

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc866l4fribekxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC866 8-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P3		I		Port 3	diractional ganaral nurnasa I/O part. It
				can be used	as alternate functions for the CCU6.
P3.0	32		Hi-Z	CCPOS1_2 CC60_0	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0
P3.1	33		Hi-Z	CCPOS0_2 CC61_2	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1
				COUT60_0	Output of Capture/Compare channel 0
P3.2	34		Hi-Z	CCPOS2_2 CC61_0	CCU6 Hall Input 2 Input/Output of Capture/Compare channel 1
P3.3	35		Hi-Z	COUT61_0	Output of Capture/Compare channel 1
P3.4	36		Hi-Z	CC62_0	Input/Output of Capture/Compare channel 2
P3.5	37		Hi-Z	COUT62_0	Output of Capture/Compare channel 2
P3.6	30		PD	CTRAP_0	CCU6 Trap Input
P3.7	31		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Table 3Pin Definitions and Functions (cont'd)

Table 5 Flash Protection Type for XC866-2FR and XC866-4FR devices

PASSWORD	Type of Protection	Flash Banks to Erase when Unprotected
1XXXXXXX _B	Flash Protection Mode 1	All Banks
OXXXXXXAB	Flash Protection Mode 0	P-Flash Bank

For XC866-1FR device and ROM devices:

The selection of protection type is summarized in Table 6.

Table 6 Flash Protection Type for XC866-1FR device and ROM devices

PASSWORD	Type of Protection (Applicable to the whole Flash)	Sectors to Erase when Unprotected	Comments
1XXXXXXX _B	Read/Program/Erase	All Sectors	Compatible to Protection mode 1
00001XXX _B	Erase	Sector 0	
00010XXX _B	Erase	Sector 0 and 1	
00011XXX _B	Erase	Sector 0 to 2	
00100XXX _B	Erase	Sector 0 to 3	
00101XXX _B	Erase	Sector 0 to 4	
00110XXX _B	Erase	Sector 0 to 5	
00111XXX _B	Erase	Sector 0 to 6	
01000XXX _B	Erase	Sector 0 to 7	
01001XXX _B	Erase	Sector 0 to 8	
01010XXX _B	Erase	All Sectors	
Others	Erase	None	

Although no protection scheme can be considered infallible, the XC866 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

In order to access a register located in a page different from the actual one, the current page must be left. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and finally, the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

- Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or
- Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC866 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0			1			1	1		
B2 _H	PORT_PAGE Reset: 00 _H	Bit Field	OP		ST	STNR 0		PAGE		
	Page Register for PORT	Туре	1	w	1	N	r		rwh	
RMAP =	0, Page 0									
80 _H	P0_DATA Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре		r	rwh	rwh	rwh	rwh	rwh	rwh
86 _H	P0_DIR Reset: 00 _H	Bit Field		0	P5	P4	P3	P2	P1	P0
	PU Direction Register	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	P1 Data Register	Туре	rwh	rwh	rwh		r		rwh	rwh
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5		0		P1	P0
	F I Direction Register	Туре	rw	rw	rw		r		rw	rw
A0 _H	P2_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
А1 _Н	P2_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
в0 _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B1 _H	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Гуре	rw	rw	rw	rw	rw	rw	rw	rw
RMAP =	0, Page 1	D: C: U			55	54	50	50	54	50
80 _H	P0_PUDSEL Reset: FF _H P0_Pull_Ip/Pull_Down Select Register	Bit Field		0	P5	P4	P3	P2	P1	P0
00		Type		r	rw	rw	rw	rw	rw D1	rw
80H	P0_P0DEN Reset: C4 _H	Bit Field		0	P5	P4	P3	P2	P1	PU
00		Type Dit Field	D7	r DC	TW DE	rw	rw	rw	rw D1	rw D0
90 ^H	P1_PUDSEL Reset: FF _H P1 Pull-Up/Pull-Down Select Register	Bit Field	P7	Pb	P5		0		P1	PU
01		Type Dit Field		TW DC	TW DE		0		IW D1	TW DO
aiH	P1_PUDEN Reset: FFH P1 Pull-Up/Pull-Down Enable Register	Bit Field	P7	Po	P5		0		PI	PU
A.0		Type Bit Field	D7	TW D6	D5	D4	1	D2	D1	TW DO
AUH	P2 Pull-Up/Pull-Down Select Register		F7	FU	FU	F4	FJ	F2	F I	FU
Δ1	R2 RUDEN Bosot: 00.	Type Bit Field	P7	P6	P5	D4	IW D3	D2	D1	P0
ЛЧ	P2 Pull-Up/Pull-Down Enable Register	Type	F 7	F U	F J	F 4	F J	F 2	F I	F U
B0	P3 PUDSEL Reset: BE	Bit Field	P7	P6	P5	P4	P3	P2	P1	PO
BOH	P3 Pull-Up/Pull-Down Select Register	Type	F /	FU DW	F J	F 4	F J	F 2	P I	F U
B1	P3 PUDEN Reset: 40	Bit Field	P7	P6	P5	P4	P3	P2	P1	PO
ын	P3 Pull-Up/Pull-Down Enable Register	Type	DW	rw.	TV NV	rw	rw	rw	rw.	rw.
RMAP =	0. Page 2	турс	100	1 44	100	100	1 44	1.44	1 44	1 44
80	PO ALTSELO Reset: 00	Bit Field		0	P5	P4	P3	P2	P1	PO
ου _Η	P0 Alternate Select 0 Register	Type		r	rw	rw	rw	rw	rw	rw
86	P0 ALTSEL1 Reset: 00	Bit Field		0	P5	P4	P3	P2	P1	PO
~~H	P0 Alternate Select 1 Register	Type		r	rw	rw	rw	rw	rw	rw
90	P1 ALTSEL0 Reset: 00	Bit Field	P7	P6	P5	- ···	0		P1	P0
- °H	P1 Alternate Select 0 Register	Type	rw	rw	rw		r		rw	rw
91	P1 ALTSEL1 Reset: 00	Bit Field	P7	P6	P5		0		P1	P0
Ч	P1 Alternate Select 1 Register	Type	rw	rw	rw		r		rw	rw
B0.,	P3 ALTSEL0 Reset: 00	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
- •H	P3 Alternate Select 0 Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
	1		1	1	1	i.	1	1		

