

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product StatusLast Time BuyCore ProcessorXC800Core Size8-BitSpeed25MHzConnectivityLINbus, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device Packagehttps://www.ex.fl.com/product-detail/infineon-technologies/xc866l4fra3vbekxuma1	Details	
Core Size8-BitSpeed25MHzConnectivityLINbus, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Product Status	Last Time Buy
Speed25MHzConnectivityLINbus, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Core Processor	XC800
ConnectivityLINbus, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Core Size	8-Bit
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Speed	25MHz
Number of I/O27Program Memory Size16KB (16K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size768 × 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Connectivity	LINbus, SSI, UART/USART
Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Number of I/O	27
EEPROM Size-RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Program Memory Size	16KB (16K x 8)
RAM Size768 x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	EEPROM Size	-
Data ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	RAM Size	768 x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Operating Temperature-40°C ~ 150°C (TA)Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Data Converters	A/D 8x10b
Mounting TypeSurface MountPackage / Case38-TFSOP (0.173", 4.40mm Width)Supplier Device PackagePG-TSSOP-38	Oscillator Type	Internal
Package / Case 38-TFSOP (0.173", 4.40mm Width) Supplier Device Package PG-TSSOP-38	Operating Temperature	-40°C ~ 150°C (TA)
Supplier Device Package PG-TSSOP-38	Mounting Type	Surface Mount
	Package / Case	38-TFSOP (0.173", 4.40mm Width)
Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/xc866l4fra3vbekxuma1	Supplier Device Package	PG-TSSOP-38
	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc866l4fra3vbekxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC866 8-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking

General Device Information

2.4 Pin Definitions and Functions

Table 3 Pin Definitions and Functions

Symbol	Pin Number	Туре	Reset State	Function	
P0		I/O		port. It can b	-bit bidirectional general purpose I/O be used as alternate functions for the 6, UART, and the SSC.
P0.0	12		Hi-Z	TCK_0 T12HR_1	JTAG Clock Input CCU6 Timer 12 Hardware Run Input
				CC61_1 CLKOUT RXDO_1	Input/Output of Capture/Compare channel 1 Clock Output UART Transmit Data Output
P0.1	14		Hi-Z	TDI_0 T13HR_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input
				RXD_1 COUT61_1	UART Receive Data Input Output of Capture/Compare channel 1
P0.2	13		PU	EXF2_1 CTRAP_2 TDO_0 TXD_1	Timer 2 External Flag Output CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/ Clock Output
P0.3	2		Hi-Z	SCK_1 COUT63_1	SSC Clock Input/Output Output of Capture/Compare channel 3
P0.4	3		Hi-Z	MTSR_1 CC62_1	SSC Master Transmit Output/ Slave Receive Input Input/Output of Capture/Compare channel 2
P0.5	4		Hi-Z	MRST_1 EXINT0_0 COUT62_1	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 Output of Capture/Compare channel 2

General Device Information

Table 5			nis unu		ontaj
Symbol	Pin Number	Туре	Reset State	Function	
P3		I			directional general purpose I/O port. It as alternate functions for the CCU6.
P3.0	32		Hi-Z	CCPOS1_2 CC60_0	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0
P3.1	33		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1
				COUT60_0	Output of Capture/Compare channel 0
P3.2	34		Hi-Z	CCPOS2_2 CC61_0	CCU6 Hall Input 2 Input/Output of Capture/Compare channel 1
P3.3	35		Hi-Z	COUT61_0	Output of Capture/Compare channel 1
P3.4	36		Hi-Z	CC62_0	Input/Output of Capture/Compare channel 2
P3.5	37		Hi-Z	COUT62_0	Output of Capture/Compare channel 2
P3.6	30		PD	CTRAP_0	CCU6 Trap Input
P3.7	31		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Table 3Pin Definitions and Functions (cont'd)

XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function
V _{DDP}	18	-	-	I/O Port Supply (3.3 V/5.0 V) Also used by EVR and analog modules.
V _{SSP}	19	-	-	I/O Port Ground
V _{DDC}	8	-	-	Core Supply Monitor (2.5 V)
V _{ssc}	7	-	_	Core Supply Ground
V _{AREF}	25	-	-	ADC Reference Voltage
V _{AGND}	24	-	_	ADC Reference Ground
XTAL1	6	I	Hi-Z	External Oscillator Input (NC if not needed)
XTAL2	5	0	Hi-Z	External Oscillator Output (NC if not needed)
TMS	11	I	PD	Test Mode Select
RESET	38	I	PU	Reset Input
MBC ¹⁾	1	I	PU	Monitor & BootStrap Loader Control

Table 3 Pin Definitions and Functions (cont'd)

¹⁾ An external pull-up device in the range of 4.7 k Ω to 100 k Ω is required to enter user mode. Alternatively MBC can be tied to high if alternate functions (for debugging) of the pin are not utilized.

