

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XF

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3072
Total RAM Bits	36864
Number of I/O	84
Number of Gates	125000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	132-WFQFN
Supplier Device Package	132-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agl125v2-qng132

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	4.47	0.18	0.85	0.66	4.56	3.89	2.24	2.19	8.15	7.48	ns
4 mA	Std.	0.97	4.47	0.18	0.85	0.66	4.56	3.89	2.24	2.19	8.15	7.48	ns
6 mA	Std.	0.97	3.74	0.18	0.85	0.66	3.82	3.37	2.49	2.63	7.42	6.96	ns
8 mA	Std.	0.97	3.74	0.18	0.85	0.66	3.82	3.37	2.49	2.63	7.42	6.96	ns
12 mA	Std.	0.97	3.23	0.18	0.85	0.66	3.30	2.98	2.66	2.91	6.89	6.57	ns
16 mA	Std.	0.97	3.08	0.18	0.85	0.66	3.14	2.89	2.70	2.99	6.74	6.48	ns
24 mA	Std.	0.97	3.00	0.18	0.85	0.66	3.06	2.91	2.74	3.27	6.66	6.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	2.73	0.18	0.85	0.66	2.79	2.22	2.25	2.32	6.38	5.82	ns
4 mA	Std.	0.97	2.73	0.18	0.85	0.66	2.79	2.22	2.25	2.32	6.38	5.82	ns
6 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.85	2.50	2.76	5.96	5.45	ns
8 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.85	2.50	2.76	5.96	5.45	ns
12 mA	Std.	0.97	2.09	0.18	0.85	0.66	2.14	1.68	2.67	3.05	5.73	5.27	ns
16 mA	Std.	0.97	2.05	0.18	0.85	0.66	2.10	1.64	2.70	3.12	5.69	5.24	ns
24 mA	Std.	0.97	2.07	0.18	0.85	0.66	2.12	1.60	2.75	3.41	5.71	5.20	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	3.94	0.18	0.85	0.66	4.02	3.46	1.98	2.03	7.62	7.05	ns
4 mA	Std.	0.97	3.94	0.18	0.85	0.66	4.02	3.46	1.98	2.03	7.62	7.05	ns
6 mA	Std.	0.97	3.24	0.18	0.85	0.66	3.31	2.99	2.21	2.42	6.90	6.59	ns
8 mA	Std.	0.97	3.24	0.18	0.85	0.66	3.31	2.99	2.21	2.42	6.90	6.59	ns
12 mA	Std.	0.97	2.76	0.18	0.85	0.66	2.82	2.63	2.36	2.68	6.42	6.22	ns
16 mA	Std.	0.97	2.76	0.18	0.85	0.66	2.82	2.63	2.36	2.68	6.42	6.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.90	1.98	2.13	5.96	5.49	ns
4 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.90	1.98	2.13	5.96	5.49	ns
6 mA	Std.	0.97	1.94	0.18	0.85	0.66	1.99	1.57	2.20	2.53	5.58	5.16	ns
8 mA	Std.	0.97	1.94	0.18	0.85	0.66	1.99	1.57	2.20	2.53	5.58	5.16	ns
12 mA	Std.	0.97	1.75	0.18	0.85	0.66	1.79	1.40	2.36	2.79	5.38	4.99	ns
16 mA	Std.	0.97	1.75	0.18	0.85	0.66	1.79	1.40	2.36	2.79	5.38	4.99	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	3.80	0.18	0.83	0.66	3.88	3.41	1.74	1.78	ns
4 mA	Std.	0.97	3.80	0.18	0.83	0.66	3.88	3.41	1.74	1.78	ns
6 mA	Std.	0.97	3.15	0.18	0.83	0.66	3.21	2.94	1.96	2.17	ns
8 mA	Std.	0.97	3.15	0.18	0.83	0.66	3.21	2.94	1.96	2.17	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	2.19	0.18	0.83	0.66	2.24	1.79	1.74	1.87	ns
4 mA	Std.	0.97	2.19	0.18	0.83	0.66	2.24	1.79	1.74	1.87	ns
6 mA	Std.	0.97	1.85	0.18	0.83	0.66	1.89	1.46	1.96	2.26	ns
8 mA	Std.	0.97	1.85	0.18	0.83	0.66	1.89	1.46	1.96	2.26	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V LVCMOS (JESD8-12A)

Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer. Furthermore, all LVCMOS 1.2 V software macros comply with LVCMOS 1.2 V wide range as specified in the JESD8-12A specification.

