

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc866l1fraabkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit Single-Chip Microcontroller XC800 Family

1 **Summary of Features**

- High-performance XC800 Core •
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 8 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 512 bytes of XRAM
 - 4/8/16 Kbytes of Flash; or 8/16 Kbytes of ROM, with additional 4 Kbytes of Flash (includes memory protection strategy)
- I/O port supply at 3.3 V/5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(further features are on next page)

Summary of Features

Features (continued):

infineon

- Reset generation
 - Power-On reset
 - Hardware reset
 - Brownout reset for core logic supply
 - Watchdog timer reset
 - Power-Down Wake-up reset
- On-chip OSC and PLL for clock generation
 - PLL loss-of-lock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0
 - clock gating control to each peripheral
- Programmable 16-bit Watchdog Timer (WDT)
- Four ports
 - 19 pins as digital I/O
 - 8 pins as digital/analog input
- 8-channel, 10-bit ADC
- Three 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2
- · Capture/compare unit for PWM signal generation (CCU6)
- Full-duplex serial interface (UART)
- Synchronous serial channel (SSC)
- · On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 8-Kbyte Boot ROM)
- 64 bytes of monitor RAM
- PG-TSSOP-38 pin package
- Temperature range T_A:
 - SAF (-40 to 85 °C)
 - SAK (-40 to 125 °C)

infineon

Summary of Features

Table 2Device Summary

	-					
	SAK-XC866*-1FRI 3V	3.3	-	4	-	Industrial
	SAF-XC866*-4FRA 3V	3.3	12	4	_	Automotive
	SAF-XC866*-4FRI 3V	3.3	12	4	_	Industrial
	SAF-XC866*-2FRA 3V	3.3	4	4	_	Automotive
	SAF-XC866*-2FRI 3V	3.3	4	4	-	Industrial
	SAF-XC866*-1FRA 3V	3.3	-	4	-	Automotive
	SAF-XC866*-1FRI 3V	3.3	-	4	-	Industrial
ROM	SAK-XC866*-4RRA	5.0	-	4	16	Automotive
	SAK-XC866*-4RRI	5.0	-	4	16	Industrial
	SAK-XC866*-2RRA	5.0	-	4	8	Automotive
	SAK-XC866*-2RRI	5.0	-	4	8	Industrial
	SAF-XC866*-4RRA	5.0	-	4	16	Automotive
	SAF-XC866*-4RRI	5.0	-	4	16	Industrial
	SAF-XC866*-2RRA	5.0	_	4	8	Automotive
	SAF-XC866*-2RRI	5.0	-	4	8	Industrial
	SAK-XC866*-4RRA 3V	3.3	-	4	16	Automotive
	SAK-XC866*-4RRI 3V	3.3	-	4	16	Industrial
	SAK-XC866*-2RRA 3V	3.3	-	4	8	Automotive
	SAK-XC866*-2RRI 3V	3.3	_	4	8	Industrial
	SAF-XC866*-4RRA 3V	3.3	-	4	16	Automotive
	SAF-XC866*-4RRI 3V	3.3	-	4	16	Industrial
	SAF-XC866*-2RRA 3V	3.3	-	4	8	Automotive
	SAF-XC866*-2RRI 3V	3.3	-	4	8	Industrial

1) Industrial is not for Automotive usage

²⁾ The flash memory (P-Flash and D-Flash) can be used for code or data.

Note: The asterisk (*) above denotes the device configuration letters from Table 1.

Summary of Features

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery

For the available ordering codes for the XC866, please refer to your responsible sales representative or your local distributor.

As this document refers to all the derivatives, some descriptions may not apply to a specific product. For simplicity all versions are referred to by the term XC866 throughout this document.

XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P1		I/O		port. It can b	-bit bidirectional general purpose I/O e used as alternate functions for the 5, UART, and the SSC.
P1.0	27		PU	RXD_0 T2EX	UART Receive Data Input Timer 2 External Trigger Input
P1.1	28		PU	EXINT3 TDO_1 TXD_0	External Interrupt Input 3 JTAG Serial Data Output UART Transmit Data Output/ Clock Output
P1.5	29		PU	CCPOS0_1 EXINT5 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 TImer 2 External Flag Output UART Transmit Data Output
P1.6	9		PU	CCPOS1_1 T12HR_0 EXINT6	CCU6 Hall Input 1 CCU6 Timer 12 Hardware Run Input External Interrupt Input 6
P1.7	10		PU	CCPOS2_1 T13HR_0	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input
_					.6 can be used as a software chip t for the SSC.

