

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc866l4frabekxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.2 Logic Symbol

Figure 3 XC866 Logic Symbol

General Device Information

2.3 Pin Configuration

Figure 4 XC866 Pin Configuration, PG-TSSOP-38 Package (top view)

XC866

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
Р3		I		Port 3 Port 3 is a bio can be used	directional general purpose I/O port. It as alternate functions for the CCU6.
P3.0	32		Hi-Z	CCPOS1_2 CC60_0	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0
P3.1	33		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1
				COUT60_0	Output of Capture/Compare channel 0
P3.2	34		Hi-Z	CCPOS2_2 CC61_0	CCU6 Hall Input 2 Input/Output of Capture/Compare channel 1
P3.3	35		Hi-Z	COUT61_0	Output of Capture/Compare channel 1
P3.4	36		Hi-Z	CC62_0	Input/Output of Capture/Compare channel 2
P3.5	37		Hi-Z	COUT62_0	Output of Capture/Compare channel 2
P3.6	30		PD	CTRAP_0	CCU6 Trap Input
P3.7	31		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Table 3 Pin Definitions and Functions (cont'd)

The page register has the following definition:

MOD_PAGE

Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
C	P	ST	NR	0		PAGE	
١	N	v	V	r		rwh	

Field	Bits	Туре	Description
PAGE	[2:0]	rwh	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	w	Storage Number This number indicates which storage bit field is the target of the operation defined by bit field OP. If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value. If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored. 00 ST0 is selected.
			01 ST1 is selected.10 ST2 is selected.11 ST3 is selected.

3.2.4 XC866 Register Overview

The SFRs of the XC866 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Table 7** to **Table 15**, with the addresses of the bitaddressable SFRs appearing in bold typeface.

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	0 or 1				1	1	1	1	1	1	
81 _H	SP	Reset: 07 _H	Bit Field				S	P			
	Stack Pointer Register		Туре	rw							
82 _H	DPL	Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0
	Data Pointer Register Lov	v	Туре	rw	rw	rw	rw	rw	rw	rw	rw
83 _H	DPH	Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0
	Data Pointer Register Hig	h	Туре	rw	rw	rw	rw	rw	rw	rw	rw
87 _H	PCON Reset: 00 _H		Bit Field	SMOD		0		GF1	GF0	0	IDLE
	Power Control Register		Туре	rw		r		rw	rw	r	rw
88 _H	TCON	Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
	Timer Control Register		Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw
89 _H	TMOD Reset: 00 _H Timer Mode Register		Bit Field	GATE1	0	Τ	M	GATE0	0	TC	M
			Туре	rw	r	r	w	rw	r	r	w
8A _H	TL0	Reset: 00 _H	Bit Field				V	AL			
	Timer 0 Register Low		Туре	rwh							
8B _H	TL1 Reset: 00 _H		Bit Field	VAL							
	Timer 1 Register Low		Туре				rv	vh			
8C _H	TH0 Reset: 00 _H Timer 0 Register High		Bit Field				V	AL			
			Туре				rv	vh			
8D _H	TH1 Reset: 00 _H Timer 1 Register High		Bit Field				V	AL			
			Туре				rv	vh			
98 _H	SCON	Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Re	egister	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
99 _H	SBUF	Reset: 00 _H	Bit Field	VAL							
	Serial Data Buffer Registe	er	Туре	rwh							
A2 _H	EO	Reset: 00 _H	Bit Field		0		TRAP_		0		DPSEL
	Extended Operation Regi	ster					EN				0
			Туре		r		rw		r		rw
A8 _H	IEN0 Interrupt Enable Register	Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
		-	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Interrupt Priority Register	Reset: 00 _H	Bit Field)	PI2	PS	PI1	PX1	PIO	PX0
			Туре		r	rw	rw	rw	rw	rw	rw
В9 ^Н	IPH Interrupt Priority Register	Reset: 00 _H	Bit Field)	PT2H	PSH	PI1H	PX1H	PIOH	РХОН
			Туре	e 14	r I ta	rw	rw	rw	rw	rw	rw
D0 _H	PSW Program Status Word Re	Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	+1	Р
			Туре	rw	rwh	rwh	rw	rw	rwh	rwh	rh
E0H	ACC Accumulator Register	Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
=-		B (A C	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Interrupt Enable Register	Reset: 00 _H 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
			Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 7 CPU Register Overview

