

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc8664fribekxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet n History:	2007-10	V1.2
V1.0	2006-02	
Subjects (najor changes since last revision))
Device sur	nmary table is updated for Flash	4-Kb and ROM variants.
Footnote is	added to MBC pin; description o	f V_{DDP} pin is updated.
	•	s type of register bit field
Access typ	e of PAGE bits of all module page	registers are corrected to rwh.
Access typ	e of Px_DIR register bits are corr	ected to rwh
New bullet	point on Flash delivery state is a	dded to the feature list.
Digital pov	er supply voltage are differentiate	ed for 5V and 3.3V variants.
	5	/oltage on GPIO pins during
Figure on	Power-on reset timing is updated.	
	n History: S Version: V 0.1 V1.0, V1.1, Subjects (n Device sum Footnote is Section on PASSWD.F Access type New bullet Digital pow VDDP powe	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

 \ge

Summary of Features

XC866 Variant Devices

The XC866 product family features devices with different configurations and program memory sizes, temperature and quality profiles (Automotive or Industrial), offering cost-effective solution for different application requirements.

The configuration of LIN BSL for XC866 devices are summarized in Table 1.

Device Name	LIN BSL Support
XC866	No
XC866L	Yes

The list of XC866 devices and their differences are summarized in Table 2.

Device Type	Device Name	Power Supply (V)	P-Flash Size (Kbytes)	D-Flash Size (Kbytes)	ROM Size (Kbytes)	Quality Profile ¹⁾
Flash ²⁾	SAK-XC866*-4FRA	5.0	12	4	_	Automotive
	SAK-XC866*-4FRI	5.0	12	4	_	Industrial
	SAK-XC866*-2FRA	5.0	4	4	-	Automotive
	SAK-XC866*-2FRI	5.0	4	4	-	Industrial
	SAK-XC866*-1FRA	5.0	_	4	-	Automotive
	SAK-XC866*-1FRI	5.0	-	4	_	Industrial
	SAF-XC866*-4FRA	5.0	12	4	_	Automotive
	SAF-XC866*-4FRI	5.0	12	4	_	Industrial
	SAF-XC866*-2FRA	5.0	4	4	-	Automotive
	SAF-XC866*-2FRI	5.0	4	4	_	Industrial
	SAF-XC866*-1FRA	5.0	-	4	_	Automotive
	SAF-XC866*-1FRI	5.0	-	4	_	Industrial
	SAK-XC866*-4FRA 3V	3.3	12	4	-	Automotive
	SAK-XC866*-4FRI 3V	3.3	12	4	-	Industrial
	SAK-XC866*-2FRA 3V	3.3	4	4	_	Automotive
	SAK-XC866*-2FRI 3V	3.3	4	4	-	Industrial
	SAK-XC866*-1FRA 3V	3.3	_	4	-	Automotive

Table 2 Device Summary

Summary of Features

Table 2Device Summary

	•					
	SAK-XC866*-1FRI 3V	3.3	-	4	_	Industrial
	SAF-XC866*-4FRA 3V	3.3	12	4	-	Automotive
	SAF-XC866*-4FRI 3V	3.3	12	4	-	Industrial
	SAF-XC866*-2FRA 3V	3.3	4	4	_	Automotive
	SAF-XC866*-2FRI 3V	3.3	4	4	_	Industrial
	SAF-XC866*-1FRA 3V	3.3	-	4	_	Automotive
	SAF-XC866*-1FRI 3V	3.3	-	4	-	Industrial
ROM	SAK-XC866*-4RRA	5.0	-	4	16	Automotive
	SAK-XC866*-4RRI	5.0	-	4	16	Industrial
	SAK-XC866*-2RRA	5.0	-	4	8	Automotive
	SAK-XC866*-2RRI	5.0	_	4	8	Industrial
	SAF-XC866*-4RRA	5.0	_	4	16	Automotive
	SAF-XC866*-4RRI	5.0	_	4	16	Industrial
	SAF-XC866*-2RRA	5.0	_	4	8	Automotive
	SAF-XC866*-2RRI	5.0	_	4	8	Industrial
	SAK-XC866*-4RRA 3V	3.3	_	4	16	Automotive
	SAK-XC866*-4RRI 3V	3.3	_	4	16	Industrial
	SAK-XC866*-2RRA 3V	3.3	_	4	8	Automotive
	SAK-XC866*-2RRI 3V	3.3	_	4	8	Industrial
	SAF-XC866*-4RRA 3V	3.3	-	4	16	Automotive
	SAF-XC866*-4RRI 3V	3.3	-	4	16	Industrial
	SAF-XC866*-2RRA 3V	3.3	-	4	8	Automotive
	SAF-XC866*-2RRI 3V	3.3	-	4	8	Industrial