Table 7CPU Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
F0 _H	В	Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Interrupt Priority Regis	Reset: 00 _H iter 1	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Interrupt Priority Regis	Reset: 00 _H ter 1 High	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSCH	PADC H
			Туре	rw	rw	rw	rw	rw	rw	rw	rw

The system control SFRs can be accessed in the standard memory area (RMAP = 0).

Table 8 System Control Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0 or 1			1	1	1				1
8F _H	SYSCON0 Reset: 00 _H	Bit Field				0				RMAP
	System Control Register 0	Туре				r				rw
RMAP =	0									1
BF _H	SCU_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
	Page Register for System Control	Туре	١	N	\ \	N	r		rwh	
RMAP =	0, Page 0				1					
B3 _H	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field	1	0	JTAG TDIS	JTAG TCKS	(0	EXINT 0IS	URRIS
		Туре		r	rw	rw		r	rw	rw
B4 _H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B5 _H	IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field		0		ADCS RC1	ADCS RC0	RIR	TIR	EIR
		Туре		r		rwh	rwh	rwh	rwh	rwh
B7 _H	EXICON0 Reset: 00 _H	Bit Field	EXI	NT3	EXI	NT2	EXI	NT1	EXI	NT0
	External Interrupt Control Register 0	Туре	r	w	n	w		w	r	w
BA _H	EXICON1 Reset: 00 _H	Bit Field	0		EXI	NT6	EXI	NT5	EXI	NT4
	External Interrupt Control Register 1	Туре		r	r	w	r	w	r	w
BB _H	NMICON Reset: 00 _H NMI Control Register	Bit Field	0	NMI ECC	NMI VDDP	NMI VDD	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT
		Туре	r	rw	rw	rw	rw	rw	rw	rw
BC _H	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
BD _H	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BREN		BRPRE		R
	Baud Rate Control Register	Туре	r	w	r	rw		rw		rw
BE _H	BG Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer/Reload Register	Туре				r	w			
E9 _H	FDCON Reset: 00 _H Fractional Divider Control Register	Bit Field	BGS	SYNEN	ERRSY N	EOFSY N	BRK	NDOV	FDM	FDEN
		Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре					w			
EB _H	FDRES Reset: 00 _H	Bit Field				RES	ULT			
	Fractional Divider Result Register	Туре				r	h			

Table 8System Control Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0	
B3 _H	ID	Reset: 01 _H	Bit Field	PRODID VERID					1			
	Identity Register		Туре			r		r				
B4 _H	PMCON0 Power Mode Control Re	Reset: 00 _H gister 0	Bit Field	0	WDT WKRS WK RST SEL		SD	PD	N	/S		
			Туре	r	rwh	rwh	rw	rw	rwh	r	w	
B5 _H	PMCON1 Power Mode Control Re	Reset: 00 _H gister 1	Bit Field		0 T2		T2_DIS	CCU _DIS	SSC _DIS	ADC _DIS		
			Туре	r				rw	rw	rw	rw	
B6 _H	OSC_CON OSC Control Register	Reset: 08 _H	Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR	
			Туре		r rw				rw	rwh	rh	
В7 _Н	PLL_CON PLL Control Register	Reset: 20 _H	Bit Field			VCO BYP	OSC DISC	RESLD	LOCK			
			Туре		r	w		rw	rw	rwh	rh	
BA _H	CMCON Clock Control Register	Reset: 00 _H	Bit Field	VCO SEL		0			CLKREL			
			Туре	rw		r			r	w		
BB _H	PASSWD Password Register	Reset: 07 _H	Bit Field			PASS			PROTE CT_S	MODE		
			Туре	w rh						r	w	
BC _H	FEAL	Reset: 00 _H	Bit Field	ECCERRADDR[7:0]								
	Flash Error Address Reg	gister Low	Туре	rh								
BD _H	FEAH	Reset: 00 _H	Bit Field			E	CCERR	ADDR[15	:8]			
	Flash Error Address Reg		Туре					'n				
BE _H	COCON Clock Output Control Re	Reset: 00 _H gister	Bit Field	I 0 TLEN COUT COREL			REL					
			Туре	Type r rw rw rw		w						
E9 _H	MISC_CON Miscellaneous Control R	Reset: 00 _H tegister	Bit Field				0				DFLAS HEN	
			Туре				r				rwh	
	0, Page 3											
B3 _H	XADDRH	Reset: F0 _H	Bit Field				AD	DRH				
	On-Chip XRAM Address	Higher Order	Туре				1	w				

