance at the reference voltage input	C _{ARE}	FSW CC	-	10	20	pF	2)3)

Table 36ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Electrical Parameters

Table 40Power Down Current (Operating Conditions apply; V_{DDP} = 3.3Vrange)

Parameter	Symbol	Limit Values		Unit	Test Condition Remarks
		typ. ¹⁾ max. ²⁾		-	
V _{DDP} = 3.3V Range		-1	1	1	
Power-Down Mode ³⁾	I_{PDP}	1	10	μA	$T_{\rm A}$ = + 25 °C. ⁴)
		-	30	μA	T _A = + 85 °C, XC866- 4FR, XC866-2FR ⁴⁾⁵⁾
		-	35	μA	T_{A} = + 85 °C, XC866- 1FR, ROM device ⁴⁾⁵⁾

¹⁾ The typical I_{PDP} values are measured at V_{DDP} = 3.3 V.

 $^{2)}\,$ The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

³⁾ I_{PDP} (power-down mode) has a maximum value of 200 μ A at T_A = + 125 °C.

⁴⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0= V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

⁵⁾ Not subject to production test, verified by design/characterization.

Package and Reliability

5.2 Package Outline

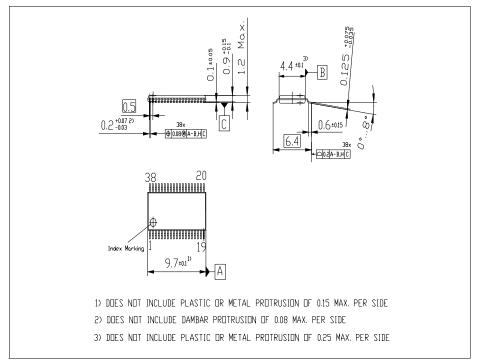


Figure 46 PG-TSSOP-38-4 Package Outline