Table 2-127 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.2 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-128 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

1.2 V LVCMOS		VIL	VIH		VOL	VOH	I _{OL}	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-129 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.2 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
1 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	1	1	20	26	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOO library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO, Fusion, and ProASIC3 Macro Library Guide*.

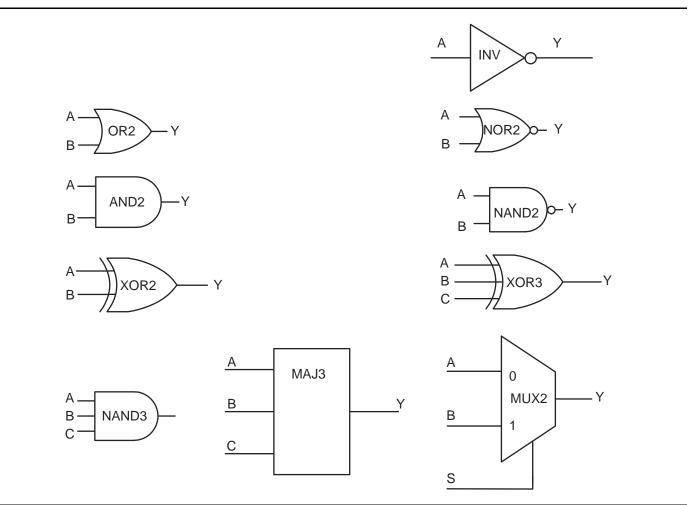


Figure 2-25 • Sample of Combinatorial Cells

Timing Characteristics

1.5 V DC Core Voltage

Table 2-169 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y =!A	t _{PD}	0.80	ns
AND2	$Y=A\cdotB$	t _{PD}	0.84	ns
NAND2	Y =!(A · B)	t _{PD}	0.90	ns
OR2	Y = A + B	t _{PD}	1.19	ns
NOR2	Y = !(A + B)	t _{PD}	1.10	ns
XOR2	Y = A ⊕ B	t _{PD}	1.37	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.33	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	1.79	ns
MUX2	Y = A !S + B S	t _{PD}	1.48	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-170 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.34	ns
AND2	$Y = A \cdot B$	t _{PD}	1.43	ns
NAND2	$Y = !(A \cdot B)$	t _{PD}	1.59	ns
OR2	Y = A + B	t _{PD}	2.30	ns
NOR2	Y = !(A + B)	t _{PD}	2.07	ns
XOR2	Y = A ⊕ B	t _{PD}	2.46	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.46	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	3.12	ns
MUX2	Y = A !S + B S	t _{PD}	2.83	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-177 • AGL250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Min. ¹ Max	κ. ² Units
t _{RCKL}	Input Low Delay for Global Clock	1.39 1.7	3 ns
t _{RCKH}	Input High Delay for Global Clock	1.41 1.8	4 ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18	ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15	ns
t _{RCKSW}	Maximum Skew for Global Clock	0.4	3 ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-178 • AGL400 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.45	1.79	ns
t _{RCKH}	Input High Delay for Global Clock	1.48	1.91	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-179 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.		
Parameter	Description	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	1.48	1.82	ns	
t _{RCKH}	Input High Delay for Global Clock	1.52	1.94	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-180 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.55	1.89	ns
t _{RCKH}	Input High Delay for Global Clock	1.60	2.02	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-185 • AGL250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.11	2.57	ns
t _{RCKH}	Input High Delay for Global Clock	2.19	2.81	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-186 • AGL400 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.18	2.64	ns
t _{RCKH}	Input High Delay for Global Clock	2.27	2.89	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

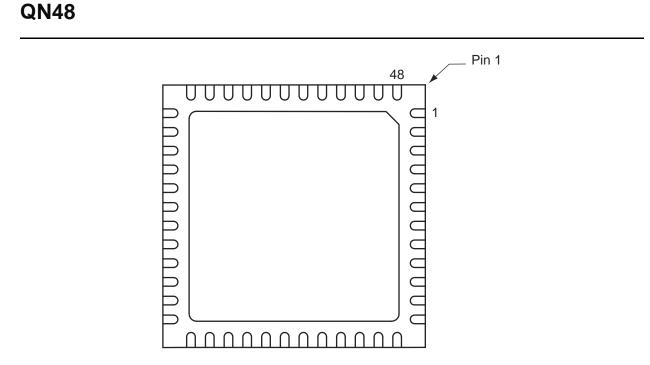
The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO a devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOO FPGA Fabric User Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent)