1) Industrial is not for Automotive usage

²⁾ The flash memory (P-Flash and D-Flash) can be used for code or data.

Note: The asterisk (*) above denotes the device configuration letters from Table 1.

Summary of Features

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery

For the available ordering codes for the XC866, please refer to your responsible sales representative or your local distributor.

As this document refers to all the derivatives, some descriptions may not apply to a specific product. For simplicity all versions are referred to by the term XC866 throughout this document.

Note: The RMAP bit must be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

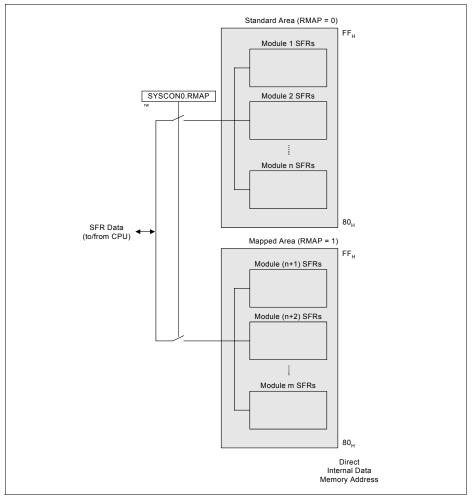


Figure 8 Address Extension by Mapping

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =											
B2 _H	PORT PAGE	Reset: 00 _H	Bit Field	C)P	ST	NR	0		PAGE	
	Page Register for PORT				r		rwh				
RMAP =	0, Page 0		.,,,,								
80 _H	P0 DATA	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Data Register		Туре		r	rwh	rwh	rwh	rwh	rwh	rwh
86 _H	P0 DIR	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Direction Register		Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1 DATA	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Data Register		Туре	rwh	rwh	rwh		r		rwh	rwh
91 _H	P1 DIR	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Direction Register		Туре	rw	rw	rw		r		rw	rw
A0 _H	P2_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register		Туре	rwh	rwh						
A1 _H	P2_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Register		Туре	rw	rw						
В0 _Н	P3_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register		Туре	rwh	rwh						
B1 _H	P3_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register		Туре	rw	rw						
RMAP =	0, Page 1										1
80 _H	P0_PUDSEL	Reset: FF _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Se	elect Register	Туре		r	rw	rw	rw	rw	rw	rw
86 _H	P0_PUDEN	Reset: C4 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Er	hable Register	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_PUDSEL	Reset: FF _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Pull-Up/Pull-Down Se	elect Register	Туре	rw	rw	rw		r		rw	rw
91 _H	P1_PUDEN	Reset: FF _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Pull-Up/Pull-Down Er	nable Register	Туре	rw	rw	rw		r		rw	rw
A0 _H	P2_PUDSEL	Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Se	elect Register	Туре	rw	rw						
A1 _H	P2_PUDEN	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Er	nable Register	Туре	rw	rw						
B0 _H	P3_PUDSEL	Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Se	elect Register	Туре	rw	rw						
B1 _H	P3_PUDEN	Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Er	nable Register	Туре	rw	rw						
RMAP =	0, Page 2										
80 _H	P0_ALTSEL0	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Re	gister	Туре		r	rw	rw	rw	rw	rw	rw
86 _H	P0_ALTSEL1	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 1 Re	gister	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_ALTSEL0	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Alternate Select 0 Re	gister	Туре	rw	rw	rw		r		rw	rw
91 _H	P1_ALTSEL1	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Alternate Select 1 Re	gister	Туре	rw	rw	rw		r		rw	rw
в0 _Н	P3_ALTSEL0	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 0 Re	gister	Туре	rw	rw						