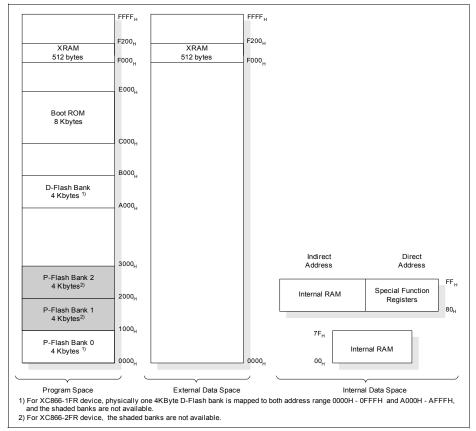
Table 3Pin Definitions and Functions (cont'd)

XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P3		I			directional general purpose I/O port. It as alternate functions for the CCU6.
P3.0	32		Hi-Z	CCPOS1_2 CC60_0	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0
P3.1	33		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1
				COUT60_0	Output of Capture/Compare channel 0
P3.2	34		Hi-Z	CCPOS2_2 CC61_0	CCU6 Hall Input 2 Input/Output of Capture/Compare channel 1
P3.3	35		Hi-Z	COUT61_0	Output of Capture/Compare channel 1
P3.4	36		Hi-Z	CC62_0	Input/Output of Capture/Compare channel 2
P3.5	37		Hi-Z	COUT62_0	Output of Capture/Compare channel 2
P3.6	30		PD	CTRAP_0	CCU6 Trap Input
P3.7	31		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Table 3Pin Definitions and Functions (cont'd)


3.2 Memory Organization

İnfineon

The XC866 CPU operates in the following five address spaces:

- · 8 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 512 bytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- a 128-byte Special Function Register area
- 4/8/16 Kbytes of Flash program memory (Flash devices); or 8/16 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices)

Figure 6 illustrates the memory address spaces of the XC866-4FR device.

Figure 6 Memory Map of XC866 Flash Devices

infineon

Functional Description

Table 8System Control Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
B3 _H	ID	Reset: 01 _H	Bit Field	PRODID				VERID			
	Identity Register		Туре			r			r		
B4 _H	PMCON0 Power Mode Control Re	Reset: 00 _H gister 0	Bit Field	0 WDT WKRS WK RST SEL		SD	PD		WS		
			Туре	r	rwh	rwh	rw	rw	rwh	r	N
B5 _H	PMCON1 Power Mode Control Re	Reset: 00 _H gister 1	Bit Field			0		T2_DIS	CCU _DIS	SSC _DIS	ADC _DIS
			Туре			r		rw	rw	rw	rw
B6 _H	OSC_CON OSC Control Register	Reset: 08 _H	Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR
			Туре		r		rw	rw	rw	rwh	rh
B7 _H	PLL_CON PLL Control Register	Reset: 20 _H	Bit Field		N	VIC		VCO BYP	OSC DISC	RESLD	LOCK
			Туре		r	w		rw	rw	rwh	rh
BA _H	CMCON Clock Control Register	Reset: 00 _H	Bit Field	VCO SEL		0		CLKREL		REL	
			Туре	rw		r			r	w	
BB _H	PASSWD Password Register	Reset: 07 _H	Bit Field			PASS			PROTE CT_S	MC	DE
			Туре			w			rh	n	N
BC _H	FEAL	Reset: 00 _H	Bit Field			E	CCERR	ADDR[7:	0]		
	Flash Error Address Reg	jister Low	Туре				I	'n			
BD _H	FEAH	Reset: 00 _H	Bit Field			EC	CERRA	ADDR[15	:8]		
	Flash Error Address Reg	jister High	Туре					ħ			
BE _H	COCON Clock Output Control Re	Reset: 00 _H gister	Bit Field	()	TLEN	COUT S		CO	REL	
			Туре		r	rw	rw		r	w	
E9 _H	MISC_CON Miscellaneous Control R	Reset: 00 _H egister	Bit Field				0				DFLAS HEN
			Туре				r				rwh
RMAP =	0, Page 3		-				-				
B3 _H	XADDRH	Reset: F0 _H	Bit Field				AD	DRH			
	On-Chip XRAM Address	Higher Order	Туре				r	w			

