

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

·XF

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3072
Total RAM Bits	36864
Number of I/O	84
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	132-WFQFN
Supplier Device Package	132-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agl125v5-qng132

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

 Table 2-32 •
 Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case

 Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard)

 Applicable to Standard Plus I/O Banks

//O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA ⁾	Slew Rate	, Capacitive Load (pF)	External Resistor (Ω)	toour (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	teour (ns)	tzL (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{Hz} (ns)	tzLS (ns)	t _{zHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	_	0.97	1.75	0.18	0.85	0.66	1.79	1.40	2.36	2.79	5.38	4.99	ns
3.3 V LVCMOS Wide Range ²	100 µA	12	High	5	_	0.97	2.45	0.18	1.20	0.66	2.47	1.92	3.33	3.90	6.06	5.51	ns
2.5 V LVCMOS	12 mA	12	High	5	—	0.97	1.75	0.18	1.08	0.66	1.79	1.52	2.38	2.70	5.39	5.11	ns
1.8 V LVCMOS	8 mA	8	High	5	_	0.97	1.97	0.18	1.01	0.66	2.02	1.76	2.46	2.66	5.61	5.36	ns
1.5 V LVCMOS	4 mA	4	High	5	-	0.97	2.25	0.18	1.18	0.66	2.30	2.00	2.53	2.68	5.89	5.59	ns
3.3 V PCI	Per PCI spec	_	High	10	25 ²	0.97	1.97	0.18	0.73	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns
3.3 V PCI-X	Per PCI- X spec	—	High	10	25 ²	0.97	1.97	0.19	0.70	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-65 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard I/O Banks

3.3 V LVCMO	S Wide Range	VIL		V	/IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μ Α ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-66 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Table 2-81 •	Minimum and Maximum DC Input and Output Levels
	Applicable to Standard I/O Banks

2.5 V LVCMOS	v	ΊL	v	н	VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow $R = 1 k$
 $Test Point$
Enable Path \downarrow $Test Point$
 $F = 1 k$
 $R to VCCI for t_{LZ} / t_{ZL} / t_{ZLS}$
 $R to GND for t_{HZ} / t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$

Figure 2-8 • AC Loading

Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Table 2-86 •2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	2.36	0.18	1.08	0.66	2.41	2.21	1.96	1.92	6.01	5.81	ns
4 mA	Std.	0.97	2.36	0.18	1.08	0.66	2.41	2.21	1.96	1.92	6.01	5.81	ns
6 mA	Std.	0.97	1.97	0.18	1.08	0.66	2.01	1.75	2.21	2.40	5.61	5.34	ns
8 mA	Std.	0.97	1.97	0.18	1.08	0.66	2.01	1.75	2.21	2.40	5.61	5.34	ns
12 mA	Std.	0.97	1.75	0.18	1.08	0.66	1.79	1.52	2.38	2.70	5.39	5.11	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-87 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	4.27	0.18	1.04	0.66	4.36	4.06	1.71	1.62	ns
4 mA	Std.	0.97	4.27	0.18	1.04	0.66	4.36	4.06	1.71	1.62	ns
6 mA	Std.	0.97	3.54	0.18	1.04	0.66	3.61	3.48	1.95	2.08	ns
8 mA	Std.	0.97	3.54	0.18	1.04	0.66	3.61	3.48	1.95	2.08	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-88 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	2.24	0.18	1.04	0.66	2.29	2.09	1.71	1.68	ns
4 mA	Std.	0.97	2.24	0.18	1.04	0.66	2.29	2.09	1.71	1.68	ns
6 mA	Std.	0.97	1.88	0.18	1.04	0.66	1.92	1.63	1.95	2.15	ns
8 mA	Std.	0.97	1.88	0.18	1.04	0.66	1.92	1.63	1.95	2.15	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-165 • Input DDR Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.76	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.94	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.93	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.84	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	1.23	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	1.42	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.24	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