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9 WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1				1					
BB _H	WDTCON Reset: 00 _H Watchdog Timer Control Register	Bit Field		0	WINB EN	WDT PR	0	WDT EN	WDT RS	WDT IN
		Туре		r	rw	rh	r	rw	rwh	rw
BC _H	WDTREL Reset: 00 _H	Bit Field	WDTREL							
	Watchdog Timer Reload Register					r	w			
BD _H	WDTWINB Reset: 00 _H Watchdog Window-Boundary Count	Bit Field				WDT	WINB			
	Register	Туре				r	w			
BE _H	WDTL Reset: 00 _H	Bit Field				WDT	[7:0]			
	Watchdog Timer Register Low	Туре				r	h			
BF _H	WDTH Reset: 00 _H	Bit Field				WDT	[15:8]			
	Watchdog Timer Register High	Туре				r	h			

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B1 _H	P3_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 1 Register	Туре	rw							
RMAP =	0, Page 3									
80 _H	P0_OD Reset: 00 _H	Bit Field		C	P5	P4	P3	P2	P1	P0
	P0 Open Drain Control Register	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Open Drain Control Register	Туре	rw	rw	rw		r		rw	rw
B0 _H	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Open Drain Control Register	Туре	rw							

The ADC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 11 ADC Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0							1		1	
D1 _H		set: 00 _H	Bit Field	OP STNR		0	PAGE				
	Page Register for ADC		Туре	\ \	v	,	N	r		rwh	
RMAP =	0, Page 0							1			
CA _H	ADC_GLOBCTR Reset: 30 _H		Bit Field	ANON	DW	C	тс		(D	
	Global Control Register		Туре	rw	rw	r	w			r	
CB _H	ADC_GLOBSTR Res Global Status Register	set: 00 _H	Bit Field	()		CHNR		0	SAM PLE	BUSY
			Туре		r		rh		r	rh	rh
CCH		set: 00 _H	Bit Field	ASEN1	ASEN0	0	ARBM	CSM1	PRIO1	CSM0	PRIO0
	Priority and Arbitration Register	er	Туре	rw	rw	r	rw	rw	rw	rw	rw
CD _H		set: B7 _H	Bit Field		BOU	ND1			BOL	IND0	
	Limit Check Boundary Registe	er	Туре		n	N			r	w	
CEH		set: 00 _H	Bit Field				S	TC			
	Input Class Register 0		Туре	rw							
CF _H	ADC_ETRCR Res External Trigger Control Regis	set: 00 _H ster	Bit Field	SYNEN SYNEN ETRSEL1		1	I	ETRSEL	0		
			Туре	rw	rw		rw			rw	
RMAP =	0, Page 1										
CA _H		set: 00 _H	Bit Field	0	LCC		(0	RES	RSEL	
	Channel Control Register 0		Туре	r		rw			r rv		w
CB _H		set: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 1		Туре	r		rw			r rw		
CCH		set: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 2		Туре	r		rw			r	r	w
CD _H		set: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 3		Туре	r		rw			r	r	w
CEH		set: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 4		Туре	r		rw			r	r	w
CF _H		set: 00 _H	Bit Field	0		LCC		(0	RES	RSEL
	Channel Control Register 5		Туре	r		rw			r	r	w
D2 _H		set: 00 _H	Bit Field	0		LCC			0	RES	RSEL
	Channel Control Register 6		Туре	r		rw			r		w
D3 _H		set: 00 _H	Bit Field	0		LCC			0	RES	RSEL
DOH	Channel Control Register 7								r		

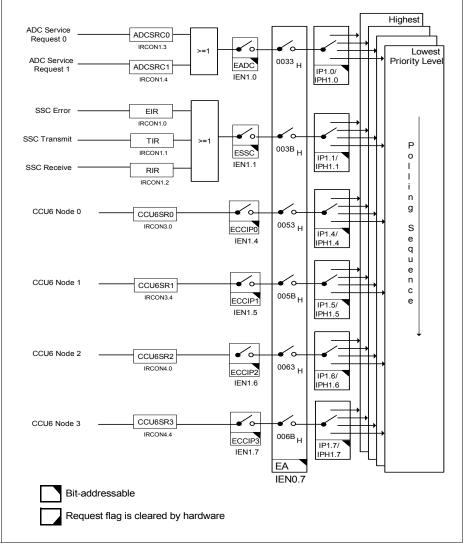


Figure 16 Interrupt Request Sources (Part 3)

XC866

Functional Description

XINTR6	0033 _H	ADC	EADC	IEN1
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
XINTR11	005B _H	CCU6 INP1	ECCIP1	
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
XINTR13	006B _H	CCU6 INP3	ECCIP3	

Table 17 Interrupt Vector Addresses (cont'd)

3.5 Parallel Ports

The XC866 has 27 port pins organized into four parallel ports, Port 0 (P0) to Port 3 (P3). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1 and P3 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals, and also analog inputs for the Analog-to-Digital Converter (ADC).