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9 WDT Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	1										
BB _H	WDTCON F Watchdog Timer Control R	Reset: 00 _H egister	Bit Field		0	WINB EN	WDT PR	0	WDT EN	WDT RS	WDT IN
			Туре		r	rw	rh	r	rw	rwh	rw
BC _H		Reset: 00 _H	Bit Field				WD1	REL			
	Watchdog Timer Reload Re	egister	Туре	rw							
BD _H	Watchdog Window-Bounda	Reset: 00 _H ary Count	Bit Field				WDT	WINB			
	Register		Туре				r	N			
BEH		Reset: 00 _H	Bit Field				WDT	[7:0]			
	Watchdog Timer Register L	_ow	Туре				r	h			
BF _H		Reset: 00 _H	Bit Field				WDT	[15:8]			
	Watchdog Timer Register H	ligh	Туре				r	h			

XC866

Functional Description

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10 Port Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	-			-	-	-	-	-	_	-	-
B2 _H	PORT PAGE	Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
D-H	Page Register for PORT		Туре	-	N		N	r		rwh	
RMAP =	0, Page 0		1300					•			
80 _H	P0_DATA	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
O H	P0 Data Register	Hessell oog	Туре		r	rwh	rwh	rwh	rwh	rwh	rwh
86 _H	P0 DIR	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
OOH	P0 Direction Register	Hessell oog	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1 DATA	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
чч	P1 Data Register	Hessell oog	Туре	rwh	rwh	rwh		r		rwh	rwh
91 _H	P1 DIR	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
ЧH	P1 Direction Register	Hessell oog	Туре	rw	rw	rw		r		rw	rw
А0 _н	P2 DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
AVH	P2 Data Register	Reset. Oug	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
A1 _H	P2 DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
П	P2 Direction Register	Neset. Oug	Туре	rw	rw	rw	rw	rw	rw	rw	rw
B0 _н	P3 DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
BOH	P3 Data Register	Reset. 00H	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
D1	P3 DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
B1 _H	P3 Direction Register	Reset. 00H		rw	rw	rw	r4	rs rw	rv	rw	rw
	0, Page 1		Туре	IW	TW	IW	TW	IW	TW	IW	TW
	P0 PUDSEL	Booot: EE	Bit Field		0	P5	P4	P3	P2	P1	P0
80 _H	P0_P0D3EL P0 Pull-Up/Pull-Down Se	Reset: FF _H			-	-					
00	P0 PUDEN		Type Bit Field		r D	rw P5	rw P4	rw P3	rw P2	rw P1	rw P0
86 _H	P0_P0DEN P0 Pull-Up/Pull-Down Er	Reset: C4 _H			-						
~~			Type		r P6	rw P5	rw	rw	rw	rw P1	rw P0
90 _H	P1_PUDSEL P1 Pull-Up/Pull-Down Se	Reset: FF _H	Bit Field	P7		-		0			
04			Type	rw	rw	rw		r		rw	rw
91 _H	P1_PUDEN P1 Pull-Up/Pull-Down Er	Reset: FF _H	Bit Field	P7	P6	P5		0		P1	P0
••			Туре	rw	rw	rw	54	r		rw	rw
A0 _H	P2_PUDSEL P2 Pull-Up/Pull-Down Se	Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
A1 _H	P2_PUDEN P2 Pull-Up/Pull-Down Er	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
в0 _Н	P3_PUDSEL P3 Pull-Up/Pull-Down Se	Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
-			Туре	rw	rw	rw	rw	rw	rw	rw	rw
B1 _H	P3_PUDEN P3 Pull-Up/Pull-Down Er	Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	•	iaule register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
	0, Page 2		lava:								
80 _H	P0_ALTSEL0	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Re	•	Туре		r	rw	rw	rw	rw	rw	rw
86 _H	P0_ALTSEL1	Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 1 Re	-	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_ALTSEL0	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Alternate Select 0 Re	•	Туре	rw	rw	rw		r		rw	rw
91 _H	P1_ALTSEL1	Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Alternate Select 1 Re	gister	Туре	rw	rw	rw		r		rw	rw
B0 _H	P3_ALTSEL0	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 0 Re	gister	Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 11 ADC Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
CA _H	ADC_RESR0L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	1
	Result Register 0 Low		Туре	r	h	r	rh	rh		rh	
CB _H	ADC_RESR0H	Reset: 00 _H	Bit Field				RESU	LT[9:2]	1		
	Result Register 0 High		Туре				r	ħ			
ССн	ADC_RESR1L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 1 Low		Туре	r	h	r	rh	rh		rh	
CD _H	ADC_RESR1H	Reset: 00 _H	Bit Field				RESU	LT[9:2]	1		
	Result Register 1 High		Туре				r	h i			
CEH	ADC_RESR2L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 2 Low		Туре	r	h	r	rh	rh		rh	
CF _H	ADC_RESR2H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 2 High		Туре				r	ħ			
D2 _H	ADC_RESR3L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 3 Low		Туре	r	h	r	rh	rh		rh	
D3 _H	ADC_RESR3H	Reset: 00 _H	Bit Field				RESU	LT[9:2]	1		
	Result Register 3 High		Туре					h i			
RMAP =	0, Page 3										
CA _H	ADC RESRAOL	Reset: 00 _H	Bit Field	RE	ESULT[2	:0]	VF	DRC		CHNR	
- 11	Result Register 0, View		Туре		rh		rh	rh		rh	
CB _H	ADC RESRA0H	Reset: 00 _H	Bit Field				RESUL	T[10:3]			
n	Result Register 0, View		Туре					h			
ССн	ADC_RESRA1L	Reset: 00 _H	Bit Field	RE	ESULT[2	:01	VF	DRC		CHNR	
H	Result Register 1, View		Туре		rh]	rh	rh		rh	
CD _H	ADC RESRA1H	Reset: 00 _H	Bit Field					T[10:3]			
0DH	Result Register 1, View		Туре					h			
CEH	ADC RESRA2L	Reset: 00 _H	Bit Field	RF	ESULT[2	·01	VF .	DRC		CHNR	
0-H	Result Register 2, View		Туре			.0]	rh	rh		rh	
CF _H	ADC RESRA2H	Reset: 00 _H	Bit Field					T[10:3]			
0. H	Result Register 2, View		Туре					h			
D2 _H	ADC RESRA3L	Reset: 00 _H	Bit Field	RF	ESULT[2	·01	VF .	DRC		CHNR	
5-H	Result Register 3, View		Туре		rh	.0]	rh	rh		rh	
D3 _H	ADC RESRA3H	Reset: 00 _H	Bit Field					_T[10:3]			
DOH	Result Register 3, View /		Туре					h			
RMAP =	0, Page 4		1300								
CA _H	ADC RCR0	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN	l	0		DRCT
o, H	Result Control Register (Bittiola			Ũ			Ũ		R
			Туре	rw	rw	r	rw		r		rw
СВн	ADC_RCR1	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT
	Result Control Register 1										R
			Туре	rw	rw	r	rw		r		rw
CCH	ADC_RCR2 Result Control Register 2	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
	Ç. A		Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Result Control Register 3	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT
			Туре	rw	rw	r	rw		r		rw
CEH	ADC_VFCR	Reset: 00 _H	Bit Field	1 VV)	1 44	VFC3	VFC2	VFC1	VFC0
UCH	Valid Flag Clear Register		Бії Гіеій Туре			r		WFC3	WFC2	W	WFCU
	i g men regiotoi		iyhe	1				vv	٧V	vv	vv