IGLOO Packages	Flash*Freeze Pin
CS81/UC81	H2
CS121	J5
CS196	P3
CS281	W2
QN48	14
QN68	18
QN132	B12
VQ100	27
FG144	L3
FG256	Т3
FG484	W6


IGLOO Low Power Flash FPGAs

	CS196		CS196
Pin Number	AGL125 Function	Pin Number	AGL125 Function
H11	GCB0/IO54RSB0	L5	IO91RSB1
H12	GCA1/IO55RSB0	L6	IO90RSB1
H13	IO49RSB0	L7	IO83RSB1
H14	GCA2/IO57RSB0	L8	IO81RSB1
J1	GFC2/IO115RSB1	L9	IO71RSB1
J2	IO110RSB1	L10	IO70RSB1
J3	IO94RSB1	L11	VPUMP
J4	IO93RSB1	L12	VJTAG
J5	IO89RSB1	L13	GDA0/IO66RSB0
J6	NC	L14	GDB0/IO64RSB0
J7	VCC	M1	GEB0/IO106RSB1
J8	VCC	M2	GEA1/IO105RSB1
J9	NC	M3	GNDQ
J10	IO60RSB0	M4	VCCIB1
J11	GCB2/IO58RSB0	M5	IO92RSB1
J12	IO50RSB0	M6	IO88RSB1
J13	GDC1/IO61RSB0	M7	NC
J14	GDC0/IO62RSB0	M8	VCCIB1
K1	IO99RSB1	M9	IO76RSB1
K2	GND	M10	GDB2/IO68RSB1
K3	IO95RSB1	M11	VCCIB1
K4	VCCIB1	M12	VMV1
K5	NC	M13	TRST
K6	IO86RSB1	M14	VCCIB0
K7	IO80RSB1	N1	GEA0/IO104RSB1
K8	IO74RSB1	N2	VMV1
K9	IO72RSB1	N3	GEC2/IO101RSB1
K10	NC	N4	IO100RSB1
K11	VCCIB0	N5	GND
K12	GDA1/IO65RSB0	N6	IO87RSB1
K13	GND	N7	IO82RSB1
K14	GDB1/IO63RSB0	N8	IO78RSB1
L1	GEB1/IO107RSB1	N9	IO73RSB1
L2	GEC1/IO109RSB1	N10	GND
L3	GEC0/IO108RSB1	N11	ТСК
L4	IO96RSB1	N12	TDI

CS196				
Pin Number	AGL125 Function			
N13	GNDQ			
N14	TDO			
P1	GND			
P2	GEA2/IO103RSB1			
P3	FF/GEB2/IO102RSB1			
P4	IO98RSB1			
P5	IO97RSB1			
P6	IO85RSB1			
P7	IO84RSB1			
P8	IO79RSB1			
P9	IO77RSB1			
P10	IO75RSB1			
P11	GDC2/IO69RSB1			
P12	GDA2/IO67RSB1			
P13	TMS			
P14	GND			