Bidirectional Port Features:

- Configurable pin direction
- Configurable pull-up/pull-down devices
- · Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features:

- · Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- · Alternate input for on-chip peripherals
- · Analog input for ADC module

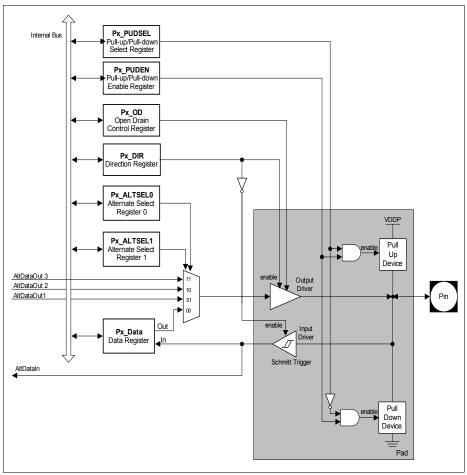
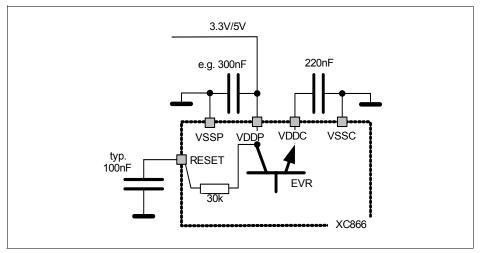


Figure 18 General Structure of Bidirectional Port

3.7 Reset Control


The XC866 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC866 is first powered up, the status of certain pins (see **Table 20**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin RESET must be asserted until V_{DDC} reaches 0.9^*V_{DDC} . The delay of external reset can be realized by an external capacitor at RESET pin. This capacitor value must be selected so that V_{RESET} reaches 0.4 V, but not before V_{DDC} reaches 0.9* V_{DDC} .

A typical application example is shown in Figure 21. V_{DDP} capacitor value is 300 nF. V_{DDC} capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for V_{DDC} to reach 0.9^*V_{DDC} is less than 50 µs once V_{DDP} reaches 2.3V. Hence, based on the condition that 10% to 90% V_{DDP} (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See Figure 22.

For power saving purposes, the clocks may be disabled or slowed down according to **Table 23**.

Table 23System frequency (f_{sys} = 80 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals, including CCU6, are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG
 The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR \text{ VALUE} + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR VALUE + 1)} \times \frac{STEP}{256}$$

The maximum baud rate that can be generated is limited to $f_{PCLK}/32$. Hence, for a module clock of 26.7 MHz, the maximum achievable baud rate is 0.83 MBaud.

Standard LIN protocal can support a maximum baud rate of 20kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20kHz to 115.2kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 26 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 26.7 MHz is used.

Baud rate Prescaling Factor (2 ^{BRPRE})		Reload Value (BR_VALUE + 1)	Deviation Error		
19.2 kBaud	1 (BRPRE=000 _B)	87 (57 _H)	-0.22 %		
9600 Baud	1 (BRPRE=000 _B)	174 (AE _H)	-0.22 %		
4800 Baud	2 (BRPRE=001 _B)	174 (AE _H)	-0.22 %		
2400 Baud	4 (BRPRE=010 _B)	174 (AE _H)	-0.22 %		

Table 26	Typical Baud rates for UART with Fractional Divider disabled
----------	--

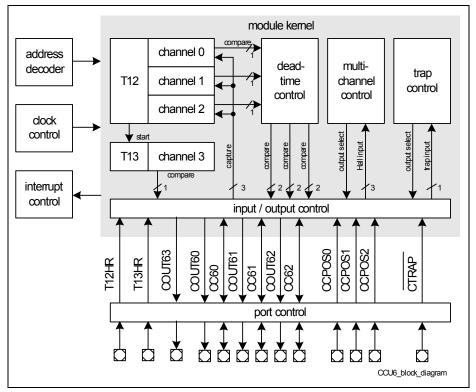
The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. Table 27 lists the resulting deviation errors from generating a baud rate of

3.11.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

[3.1]

Mode 1, 3 baud rate= $\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$


3.12 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 29**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP.