Table 12Timer 2 Register Overview (cont'd)

C1 _H	T2_T2MOD Timer 2 Mode Register	Reset: 00 _H	Bit Field	T2 REGS	T2 RHEN	EDGE SEL	PREN	T2PRE	DCEN
			Туре	rw	rw	rw	rw	rw	rw
C2 _H	T2_RC2L	Reset: 00 _H	Bit Field				RC2	[7:0]	
	Timer 2 Reload/Capture	Register Low	Туре				rv	/h	
C3 _H	T2_RC2H	Reset: 00 _H	Bit Field				RC2	[15:8]	
	Timer 2 Reload/Capture	Register High	Туре				rv	/h	
C4 _H	T2_T2L	Reset: 00 _H	Bit Field				THL	2[7:0]	
	Timer 2 Register Low		Туре				rv	/h	
C5 _H	T2_T2H	Reset: 00 _H	Bit Field				THL2	[15:8]	
	Timer 2 Register High		Туре				rv	vh	

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 13 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0			1	1			1		1
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
	Page Register for CCU6	Туре	١	N	١	v	r		rwh	
RMAP =	0, Page 0									
9A _H	CCU6_CC63SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC	63SL			
	Channel CC63 Low	Туре				r	w			
9B _H	CCU6_CC63SRH Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC6	3SH			
	Channel CC63 High	Туре				r	w			
9C _H	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	()	DTRES	T12 RES	T12RS	T12RR
		Туре	w	w		r	w	w	w	w
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0		T13 RES	T13RS	T13RR
		Туре	w	w		r		w	w	w
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0			MCI	MPS		
	Register Low	Туре	w	r			r	w		
9F _H	CCU6_MCMOUTSH Reset: 00 _H	Bit Field	STRHP	0		CURHS	;		EXPHS	
	Multi-Channel Mode Output Shadow Register High	Туре	w	r		rw			rw	
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12P M	RT12O M	RCC62 F	RCC62 R	RCC61 F	RCC61 R	RCC60 F	RCC60 R
	Reset Register Low	Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWHE	RCHE	0	RTRPF	RT13 PM	RT13 CM
	Reset Register High	Туре	w	w	w	w	r	w	w	w
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 S		0		MCC62 S	MCC61 S	MCC60 S
	Low	Туре	r	w		r		w	w	w
A7 _H	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC63 R		0		MCC62 R	MCC61 R	MCC60 R
	High	Туре	r	w		r		w	w	w
FA _H	CCU6_CC60SRL Reset: 00 _H Capture/Compare Shadow Register for	Bit Field				CC	60SL			
	Channel CC60 Low	Туре				n	wh			

AB _H	SSC_CONH Reset: 00 _H Control Register High	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN
	Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw
	Operating Mode	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
		Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
ACH	SSC_TBL Reset: 00 _H	Bit Field				TB_V	ALUE			
	Transmitter Buffer Register Low	Туре				r	w			
AD _H	SSC_RBL Reset: 00 _H	Bit Field				RB_V	ALUE			
	Receiver Buffer Register Low	Туре				r	h			
AE _H	SSC_BRL Reset: 00 _H	Bit Field				BR_VA	LUE[7:0]			
	Baudrate Timer Reload Register Low	Туре				r	w			
AF _H	SSC_BRH Reset: 00 _H	Bit Field				BR_VAL	UE[15:8]			
	Baudrate Timer Reload Register High	Туре				r	w			