IGLOO Low Power Flash FPGAs

	CS281		CS281	CS281	
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function
A1	GND	B18	VCCIB1	E13	IO46RSB0
A2	GAB0/IO02RSB0	B19	IO61NDB1	E14	GBB1/IO57RSB0
A3	GAC1/IO05RSB0	C1	GAB2/IO173PPB3	E15	IO62NPB1
A4	IO07RSB0	C2	IO174NPB3	E16	IO63PPB1
A5	IO10RSB0	C6	IO12RSB0	E18	IO64PPB1
A6	IO14RSB0	C14	IO50RSB0	E19	IO65NPB1
A7	IO18RSB0	C18	IO60NPB1	F1	IO168NPB3
A8	IO21RSB0	C19	GBB2/IO61PDB1	F2	GND
A9	IO22RSB0	D1	IO170PPB3	F3	IO169PPB3
A10	VCCIB0	D2	IO172NPB3	F4	IO170NPB3
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO173NPB3
A12	IO40RSB0	D5	GAA1/IO01RSB0	F15	IO63NPB1
A13	IO37RSB0	D6	IO09RSB0	F16	IO65PPB1
A14	IO48RSB0	D7	IO16RSB0	F17	IO64NPB1
A15	IO51RSB0	D8	IO19RSB0	F18	GND
A16	IO53RSB0	D9	IO26RSB0	F19	IO68PPB1
A17	GBC1/IO55RSB0	D10	GND	G1	IO167NPB3
A18	GBA0/IO58RSB0	D11	IO34RSB0	G2	IO165NDB3
A19	GND	D12	IO45RSB0	G4	IO168PPB3
B1	GAA2/IO174PPB3	D13	IO49RSB0	G5	IO167PPB3
B2	VCCIB0	D14	IO47RSB0	G7	GAC2/IO172PPB3
B3	GAB1/IO03RSB0	D15	GBB0/IO56RSB0	G8	VCCIB0
B4	GAC0/IO04RSB0	D16	GBA2/IO60PPB1	G9	IO28RSB0
B5	IO06RSB0	D18	GBC2/IO62PPB1	G10	IO32RSB0
B6	GND	D19	IO66NPB1	G11	IO43RSB0
B7	IO15RSB0	E1	IO169NPB3	G12	VCCIB0
B8	IO20RSB0	E2	IO171PPB3	G13	IO66PPB1
B9	IO23RSB0	E4	IO171NPB3	G15	IO67NDB1
B10	IO24RSB0	E5	IO08RSB0	G16	IO67PDB1
B11	IO36RSB0	E6	IO11RSB0	G18	GCC0/IO69NPB1
B12	IO35RSB0	E7	IO13RSB0	G19	GCB1/IO70PPB1
B13	IO44RSB0	E8	IO17RSB0	H1	GFB0/IO163NPB3
B14	GND	E9	IO25RSB0	H2	IO165PDB3
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO164PPB3
B16	GBC0/IO54RSB0	E11	IO41RSB0	H5	GFB1/IO163PPB3
B17	GBA1/IO59RSB0	E12	IO42RSB0	H7	VCCIB3

Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

	VQ100		VQ100	VQ100	
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function
1	GND	36	IO93RSB1	72	IO42RSB0
2	GAA2/IO67RSB1	37	VCC	73	GBA2/IO41RSB0
3	IO68RSB1	38	GND	74	VMV0
4	GAB2/IO69RSB1	39	VCCIB1	75	GNDQ
5	IO132RSB1	40	IO87RSB1	76	GBA1/IO40RSB0
6	GAC2/IO131RSB1	41	IO84RSB1	77	GBA0/IO39RSB0
7	IO130RSB1	42	IO81RSB1	78	GBB1/IO38RSB0
8	IO129RSB1	43	IO75RSB1	79	GBB0/IO37RSB0
9	GND	44	GDC2/IO72RSB1	80	GBC1/IO36RSB0
10	GFB1/IO124RSB1	45	GDB2/IO71RSB1	81	GBC0/IO35RSB0
11	GFB0/IO123RSB1	46	GDA2/IO70RSB1	82	IO32RSB0
12	VCOMPLF	47	TCK	83	IO28RSB0
13	GFA0/IO122RSB1	48	TDI	84	IO25RSB0
14	VCCPLF	49	TMS	85	IO22RSB0
15	GFA1/IO121RSB1	50	VMV1	86	IO19RSB0
16	GFA2/IO120RSB1	51	GND	87	VCCIB0
17	VCC	52	VPUMP	88	GND
18	VCCIB1	53	NC	89	VCC
19	GEC0/IO111RSB1	54	TDO	90	IO15RSB0
20	GEB1/IO110RSB1	55	TRST	91	IO13RSB0
21	GEB0/IO109RSB1	56	VJTAG	92	IO11RSB0
22	GEA1/IO108RSB1	57	GDA1/IO65RSB0	93	IO09RSB0
23	GEA0/IO107RSB1	58	GDC0/IO62RSB0	94	IO07RSB0
24	VMV1	59	GDC1/IO61RSB0	95	GAC1/IO05RSB0
25	GNDQ	60	GCC2/IO59RSB0	96	GAC0/IO04RSB0
26	GEA2/IO106RSB1	61	GCB2/IO58RSB0	97	GAB1/IO03RSB0
27	FF/GEB2/IO105RSB	62	GCA0/IO56RSB0	98	GAB0/IO02RSB0
	1	63	GCA1/IO55RSB0	99	GAA1/IO01RSB0
28	GEC2/IO104RSB1	64	GCC0/IO52RSB0	100	GAA0/IO00RSB0
29	IO102RSB1	65	GCC1/IO51RSB0		
30	IO100RSB1	66	VCCIB0		
31	IO99RSB1	67	GND		
32	IO97RSB1	68	VCC		
33	IO96RSB1	69	IO47RSB0		
34	IO95RSB1	70	GBC2/IO45RSB0		
35	IO94RSB1	71	GBB2/IO43RSB0		