Table 7CPU Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
F0 _H	В	Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Interrupt Priority Registe	Reset: 00 _H er 1	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Interrupt Priority Registe	Reset: 00 _H er 1 High	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSCH	PADC H
			Туре	rw	rw	rw	rw	rw	rw	rw	rw

The system control SFRs can be accessed in the standard memory area (RMAP = 0).

Table 8 System Control Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0 or 1				1					
8F _H	SYSCON0 Reset: 00 _H	Bit Field				0				RMAP
	System Control Register 0	Туре				r				rw
RMAP =	0									
BF _H	SCU_PAGE Reset: 00 _H	Bit Field	C)P	ST	STNR			PAGE	
	Page Register for System Control	Туре	١	N	N N	v	r		rwh	
RMAP =	0, Page 0									
B3 _H	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field		0	JTAG TDIS	JTAG TCKS	(0	EXINT 0IS	URRIS
		Туре		r	rw	rw		r	rw	rw
B4 _H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B5 _H	35 _H IRCON1 Reset: 0 Interrupt Request Register 1	Bit Field	0			ADCS RC1	ADCS RC0	RIR	TIR	EIR
		Туре		r		rwh	rwh	rwh	rwh	rwh
B7 _H	EXICON0 Reset: 00 _H	Bit Field	EXI	NT3	EXI	NT2	EXI	NT1	EXI	NT0
	External Interrupt Control Register 0		r	w	r	w	r	w	r	w
BA _H	EXICON1 Reset: 00 _H		0		EXI	NT6	EXI	NT5	EXI	NT4
	External Interrupt Control Register 1	Туре	r		rw		rw		rw	
BB _H	NMICON Reset: 00 _H NMI Control Register Image: Control Register	Bit Field	0	NMI ECC	NMI VDDP	NMI VDD	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT
		Туре	r	rw	rw	rw	rw	rw	rw	rw
BC _H	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
BD _H	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BREN		BRPRE		R
	Baud Rate Control Register	Туре	r	w	r	rw		rw		rw
BEH	BG Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer/Reload Register	Туре				r	w			
E9 _H	FDCON Reset: 00 _H Fractional Divider Control Register	Bit Field	BGS	SYNEN	ERRSY N	EOFSY N	BRK	NDOV	FDM	FDEN
		Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре				r	w			
EB _H	FDRES Reset: 00 _H	Bit Field	RESULT							
L	Fractional Divider Result Register	Туре				r	h			
RMAP =	0, Page 1									

				-	-			-	-	-	
AB _H	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
	Control Register High										
	Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw	
	Operating Mode		EN	MS	0	BSY	BE	PE	RE	TE	
		Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
ACH	SSC_TBL Reset: 00 _H	Bit Field	TB_VALUE								
	Transmitter Buffer Register Low	Туре		rw							
AD _H	SSC_RBL Reset: 00 _H	Bit Field	RB_VALUE								
	Receiver Buffer Register Low	Туре		rh							
AE _H	SSC_BRL Reset: 00 _H	Bit Field				BR_VA	_UE[7:0]				
	Baudrate Timer Reload Register Low	Туре	rw								
AF _H	SSC_BRH Reset: 00 _H	Bit Field				BR_VAL	UE[15:8]]			
Baudrate Timer Re	Baudrate Timer Reload Register High	Туре				n	N				