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FF _H	CCU6_TRPCTRH Reset: 00 _H	Bit Field		TRPEN			TR	PEN		
	Trap Control Register High		N	13						
		Туре	rw	rw			r	w		
RMAP =	0, Page 3									
9A _H	CCU6_MCMOUTL Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	0	R			MC	MP		
	Low	Туре	r	rh			r	h		
9B _H	CCU6_MCMOUTH Reset: 00 _H Multi-Channel Mode Output Register	Bit Field	()		CURH			EXPH	
	High	Туре	1	r		rh			rh	
9C _H	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12PM	T12OM	ICC62F	R	ICC61F	R	ICC60F	ICC60 R
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13PM	T13CM
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61	ISC	C60
	Port Input Select Register 0 Low	Туре	r	w	r	w	r	w	r	w
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISP	OS0
		Туре	n	w	r	w	r	w	n	w
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field			(C			IST1	3HR
	Port Input Select Register 2	Туре				r			n	w
FA _H	CCU6_T12L Reset: 00 _H	Bit Field				T12	CVL			
	Timer T12 Counter Register Low	Туре				n	vh			
FB _H	CCU6_T12H Reset: 00 _H	Bit Field				T12	CVH			
	Timer T12 Counter Register High	Туре				n	vh			
FC _H	CCU6_T13L Reset: 00 _H	Bit Field				T13	CVL			
	Timer T13 Counter Register Low	Туре				n	vh			
FD _H	CCU6_T13H Reset: 00 _H	Bit Field				T13	CVH			
	Timer T13 Counter Register High	Туре				n	vh			
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CCPO S2	CCPO S1	CCPO S0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14SSC Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0		•								
A9 _H	SSC_PISEL	Reset: 00 _H	Bit Field			0			CIS	SIS	MIS
	Port Input Select Regist	er	Туре			r			rw	rw	rw
AA _H	SSC_CONL	Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Control Register Low Programming Mode		Туре	rw	rw	rw	rw		r	w	
	Operating Mode		Bit Field			0			B	С	
			Туре			r			r	h	

For power saving purposes, the clocks may be disabled or slowed down according to **Table 23**.