The output frequency in normal divider mode is derived as follows:

 $f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$ [3.2]

The block diagram of the CCU6 module is shown in Figure 32.

Figure 32 CCU6 Block Diagram

XC866

Electrical Parameters

Table 34 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	Test Conditions		
			min.	max.		Remarks		
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V			
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V			
Pull-up current	I _{PU}	SR	-	-10	μA	V _{IH,min}		
			-150	-	μA	V _{IL,max}		
Pull-down current	I_{PD}	SR	-	10	μA	V _{IL,max}		
			150	-	μA	V _{IH,min}		
Input leakage current ²⁾	I _{OZ1}	CC	-1	1	μA	0 < $V_{\rm IN}$ < $V_{\rm DDP}$, $T_{\rm A} \le 125^{\circ}{\rm C}$, XC866-4FR and XC866-2FR		
			-2.5	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C, XC866-1FR$ and ROM device		
Input current at XTAL1	I_{ILX}	CC	-10	10	μA			
Overload current on any pin	I _{OV}	SR	-5	5	mA			
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	-	25	mA	3)		
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)		
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M	SR	-	15	mA			
Maximum current for all pins (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	$\Sigma I_{M} $	SR	-	60	mA			
Maximum current into V_{DDP}	I _{MVDE}	SR	-	80	mA			
$\frac{\rm Maximum\ current\ out\ of}{V_{\rm SS}}$	I _{MVSS}	SR	-	80	mA			

Electrical Parameters

Table 34 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.		Remarks	
Pull-up current	I _{PU}	SR	-	-5	μA	V _{IH,min}	
			-50	-	μA	V _{IL,max}	
Pull-down current	I_{PD}	SR	-	5	μA	V _{IL,max}	
			50	-	μA	V _{IH,min}	
Input leakage current ²⁾	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C$, XC866-4FR and XC866-2FR	
			-2.5	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C, XC866-1FR$ and ROM device	
Input current at XTAL1	I_{ILX}	CC	- 10	10	μA		
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	ΣI_{OV}	 SR	-	25	mA	3)	
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)	
$\begin{tabular}{l} \hline Maximum current per \\ pin (excluding $V_{\rm DDP}$ and $V_{\rm SS}$) \end{tabular}$	I _M	SR	-	15	mA		
Maximum current for all pins (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	$\Sigma I_{M} $	SR	-	60	mA		
Maximum current into V_{DDP}	I _{MVDE}	SR	-	80	mA		
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	80	mA		

¹⁾ Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

²⁾ <u>An additional error current (l_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.</u>

³⁾ Not subjected to production test, verified by design/characterization.

Electrical Parameters

4.2.2 Supply Threshold Characteristics



Figure 36 Supply Threshold Parameters

Table 35 Supply Threshold Parameters (Operating Conditions apply)

Parameters	Symbol		Limit Values			Unit	Remarks
			min. typ.		max.		
V _{DDC} prewarning voltage ¹⁾	V _{DDCPW}	СС	2.2	2.3	2.4	V	
V_{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	СС	2.0	2.1	2.2	V	XC866-4FR, XC866-2FR
			2.0	2.1	2.3	V	XC866-1FR, ROM device
RAM data retention voltage	V _{DDCRDR}	СС	0.9	1.0	1.1	V	
V_{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V	
V _{DDP} prewarning voltage ³⁾	V _{DDPPW}	CC	3.4	4.0	4.6	V	
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	СС	1.3	1.5	1.7	V	

¹⁾ Detection is disabled in power-down mode.

²⁾ Detection is enabled in both active and power-down mode.

³⁾ Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

⁴⁾ The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

XC866

Package and Reliability

5.2 Package Outline

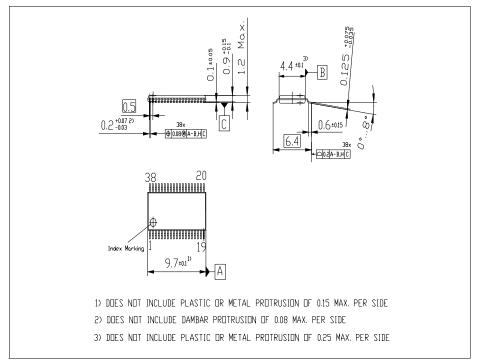


Figure 46 PG-TSSOP-38-4 Package Outline