Table 11 ADC Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
CA _H	ADC_RESR0L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 0 Low		Туре	r	h	r	rh	rh		rh	
CB _H	ADC_RESR0H	Reset: 00 _H	Bit Field	RESULT[9:2]							
	Result Register 0 High		Туре				r	'n			
CCH	ADC_RESR1L Reset: 00 _H Result Register 1 Low		Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
			Туре	r	h	r	rh	rh		rh	
CD _H	ADC_RESR1H	Bit Field				RESU	LT[9:2]				
	Result Register 1 High		Туре				r	h			
CEH	ADC_RESR2L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 2 Low		Туре	r	h	r	rh	rh		rh	
CF _H	ADC_RESR2H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 2 High	Туре				r	h				
D2 _H	ADC_RESR3L	Reset: 00 _H	Bit Field	RESU	LT[1:0]	0	VF	DRC		CHNR	
	Result Register 3 Low		Туре	r	h	r	rh	rh		rh	
D3 _H	ADC_RESR3H	Reset: 00 _H	Bit Field				RESU	LT[9:2]			
	Result Register 3 High		Туре				r	h			
RMAP =	0, Page 3										
CA _H	ADC_RESRA0L Reset: 00 _H		Bit Field	RE	ESULT[2	2:0]	VF	DRC		CHNR	
	Result Register 0, View A	A Low	Туре		rh		rh	rh		rh	
CBH	ADC_RESRA0H	Reset: 00 _H	Bit Field				RESUL	T[10:3]			
	Result Register 0, View A	A High	Туре	rh							
CCH	CC _H ADC_RESRA1L Reset: 00 _H Result Register 1, View A Low		Bit Field	RESULT[2:0]			VF	DRC	CHNR		
			Туре		rh		rh	rh		rh	
CD _H	ADC_RESRA1H Reset: 00 _H		Bit Field				RESUL	.T[10:3]			
	Result Register 1, View A High ADC_RESRA2L Reset: 00 _H Description View A High		Туре				r	h			
CEH			Bit Field	RE	ESULT[2	2:0]	VF	DRC		CHNR	
	Result Register 2, View A	Result Register 2, View A Low		rh rh		rh	rh rh				
CF _H	ADC_RESRA2H	Reset: 00 _H	Bit Field				RESUL	.T[10:3]			
	Result Register 2, View A	A High	Туре				rh				
D2 _H	ADC_RESRA3L	Reset: 00 _H	Bit Field	RE	ESULT[2	2:0]	VF	DRC		CHNR	
	Result Register 3, View A	A LOW	Туре		rh		rh	rh	rh rh		
D3 _H	ADC_RESRA3H	Reset: 00 _H	Bit Field				RESUL	.T[10:3]			
	Result Register 3, View A	A High	Туре				r	h			
RMAP =	0, Page 4										
CA _H	ADC_RCR0 Result Control Register 0	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
			Туре	rw	rw	r	rw		r		rw
СВ _Н	ADC_RCR1 Result Control Register 1	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
			Туре	rw	rw	r	rw		r		rw
CCH	ADC_RCR2 Result Control Register 2	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
			Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Result Control Register 3	Reset: 00 _H	Bit Field	VFCTR	WFR	0	IEN		0		DRCT R
			Туре	rw	rw	r	rw		r		rw
CEH	ADC_VFCR	Reset: 00 _H	Bit Field			0		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register		Туре			r		w	w	w	w
RMAP =	0, Page 5										