Table 23System frequency (f_{sys} = 80 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals, including CCU6, are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

• 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR VALUE + 1)} \times \frac{STEP}{256}$$

The maximum baud rate that can be generated is limited to $f_{PCLK}/32$. Hence, for a module clock of 26.7 MHz, the maximum achievable baud rate is 0.83 MBaud.

Standard LIN protocal can support a maximum baud rate of 20kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20kHz to 115.2kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 26 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 26.7 MHz is used.

Baud rate	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	Deviation Error
19.2 kBaud	1 (BRPRE=000 _B)	87 (57 _H)	-0.22 %
9600 Baud	1 (BRPRE=000 _B)	174 (AE _H)	-0.22 %
4800 Baud	2 (BRPRE=001 _B)	174 (AE _H)	-0.22 %
2400 Baud	4 (BRPRE=010 _B)	174 (AE _H)	-0.22 %

 Table 26
 Typical Baud rates for UART with Fractional Divider disabled

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 27** lists the resulting deviation errors from generating a baud rate of

For module clock f_{ADC} = 26.7 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 30**.

Module Clock f _{ADC}	СТС	Prescaling Ratio	Analog Clock f _{ADCI}		
26.7 MHz	00 _B	÷ 2	13.3 MHz (N.A)		
	01 _B	÷ 3	8.9 MHz		
	10 _B	÷ 4	6.7 MHz		
	11 _B (default)	÷ 32	833.3 kHz		

Table 30f_ADCI Frequency Selection

As f_{ADCI} cannot exceed 10 MHz, bit field CTC should not be set to 00_B when f_{ADC} is 26.7 MHz. During slow-down mode where f_{ADC} may be reduced to 13.3 MHz, 6.7 MHz etc., CTC can be set to 00_B as long as the divided analog clock f_{ADCI} does not exceed 10 MHz. However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

3.18.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (t_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

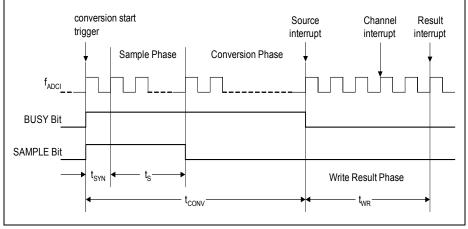


Figure 34 ADC Conversion Timing

4.2 DC Parameters

4.2.1 Input/Output Characteristics

Table 34 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	
			min.	n. max.		Remarks
V _{DDP} = 5V Range						
Output low voltage	V _{OL} C	С	-	1.0	V	I _{OL} = 15 mA
			_	0.4	V	I _{OL} = 5 mA
Output high voltage	V _{OH} C	С	V _{DDP} - 1.0	-	V	I _{OH} = -15 mA
			V _{DDP} - 0.4	-	V	I _{OH} = -5 mA
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP} S	R	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
nput low voltage on P0.0 & P0.1	V _{ILP0} S	R	-0.2	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
nput low voltage on RESET pin	V _{ILR} S	R	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
nput low voltage on ГMS pin	V _{ILT} S	R	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode
nput high voltage on oort pins all except P0.0 & P0.1)	V _{IHP} S	R	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
nput high voltage on P0.0 & P0.1	V _{IHP0} S	R	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode
nput high voltage on RESET pin	V _{IHR} S	R	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
nput high voltage on MS pin	V _{IHT} S	R	$0.75 \times V_{\text{DDP}}$	-	V	CMOS Mode
nput Hysteresis ¹⁾ on Port pins	HYS C	С	$0.08 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input Hysteresis ¹⁾ on XTAL1	HYSXC	С	$0.07 \times V_{ m DDC}$	-	V	