Table 14 SSC Register Overview

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1		1		1					
E9 _H	MMCR2 Reset: 0U _H Monitor Mode Control Register 2	Bit Field	EXBC_ P	EXBC	MBCO N_P	MBCO N	MMEP _P	MMEP	MMOD E	JENA
		Туре	w	rw	w	rwh	w	rwh	rh	rh
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	MSTEP _P	MSTEP	MRAM S_P	MRAM S	TRF	RRF
		Туре	w	rwh	w	rw	w	rwh	rh	rh
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F
		Туре	rw	rh	rwh	rwh	rwh	rwh	rwh	rwh
F3 _H	F3 _H MMBPCR Reset: 00 _H BreakPoints Control Register	Bit Field	SWBC	HWB3C HWB		B2C	HWB1 C	HW	B0C	
		Туре	rw	r	rw		N	rw	r	N
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control Register	Bit Field	DVECT	DRETR	()	MMUIE _P	MMUIE	RRIE_ P	RRIE
		Туре	rwh	rwh		r	w	rw	w	rw
F5 _H	MMDR Reset: 00 _H Monitor Mode Data Register	Bit Field	MMRR							
	Receive	Туре	rh							
	Transmit	Bit Field				MN	ITR			
		Туре				١	v			
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select Register	Bit Field	0		BPSEL _P		BP	SEL		
		Туре	r			w		r	w	
F7 _H	HWBPDR Reset: 00 _H	Bit Field				HW	3Pxx			
	Hardware Breakpoints Data Register	Туре				r	N			

Table 16 Flash	able 16 Flash Data Retention and Endurance (Operating Conditions apply)									
Retention	Endurance ¹⁾	Size	Remarks							
Program Flash		ŀ								
20 years	1,000 cycles	up to 16 Kbytes ²⁾	for 16-Kbyte Variant							
20 years	1,000 cycles	up to 8 Kbytes ²⁾	for 8-Kbyte Variant							
20 years	1,000 cycles	up to 4 Kbytes ²⁾	for 4-Kbyte Variant							
Data Flash										
20 years	1,000 cycles	4 Kbytes								
5 years	10,000 cycles	1 Kbyte								
2 years	70,000 cycles	512 bytes								
2 years	100,000 cycles	128 bytes								

Table 16 shows the Flash data retention and endurance targets.

¹⁾ One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in **Table 16** is valid only if the following conditions are fulfilled:

- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.

- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.

- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.

²⁾ If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the device variant. Having more Data Flash will mean less Flash is available for Program Flash.

3.3.1 Flash Bank Sectorization

The XC866 product family offers four Flash devices with either 8 Kbytes or 16 Kbytes of embedded Flash memory. These Flash memory sizes are made up of two or four 4-Kbyte Flash banks, respectively. Each Flash device consists of Program Flash (P-Flash) bank(s) and a single Data Flash (D-Flash) bank with different sectorization shown in **Figure 11**. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations. The XC866 ROM devices offer a single 4-Kbyte D-Flash bank.

Figure 14 Interrupt Request Sources (Part 1)

Figure 18 General Structure of Bidirectional Port

Figure 19 General Structure of Input Port

Table 24 lists the possible watchdog time range that can be achieved for different module clock frequencies.

 Some numbers are rounded to 3 significant digits.

Reload value	Prescaler for f _{PCLK}						
in WDTREL	2 (WDTIN = 0)	128 (WDTIN = 1)					
	26.7 MHz	26.7 MHz					
FF _H	19.2 μs	1.23 ms					
7F _H	2.48 ms	159 ms					
00 _H	4.92 ms	315 ms					

Table 24	Watchdog Time	e Ranges
----------	---------------	----------

3.11 Universal Asynchronous Receiver/Transmitter

The Universal Asynchronous Receiver/Transmitter (UART) provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features:

- · Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - fixed or variable baud rate
- · Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART can operate in the four modes as shown in **Table 25**. Data is transmitted on TXD and received on RXD.

Table 25	UART Modes
----------	------------

Operating Mode	Baud Rate
Mode 0: 8-bit shift register	f _{PCLK} /2
Mode 1: 8-bit shift UART	Variable
Mode 2: 9-bit shift UART	f _{PCLK} /32 or f _{PCLK} /64
Mode 3: 9-bit shift UART	Variable

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{PCLK}/32$ or $f_{PCLK}/64$. The variable baud rate is set by either the underflow rate on the dedicated baud-rate generator, or by the overflow rate on Timer 1.