XC866

Functional Description

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- · Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 32-byte for P-Flash
- 1-sector minimum erase width
- · 1-byte read access
- · Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: 3 × t_{CCLK} = 112.5 ns²⁾
- Program time: 209440 / f_{SYS} = 2.6 ms³)
- Erase time: 8175360 / f_{SYS} = 102 ms³)

P-Flash: 32-byte wordline can only be programmed once, i.e., one gate disturb allowed. D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ f_{svs} = 80 MHz ± 7.5% (f_{CCLK} = 26.7 MHz ± 7.5 %) is the maximum frequency range for Flash read access.

³⁾ $f_{sys} = 80 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

Sector 2: 128-byte	Sector 9: 128-byte
Sector 1: 128-byte	Sector 8: 128-byte
	Sector 7: 128-byte
	Sector 6: 128-byte
	Sector 5: 256-byte
	Sector 4: 256-byte
	Sector 3: 512-byte
Sector 0: 3.75-Kbyte	Sector 2: 512-byte
	Sector 1: 1-Kbyte
	Sector 0: 1-Kbyte
P-Flash	D-Flash

Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

3.7.1 Module Reset Behavior

Table 19 shows how the functions of the XC866 are affected by the various reset types. A "∎" means that this function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, reliable	Not affected, reliable	Not affected, reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected			
FLASH					
NMI	Disabled	Disabled			

Table 19 Effect of Reset on Device Functions

3.7.2 Booting Scheme

When the XC866 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. Table 20 shows the available boot options in the XC866.

МВС	TMS	P0.0	Type of Mode	PC Start Value
1	0	х	User Mode; on-chip OSC/PLL non-bypassed	0000 _H
0	0	х	BSL Mode; on-chip OSC/PLL non-bypassed	0000 _H
0	1	0	OCDS Mode ¹⁾ ; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	Standalone User (JTAG) Mode ²⁾ ; on-chip OSC/PLL non-bypassed (normal)	0000 _H

Table 20 XC866 Boot Selection

¹⁾ The OCDS mode is not accessible if Flash is protected.

²⁾ Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

Figure 24 External Oscillator Circuitries

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

XC866

Functional Description

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC866 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC866 will be aborted in a user-specified time period. In debug mode, the WDT is suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features:

- 16-bit Watchdog Timer
- · Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of f_{PCLK}/2 or f_{PCLK}/128
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{PCLK}/2$ or $f_{PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. Figure 27 shows the block diagram of the WDT unit.

Figure 27 WDT Block Diagram

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert WDTTO) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value (<WDTREL> $* 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- the input frequency to the WDT can be selected to be either f_{PCLK}/2 or f_{PCLK}/128
- the reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, P_{WDT} , between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1+WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

If the Window-Boundary Refresh feature of the WDT is enabled, the period P_{WDT} between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see Figure 28. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB should not be smaller than WDTREL.

Figure 28 WDT Timing Diagram

3.11 Universal Asynchronous Receiver/Transmitter

The Universal Asynchronous Receiver/Transmitter (UART) provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features:

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - fixed or variable baud rate
- · Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART can operate in the four modes as shown in **Table 25**. Data is transmitted on TXD and received on RXD.

Table 25	UART Modes
----------	------------

Operating Mode	Baud Rate
Mode 0: 8-bit shift register	f _{PCLK} /2
Mode 1: 8-bit shift UART	Variable
Mode 2: 9-bit shift UART	f _{PCLK} /32 or f _{PCLK} /64
Mode 3: 9-bit shift UART	Variable

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{PCLK}/32$ or $f_{PCLK}/64$. The variable baud rate is set by either the underflow rate on the dedicated baud-rate generator, or by the overflow rate on Timer 1.

8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG
 The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR \text{ VALUE} + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR VALUE + 1)} \times \frac{STEP}{256}$$

The maximum baud rate that can be generated is limited to $f_{PCLK}/32$. Hence, for a module clock of 26.7 MHz, the maximum achievable baud rate is 0.83 MBaud.

Standard LIN protocal can support a maximum baud rate of 20kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20kHz to 115.2kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 26 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 26.7 MHz is used.