Table 14 SSC Register Overview

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

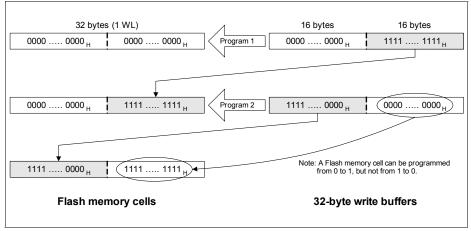
Table 15OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1			1						
E9 _H	MMCR2 Reset: 0U _H Monitor Mode Control Register 2	Bit Field	EXBC_ P	EXBC	MBCO N_P	MBCO N	MMEP _P	MMEP	MMOD E	JENA
		Туре	w	rw	w	rwh	w	rwh	rh	rh
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	MSTEP _P	MSTEP	MRAM S_P	MRAM S	TRF	RRF
		Туре	w	rwh	w	rw	w	rwh	rh	rh
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F
		Туре	rw	rh	rwh	rwh	rwh	rwh	rwh	rwh
F3 _H	MMBPCR Reset: 00 _H BreakPoints Control Register	Bit Field	SWBC	HW	B3C	HW	B2C	HWB1 C	HW	B0C
		Туре	rw	r	w	r	w	rw	r	w
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control Register	Bit Field	DVECT	DRETR	(Ċ	MMUIE _P	MMUIE	RRIE_ P	RRIE
		Туре	rwh	rwh	1	r	w	rw	w	rw
F5 _H	MMDR Reset: 00 _H Monitor Mode Data Register	Bit Field				MN	IRR			
	Receive	Туре				r	h			
	Transmit	Bit Field				MN	1TR			
		Туре				١	N			
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select Register	Bit Field		0		BPSEL _P		BP	SEL	
		Туре		r		w		r	w	
F7 _H	HWBPDR Reset: 00 _H	Bit Field				HW	BPxx			
	Hardware Breakpoints Data Register	Туре				r	w			

P-Flash	D-Flash
	Sector 0: 1-Kbyte
	Sector 1: 1-Kbyte
Sector 0: 3.75-Kbyte	Sector 2: 512-byte
	Sector 3: 512-byte
	Sector 4: 256-byte
	Sector 5: 256-byte
	Sector 6: 128-byte
	Sector 7: 128-byte
Sector 1: 128-byte	Sector 8: 128-byte
Sector 2: 128-byte	Sector 9: 128-byte

Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.


The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

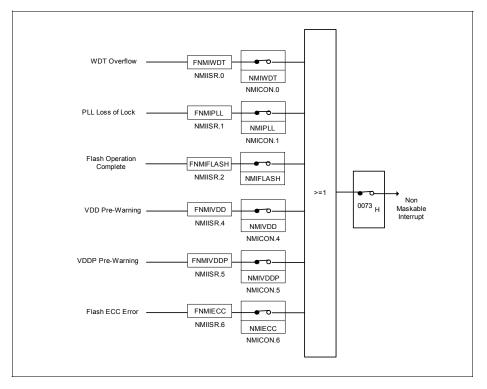
3.3.2 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. Hence, it is possible to program the same WL, for example, with 16 bytes of data in two times (see Figure 12).

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".



3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC866 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 13 to Figure 17 give a general overview of the interrupt sources and illustrates the request and control flags.

Figure 13 Non-Maskable Interrupt Request Sources

3.5 Parallel Ports

The XC866 has 27 port pins organized into four parallel ports, Port 0 (P0) to Port 3 (P3). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1 and P3 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals, and also analog inputs for the Analog-to-Digital Converter (ADC).

Bidirectional Port Features:

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features:

- · Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- · Alternate input for on-chip peripherals
- Analog input for ADC module

XC866

Functional Description

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC866. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features:

- · Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support

The CGU consists of an oscillator circuit and a PLL.In the XC866, the oscillator can be from either of these two sources: the on-chip oscillator (10 MHz) or the external oscillator (4 MHz to 12 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

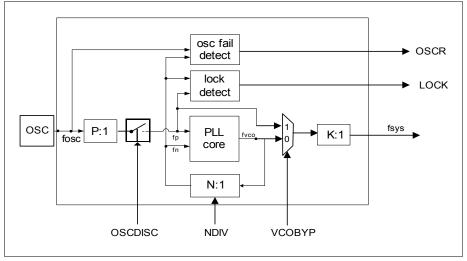


Figure 23 CGU Block Diagram

 Table 24 lists the possible watchdog time range that can be achieved for different module clock frequencies.