3.11.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

[3.1]

Mode 1, 3 baud rate= $\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$

3.12 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 29**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP.

The output frequency in normal divider mode is derived as follows:

 $f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$ [3.2]

3.15 Timer 0 and Timer 1

Timers 0 and 1 are count-up timers which are incremented every machine cycle, or in terms of the input clock, every 2 PCLK cycles. They are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 28**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation					
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.					
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.					
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.					
3	Timer 0 operates as two 8-bit timersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.					

Table 28 Timer 0 and Timer 1 Modes

3.17 Capture/Compare Unit 6

The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines.

The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only.

The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.

Timer T12 Features:

- Three capture/compare channels, each channel can be used either as a capture or as a compare channel
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches)
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- · Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of the required T12/13 registers
- · Generation of center-aligned and edge-aligned PWM
- · Supports single-shot mode
- · Supports many interrupt request sources
- · Hysteresis-like control mode

Timer T13 Features:

- · One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Can be synchronized to T12
- · Interrupt generation at period-match and compare-match
- Supports single-shot mode

Additional Features:

- · Implements block commutation for Brushless DC-drives
- Position detection via Hall-sensor pattern
- · Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC-drives
- · Output levels can be selected and adapted to the power stage

3.19 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- use the built-in debug functionality of the XC800 Core
- · add a minimum of hardware overhead
- provide support for most of the operations by a Monitor Program
- use standard interfaces to communicate with the Host (a Debugger)

Features:

- · Set breakpoints on instruction address and within a specified address range
- Set breakpoints on internal RAM address
- · Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks
- Step through the program code

The OCDS functional blocks are shown in **Figure 35**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals. After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack). The OCDS system is accessed through the JTAG¹, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC866 has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either Port 0 (primary) or Ports 1 and 2 (secondary). User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

Table 31JTAG ID Summary

ROM	XC866L-4RR	1013 9083 _H		
	XC866-4RR	1013 9083 _H		
	XC866L-2RR	1013 9083 _H		
	XC866-2RR	1013 9083 _H		

3.20 Identification Register

The XC866 identity register is located at Page 1 of address B3_H.

ID

Identity Register

Reset Value: 0000 0010_B

7	6	5	4	3	2	1	0
	I	PRODID	I	Ι		VERID	
	1	1	1	1		1	
		r				r	

Field	Bits	Туре	Description
VERID	[2:0]	r	Version ID 010 _B
PRODID	[7:3]	r	Product ID 00000 _B

Electrical Parameters

4.2.3.1 ADC Conversion Timing

Conversion time, $t_C = t_{ADC} \times (1 + r \times (3 + n + STC))$, where r = CTC + 2 for CTC = 00_B , 01_B or 10_B , r = 32 for CTC = 11_B , CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), $t_{ADC} = 1 / f_{ADC}$

Electrical Parameters

Table 40Power Down Current (Operating Conditions apply; V_{DDP} = 3.3Vrange)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		typ. ¹⁾	max. ²⁾		Remarks	
V _{DDP} = 3.3V Range						
Power-Down Mode ³⁾	ode ³⁾ I _{PDP}	1	10	μA	$T_{A} = +25 \ ^{\circ}C.^{4)}$	
		-	30	μA	T _A = + 85 °C, XC866- 4FR, XC866-2FR ⁴⁾⁵⁾	
		-	35	μA	T_{A} = + 85 °C, XC866- 1FR, ROM device ⁴⁾⁵⁾	

¹⁾ The typical I_{PDP} values are measured at V_{DDP} = 3.3 V.

 $^{2)}\,$ The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

³⁾ I_{PDP} (power-down mode) has a maximum value of 200 μ A at T_A = + 125 °C.

⁴⁾ I_{PDP} (power-down mode) is measured with: RESET = V_{DDP}, V_{AGND}= V_{SS}, RXD/INT0= V_{DDP}; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

⁵⁾ Not subject to production test, verified by design/characterization.