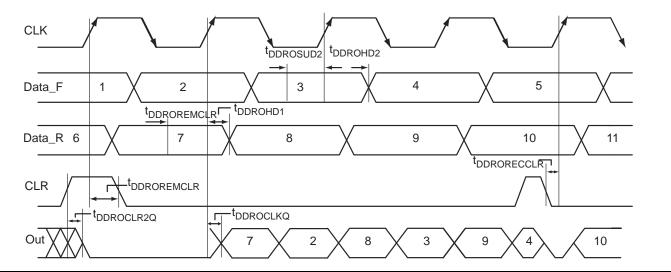


Figure 2-24 • Output DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-167 • Output DDR Propagation Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.67	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.38	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-196 • FIFO

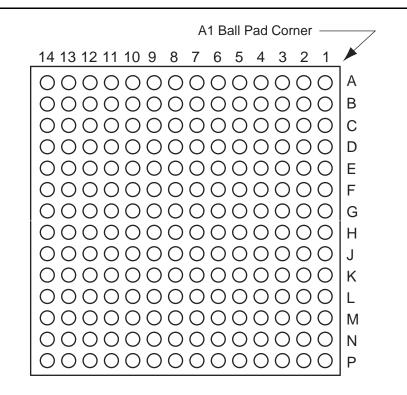
Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.13	ns
t _{ENH}	REN, WEN Hold Time	0.31	ns
t _{BKS}	BLK Setup Time	0.47	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	1.56	ns
t _{DH}	Input Data (WD) Hold Time	0.49	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	6.80	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	3.62	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	7.23	ns
t _{WCKFF}	WCLK High to Full Flag Valid	6.85	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	26.61	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	7.12	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	26.33	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	4.09	ns
	RESET Low to Data Out Low on RD (pipelined)	4.09	ns
t _{REMRSTB}	RESET Removal	1.23	ns
t _{RECRSTB}	RESET Recovery	6.58	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency for FIFO	92	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Package Pin Assignments

	UC81	UC81		
Pin Number				
	AGL030 Function		AGL030 Function	
A1	IO00RSB0	E1	GEB0/IO71RSB1	
A2	IO02RSB0	E2	GEA0/IO72RSB1	
A3	IO06RSB0	E3	GEC0/IO73RSB1	
A4	IO11RSB0	E4	VCCIB1	
A5	IO16RSB0	E5	VCC	
A6	IO19RSB0	E6	VCCIB0	
A7	IO22RSB0	E7	GDC0/IO32RSB0	
A8	IO24RSB0	E8	GDA0/IO33RSB0	
A9	IO26RSB0	E9	GDB0/IO34RSB0	
B1	IO81RSB1	F1	IO68RSB1	
B2	IO04RSB0	F2	IO67RSB1	
B3	IO10RSB0	F3	IO64RSB1	
B4	IO13RSB0	F4	GND	
B5	IO15RSB0	F5	VCCIB1	
B6	IO20RSB0	F6	IO47RSB1	
B7	IO21RSB0	F7	IO36RSB0	
B8	IO28RSB0	F8	IO38RSB0	
B9	IO25RSB0	F9	IO40RSB0	
C1	IO79RSB1	G1	IO65RSB1	
C2	IO80RSB1	G2	IO66RSB1	
C3	IO08RSB0	G3	IO57RSB1	
C4	IO12RSB0	G4	IO53RSB1	
C5	IO17RSB0	G5	IO49RSB1	
C6	IO14RSB0	G6	IO45RSB1	
C7	IO18RSB0	G7	IO46RSB1	
C8	IO29RSB0	G8	VJTAG	
C9	IO27RSB0	G9	TRST	
D1	IO74RSB1	H1	IO62RSB1	
D2	IO76RSB1	H2	FF/IO60RSB1	
D3	IO77RSB1	H3	IO58RSB1	
D4	VCC	H4	IO54RSB1	
D5	VCCIB0	H5	IO48RSB1	
D6	GND	H6	IO43RSB1	
D7	IO23RSB0	H7	IO42RSB1	
D8	IO31RSB0	H8	TDI	
D9	IO30RSB0	H9	TDO	


UC81			
Pin Number	AGL030 Function		
J1	IO63RSB1		
J2	IO61RSB1		
J3	IO59RSB1		
J4	IO56RSB1		
J5	IO52RSB1		
J6	IO44RSB1		
J7	ТСК		
J8	TMS		
J9	VPUMP		