Baud rate	Prescaling Factor (2 ^{BRPRE})	Reload Value (BR_VALUE + 1)	Deviation Error
19.2 kBaud	1 (BRPRE=000 _B)	87 (57 _H)	-0.22 %
9600 Baud	1 (BRPRE=000 _B)	174 (AE _H)	-0.22 %
4800 Baud	2 (BRPRE=001 _B)	174 (AE _H)	-0.22 %
2400 Baud	4 (BRPRE=010 _B)	174 (AE _H)	-0.22 %

Table 26	Typical Baud rates for UART with Fractional Divider disabled

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. Table 27 lists the resulting deviation errors from generating a baud rate of

3.18.1 ADC Clocking Scheme

A common module clock ${\rm f}_{\rm ADC}$ generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

The internal clock for the analog part f_{ADCI} is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures f_{ADCI} does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 33 ADC Clocking Scheme

3.19 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- use the built-in debug functionality of the XC800 Core
- · add a minimum of hardware overhead
- provide support for most of the operations by a Monitor Program
- use standard interfaces to communicate with the Host (a Debugger)

Features:

- · Set breakpoints on instruction address and within a specified address range
- Set breakpoints on internal RAM address
- · Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks
- · Step through the program code

The OCDS functional blocks are shown in **Figure 35**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals. After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack). The OCDS system is accessed through the JTAG¹, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC866 has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either Port 0 (primary) or Ports 1 and 2 (secondary). User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

Electrical Parameters

⁴⁾ Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when VDDP is powered off.

Electrical Parameters

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins (V_{SS}) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol	Limit Values			Unit	Test Conditions/
		min.	typ .	max.		Remarks
Analog reference voltage	V _{AREF} SR	V _{AGND} + 1	V _{DDP}	V _{DDP} + 0.05	V	
Analog reference ground	V _{AGND} SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	
Analog input voltage range	V _{AIN} SR	V _{AGND}	-	V _{AREF}	V	
ADC clocks	f _{ADC}	-	20	40	MHz	module clock
	f _{ADCI}	-	-	10	MHz	internal analog clock See Figure 33
Sample time	t _S CC	(2 + INPCR0.STC) × t _{ADCI}			μs	
Conversion time	t _C CC	See Section 4.2.3.1			μs	
Total unadjusted	TUE ¹⁾ CC	-	-	±1	LSB	8-bit conversion. ²⁾
error		-	-	±2	LSB	10-bit conversion.
Differential Nonlinearity	DNL CC	-	±1	-	LSB	10-bit conversion ²⁾
Integral Nonlinearity	INL CC	-	±1	-	LSB	10-bit conversion ²⁾
Offset	OFF CC	-	±1	-	LSB	10-bit conversion ²⁾
Gain	GAIN CC	-	±1	-	LSB	10-bit conversion ²⁾
Switched capacitance at the reference voltage input	C _{AREFSW} CC	-	10	20	pF	2)3)

Table 36ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Electrical Parameters

4.2.4 Power Supply Current

Table 37Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit Values		Unit	Test Condition
		typ. ¹⁾	max. ²⁾	-	Remarks
V _{DDP} = 5V Range					
Active Mode	I _{DDP}	22.6	24.5	mA	3)
Idle Mode	I _{DDP}	17.2	19.7	mA	XC866-4FR, XC866-2FR ⁴⁾
		12.5	14	mA	XC866-1FR, ROM device ⁴⁾
Active Mode with slow-down enabled	I _{DDP}	7.2	8.2	mA	XC866-4FR, XC866-2FR ⁵⁾
		5.6	7.5	mA	XC866-1FR, ROM device ⁵⁾
Idle Mode with slow-down enabled	I _{DDP}	7.1	8	mA	XC866-4FR, XC866-2FR ⁶⁾
		5.1	7.2	mA	XC866-1FR, ROM device ⁶⁾

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

²⁾ The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

- ³⁾ I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 26.7 MHz(set by on-chip oscillator of 10 MHz and NDIV in PLL_CON to 0010_B), RESET = V_{DDP} , no load on ports.
- ⁴⁾ I_{DDP} (idle mode) is measured with: <u>CPU clock disabled</u>, watchdog timer disabled, input clock to all peripherals enabled and running at 26.7 MHz, <u>RESET</u> = V_{DDP}, no load on ports.
- ⁵⁾ I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 833 KHz by setting CLKREL in CMCON to 0101_B, RESET = V_{DDP}, no load on ports.
- ⁶⁾ I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input <u>clock to</u> all peripherals enabled and running at 833 KHz by setting CLKREL in CMCON to 0101_B, <u>RESET</u> = V_{DDP}, no load on ports.

http://www.infineon.com