 Some numbers are rounded to 3 significant digits.

Reload value in WDTREL	Prescaler for f _{PCLK}	Prescaler for f _{PCLK}			
	2 (WDTIN = 0)	128 (WDTIN = 1) 26.7 MHz			
	26.7 MHz				
FF _H	19.2 μs	1.23 ms			
FF _H 7F _H	2.48 ms	159 ms			
00 _H	4.92 ms	315 ms			

Table 24	Watchdog Time Rang	jes
----------	--------------------	-----

3.11 Universal Asynchronous Receiver/Transmitter

The Universal Asynchronous Receiver/Transmitter (UART) provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

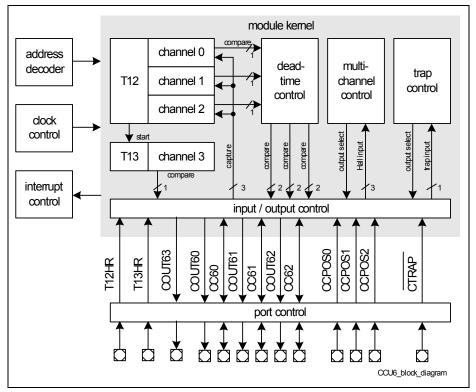
Features:

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - fixed or variable baud rate
- · Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART can operate in the four modes as shown in **Table 25**. Data is transmitted on TXD and received on RXD.

Operating Mode	Baud Rate		
Mode 0: 8-bit shift register	f _{PCLK} /2		
Mode 1: 8-bit shift UART	Variable		
Mode 2: 9-bit shift UART	f _{PCLK} /32 or f _{PCLK} /64		
Mode 3: 9-bit shift UART	Variable		

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{PCLK}/32$ or $f_{PCLK}/64$. The variable baud rate is set by either the underflow rate on the dedicated baud-rate generator, or by the overflow rate on Timer 1.


3.14 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features:

- · Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- · Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

The block diagram of the CCU6 module is shown in Figure 32.

Figure 32 CCU6 Block Diagram

For module clock f_{ADC} = 26.7 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 30**.

Module Clock f _{ADC}	СТС	Prescaling Ratio	Analog Clock f _{ADCI}	
26.7 MHz	00 _B	÷ 2	13.3 MHz (N.A)	
	01 _B	÷ 3	8.9 MHz	
	10 _B	÷ 4	6.7 MHz	
	11 _B (default)	÷ 32	833.3 kHz	

Table 30f_ADCIFrequency Selection

As f_{ADCI} cannot exceed 10 MHz, bit field CTC should not be set to 00_B when f_{ADC} is 26.7 MHz. During slow-down mode where f_{ADC} may be reduced to 13.3 MHz, 6.7 MHz etc., CTC can be set to 00_B as long as the divided analog clock f_{ADCI} does not exceed 10 MHz. However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

3.18.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (t_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

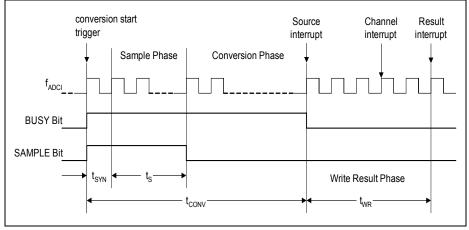


Figure 34 ADC Conversion Timing

Package and Reliability

5.3 Quality Declaration

Table 48 shows the characteristics of the quality parameters in the XC866.

Table 48 Quality Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	500	V	Conforming to JESD22-C101-C

http://www.infineon.com