Electrical Parameters

4.2.2 Supply Threshold Characteristics

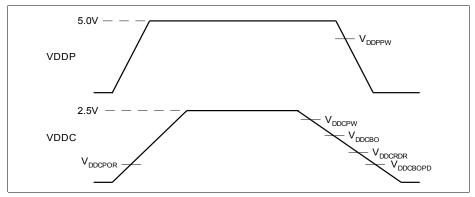


Figure 36 Supply Threshold Parameters

Table 35 Supply Threshold Parameters (Operating Conditions apply)

Parameters	Symbol		Lii	mit Val	ues	Unit	Remarks
			min.	typ.	max.		
V _{DDC} prewarning voltage ¹⁾	V _{DDCPW}	СС	2.2	2.3	2.4	V	
V_{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	СС	2.0	2.1	2.2	V	XC866-4FR, XC866-2FR
			2.0	2.1	2.3	V	XC866-1FR, ROM device
RAM data retention voltage	V _{DDCRDR}	СС	0.9	1.0	1.1	V	
V_{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V	
V _{DDP} prewarning voltage ³⁾	V _{DDPPW}	СС	3.4	4.0	4.6	V	
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	СС	1.3	1.5	1.7	V	

¹⁾ Detection is disabled in power-down mode.

²⁾ Detection is enabled in both active and power-down mode.

³⁾ Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

⁴⁾ The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

Electrical Parameters

Table 39Power Supply Current Parameters (Operating Conditions apply;
 V_{DDP} = 3.3V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition	
		typ. ¹⁾	max. ²⁾	1	Remarks	
V _{DDP} = 3.3V Range		-		4		
Active Mode	I _{DDP}	21.5	23.3	mA	3)	
Idle Mode	I _{DDP}	16.4	18.9	mA	XC866-4FR, XC866-2FR ⁴⁾	
		11.2	13.5	mA	XC866-1FR, ROM device ⁴⁾	
Active Mode with slow-down enabled	I _{DDP}	6.8	8	mA	XC866-4FR, XC866-2FR ⁵⁾	
		5.4	7.3	mA	XC866-1FR, ROM device ⁵⁾	
Idle Mode with slow-down enabled	I _{DDP}	6.8	7.8	mA	XC866-4FR, XC866-2FR ⁶⁾	
		4.9	6.9	mA	XC866-1FR, ROM device ⁶⁾	

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 3.6 V).

³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.

⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock</u> disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.

⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: <u>CPU</u> clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET</u> = V_{DDP}, no load on ports.

⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to all peripherals enable and running at 833 KHz by setting CLKREL in CMCON to 0101_B,, <u>RESET = V_{DDP}, no load on ports.</u></u>

Electrical Parameters

4.3.4 On-Chip Oscillator Characteristics

Table 43	On-chip Oscillator Characteristics (Operating Conditions apply)
----------	---

Parameter	Symbol	Lir	nit Va	lues	Unit	Test Conditions
		min.	typ.	max.		
Nominal frequency	f _{NOM} CC	9.75	10	10.25	MHz	under nominal conditions ¹⁾ after IFX-backend trimming
Long term frequency deviation ²⁾	Δf_{LT} CC	-5.0	-	5.0	%	with respect to f_{NOM} , over lifetime and temperature (– 10°C to 125°C), for one device after trimming
		-6.0	-	0	%	with respect to f_{NOM} , over lifetime and temperature (– 40°C to -10°C), for one device after trimming
Short term frequency deviation	∆f _{ST} CC	-1.0	-	1.0	%	with respect to <i>f_{NOM}</i> , within one LIN message (<10 ms 100 ms)

¹⁾ Nominal condition: V_{DDC} = 2.5 V, T_A = + 25°C.

²⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Package and Reliability

5 Package and Reliability

5.1 Package Parameters (PG-TSSOP-38)

Table 47 provides the thermal characteristics of the package.

Parameter	Symbol		Limi	t Values	Unit	Notes
			Min.	Max.		
Thermal resistance junction case ¹⁾	R _{TJC}	CC	-	15.7	K/W	-
Thermal resistance junction lead ¹⁾	R _{TJL}	CC	-	39.2	K/W	-

⁾ The thermal resistances between the case and the ambient (R_{TCA}), the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}), the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}). The thermal resistances between the case and the ambient (R_{TCA}), the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J=T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

Package and Reliability

5.3 Quality Declaration

Table 48 shows the characteristics of the quality parameters in the XC866.

Table 48 Quality Parameters

Parameter	Symbol	Limit	t Values	Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	500	V	Conforming to JESD22-C101-C