Package Pin Assignments

FG144		
Pin Number	AGL250 Function	
K1	GEB0/IO99NDB3	
K2	GEA1/IO98PDB3	
K3	GEA0/IO98NDB3	
K4	GEA2/IO97RSB2	
K5	IO90RSB2	
K6	IO84RSB2	
K7	GND	
K8	IO66RSB2	
K9	GDC2/IO63RSB2	
K10	GND	
K11	GDA0/IO60VDB1	
K12	GDB0/IO59VDB1	
L1	GND	
L2	VMV3	
L3	FF/GEB2/IO96RSB2	
L4	IO91RSB2	
L5	VCCIB2	
L6	IO82RSB2	
L7	IO80RSB2	
L8	IO72RSB2	
L9	TMS	
L10	VJTAG	
L11	VMV2	
L12	TRST	
M1	GNDQ	
M2	GEC2/IO95RSB2	
M3	IO92RSB2	
M4	IO89RSB2	
M5	IO87RSB2	
M6	IO85RSB2	
M7	IO78RSB2	
M8	IO76RSB2	
M9	TDI	
M10	VCCIB2	
M11	VPUMP	
M12	GNDQ	

Package Pin Assignments

	FG144
Pin Number	AGL600 Function
K1	GEB0/IO145NDB3
K2	GEA1/IO144PDB3
K3	GEA0/IO144NDB3
K4	GEA2/IO143RSB2
K5	IO119RSB2
K6	IO111RSB2
K7	GND
K8	IO94RSB2
K9	GDC2/IO91RSB2
K10	GND
K11	GDA0/IO88NDB1
K12	GDB0/IO87NDB1
L1	GND
L2	VMV3
L3	FF/GEB2/IO142RSB2
L4	IO136RSB2
L5	VCCIB2
L6	IO115RSB2
L7	IO103RSB2
L8	IO97RSB2
L9	TMS
L10	VJTAG
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO141RSB2
M3	IO138RSB2
M4	IO123RSB2
M5	IO126RSB2
M6	IO134RSB2
M7	IO108RSB2
M8	IO99RSB2
M9	TDI
M10	VCCIB2
M11	VPUMP
M12	GNDQ

	FG484
Pin Number	AGL1000 Function
A1	GND
A2	GND
A3	VCCIB0
A4	IO07RSB0
A5	IO09RSB0
A6	IO13RSB0
A7	IO18RSB0
A8	IO20RSB0
A9	IO26RSB0
A10	IO32RSB0
A11	IO40RSB0
A12	IO41RSB0
A13	IO53RSB0
A14	IO59RSB0
A15	IO64RSB0
A16	IO65RSB0
A17	IO67RSB0
A18	IO69RSB0
A19	NC
A20	VCCIB0
A21	GND
A22	GND
AA1	GND
AA2	VCCIB3
AA3	NC
AA4	IO181RSB2
AA5	IO178RSB2
AA6	IO175RSB2
AA7	IO169RSB2
AA8	IO166RSB2
AA9	IO160RSB2
AA10	IO152RSB2
AA11	IO146RSB2
AA12	IO139RSB2
AA13	IO133RSB2
AA14	NC