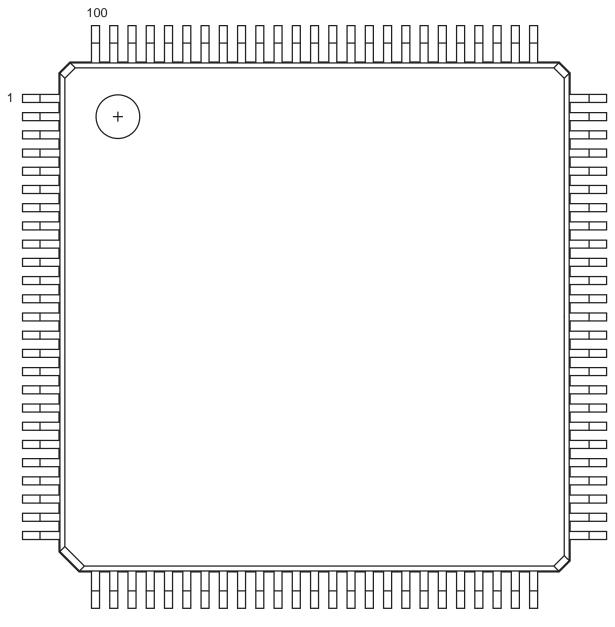
IGLOO Low Power Flash FPGAs

	CS121		CS121	CS121	
Pin Number	AGL060 Function	Pin Number	AGL060 Function	Pin Number	AGL060 Function
A1	GNDQ	D4	IO10RSB0	G7	VCC
A2	IO01RSB0	D5	IO11RSB0	G8	GDC0/IO46RSB0
A3	GAA1/IO03RSB0	D6	IO18RSB0	G9	GDA1/IO49RSB0
A4	GAC1/IO07RSB0	D7	IO32RSB0	G10	GDB0/IO48RSB0
A5	IO15RSB0	D8	IO31RSB0	G11	GCA0/IO40RSB0
A6	IO13RSB0	D9	GCA2/IO41RSB0	H1	IO75RSB1
A7	IO17RSB0	D10	IO30RSB0	H2	IO76RSB1
A8	GBB1/IO22RSB0	D11	IO33RSB0	H3	GFC2/IO78RSB1
A9	GBA1/IO24RSB0	E1	IO87RSB1	H4	GFA2/IO80RSB1
A10	GNDQ	E2	GFC0/IO85RSB1	H5	IO77RSB1
A11	VMV0	E3	IO92RSB1	H6	GEC2/IO66RSB1
B1	GAA2/IO95RSB1	E4	IO94RSB1	H7	IO54RSB1
B2	IO00RSB0	E5	VCC	H8	GDC2/IO53RSB1
B3	GAA0/IO02RSB0	E6	VCCIB0	H9	VJTAG
B4	GAC0/IO06RSB0	E7	GND	H10	TRST
B5	IO08RSB0	E8	GCC0/IO36RSB0	H11	IO44RSB0
B6	IO12RSB0	E9	IO34RSB0	J1	GEC1/IO74RSB1
B7	IO16RSB0	E10	GCB1/IO37RSB0	J2	GEC0/IO73RSB1
B8	GBC1/IO20RSB0	E11	GCC1/IO35RSB0	J3	GEB1/IO72RSB1
B9	GBB0/IO21RSB0	F1*	VCOMPLF	J4	GEA0/IO69RSB1
B10	GBB2/IO27RSB0	F2	GFB0/IO83RSB1	J5	FF/GEB2/IO67RSB
B11	GBA2/IO25RSB0	F3	GFA0/IO82RSB1	J6	IO62RSB1
C1	IO89RSB1	F4	GFC1/IO86RSB1	J7	GDA2/IO51RSB1
C2	GAC2/IO91RSB1	F5	VCCIB1	J8	GDB2/IO52RSB1
C3	GAB1/IO05RSB0	F6	VCC	J9	TDI
C4	GAB0/IO04RSB0	F7	VCCIB0	J10	TDO
C5	IO09RSB0	F8	GCB2/IO42RSB0	J11	GDC1/IO45RSB0
C6	IO14RSB0	F9	GCC2/IO43RSB0	K1	GEB0/IO71RSB1
C7	GBA0/IO23RSB0	F10	GCB0/IO38RSB0	K2	GEA1/IO70RSB1
C8	GBC0/IO19RSB0	F11	GCA1/IO39RSB0	K3	GEA2/IO68RSB1
C9	IO26RSB0	G1*	VCCPLF	K4	IO64RSB1
C10	IO28RSB0	G2	GFB2/IO79RSB1	K5	IO60RSB1
C11	GBC2/IO29RSB0	G3	GFA1/IO81RSB1	K6	IO59RSB1
D1	IO88RSB1	G4	GFB1/IO84RSB1	K7	IO56RSB1
D2	IO90RSB1	G5	GND	K8	ТСК
D3	GAB2/IO93RSB1	G6	VCCIB1	К9	TMS