	FG484
Pin Number	AGL1000 Function
R9	VCCIB2
R10	VCCIB2
R11	IO147RSB2
R12	IO136RSB2
R13	VCCIB2
R14	VCCIB2
R15	VMV2
R16	IO110NDB1
R17	GDB1/IO112PPB1
R18	GDC1/IO111PDB1
R19	IO107NDB1
R20	VCC
R21	IO104NDB1
R22	IO105PDB1
T1	IO198PDB3
T2	IO198NDB3
Т3	NC
T4	IO194PPB3
T5	IO192PPB3
T6	GEC1/IO190PPB3
T7	IO192NPB3
Т8	GNDQ
Т9	GEA2/IO187RSB2
T10	IO161RSB2
T11	IO155RSB2
T12	IO141RSB2
T13	IO129RSB2
T14	IO124RSB2
T15	GNDQ
T16	IO110PDB1
T17	VJTAG
T18	GDC0/IO111NDB1
T19	GDA1/IO113PDB1
T20	NC
T21	IO108PDB1
T22	IO105NDB1

Datasheet Information

Revision	Changes	Page
Revision 21 (continued)	Pin description table for AGL125 CS121 was removed as it was incorrectly added to the datasheet in revision 19 (SAR 38217).	-
Revision 20 (March 2012)	Notes indicating that AGL015 is not recommended for new designs have been added. The "Devices Not Recommended For New Designs" section is new (SAR 35015).	I to IV
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been reinserted (SAR 33689).	I to IV
	Values for the power data for PAC1, PAC2, PAC3, PAC4, PAC7, and PAC8 were revised in Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices and Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices to match the SmartPower tool in Libero software version 9.0 SP1 and Power Calculator spreadsheet v7a released on 08/10/2010 (SAR 33768).	2-15
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO FPGA Fabric User Guide</i> (SAR 34730).	
	Figure 2-4 • Input Buffer Timing Model and Delays (example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to t _{DIN} (SAR 37104).	2-21
LVC • •	 Added missing characteristics for 3.3 V LVCMOS, 3.3 V LVCMOS Wide range, 1.2 V LVCMOS, and 1.2 V LVCMOS Wide range to the following tables: Table 2-38, Table 2-39, Table 2-40, Table 2-42, Table 2-43, and Table 2-44 (SARs 33854 and 36891) Table 2-63, Table 2-64, and Table 2-65 (SAR 33854) Table 2-127, Table 2-128, Table 2-129, Table 2-137, Table 2-138, and Table 2-139 (SAR 36891). 	2-40, 2-47 to 2-49, 2-74, 2-77, and
	AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match Table 2-50 · AC Waveforms, Measuring Points, and Capacitive Loads (SAR 34878).	
	Added values for minimum pulse width and removed the FRMAX row from Table 2-173 through Table 2-188 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SAR 29271).	
Revision 19 (September 2011)	CS121 was added to the product tables in the "IGLOO Low Power Flash FPGAs" section for AGL125 (SAR 22737). CS81 was added for AGL250 (SAR 22737).	I
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been removed (SAR 33689).	I to IV
	M1AGL400 was removed from the "I/Os Per Package1" table. This device was discontinued in April 2009 (SAR 32450).	II
	Dimensions for the QN48 package were added to Table 1 • IGLOO FPGAs Package Sizes Dimensions (SAR 30537).	II
	The Y security option and Licensed DPA Logo were added to the "IGLOO Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151).	
	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	

Datasheet Information

Revision	Changes	Page
Revision 19	The following figures were deleted (SAR 29991). Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 21770).	N/A
	Figure 2-36 • Write Access after Write onto Same Address	
	Figure 2-37 • Read Access after Write onto Same Address	
	Figure 2-38 • Write Access after Read onto Same Address	2-119 to
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-40 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510).	2-130
	The "Pin Descriptions" chapter has been added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1
	The "CS81" pin table for AGL250 is new (SAR 22737).	4-5
	The CS121 pin table for AGL125 is new (SAR 22737).	
	The P3 function was revised in the "CS196" pin table for AGL250 (SAR 24800).	4-12
	The "QN132" pin table for AGL250 was added.	4-35,
	The "FG144" pin table for AGL060 was added (SAR 33689)	4-42
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO Device Status" table indicates the status for each device in the device family.	N/A

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	N/A IV III
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008) Packaging v1.1	The "CS196" package and pin table was added for AGL125.	4-10
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	l, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
ended I/Os for The "Timing numbers. In Table 2-27 • Applicable to	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20