Note: *Pin numbers F1 and G1 must be connected to ground because a PLL is not supported for AGL060-CS/G121.

Note: This is the bottom view of the package.

Note


For more information on package drawings, see PD3068: Package Mechanical Drawings.

IGLOO Low Power Flash FPGAs

	CS196	CS196	
Pin Number	AGL125 Function	Pin Number	AGL125 Function
H11	GCB0/IO54RSB0	L5	IO91RSB1
H12	GCA1/IO55RSB0	L6	IO90RSB1
H13	IO49RSB0	L7	IO83RSB1
H14	GCA2/IO57RSB0	L8	IO81RSB1
J1	GFC2/IO115RSB1	L9	IO71RSB1
J2	IO110RSB1	L10	IO70RSB1
J3	IO94RSB1	L11	VPUMP
J4	IO93RSB1	L12	VJTAG
J5	IO89RSB1	L13	GDA0/IO66RSB0
J6	NC	L14	GDB0/IO64RSB0
J7	VCC	M1	GEB0/IO106RSB1
J8	VCC	M2	GEA1/IO105RSB1
J9	NC	M3	GNDQ
J10	IO60RSB0	M4	VCCIB1
J11	GCB2/IO58RSB0	M5	IO92RSB1
J12	IO50RSB0	M6	IO88RSB1
J13	GDC1/IO61RSB0	M7	NC
J14	GDC0/IO62RSB0	M8	VCCIB1
K1	IO99RSB1	M9	IO76RSB1
K2	GND	M10	GDB2/IO68RSB1
K3	IO95RSB1	M11	VCCIB1
K4	VCCIB1	M12	VMV1
K5	NC	M13	TRST
K6	IO86RSB1	M14	VCCIB0
K7	IO80RSB1	N1	GEA0/IO104RSB1
K8	IO74RSB1	N2	VMV1
K9	IO72RSB1	N3	GEC2/IO101RSB1
K10	NC	N4	IO100RSB1
K11	VCCIB0	N5	GND
K12	GDA1/IO65RSB0	N6	IO87RSB1
K13	GND	N7	IO82RSB1
K14	GDB1/IO63RSB0	N8	IO78RSB1
L1	GEB1/IO107RSB1	N9	IO73RSB1
L2	GEC1/IO109RSB1	N10	GND
L3	GEC0/IO108RSB1	N11	ТСК
L4	IO96RSB1	N12	TDI

CS196			
Pin Number	AGL125 Function		
N13	GNDQ		
N14	TDO		
P1	GND		
P2	GEA2/IO103RSB1		
P3	FF/GEB2/IO102RSB1		
P4	IO98RSB1		
P5	IO97RSB1		
P6	IO85RSB1		
P7	IO84RSB1		
P8	IO79RSB1		
P9	IO77RSB1		
P10	IO75RSB1		
P11	GDC2/IO69RSB1		
P12	GDA2/IO67RSB1		
P13	TMS		
P14	GND		

VQ100

Note: This is the top view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

FG144			
Pin Number	AGL600 Function		
K1	GEB0/IO145NDB3		
K2	GEA1/IO144PDB3		
K3	GEA0/IO144NDB3		
K4	GEA2/IO143RSB2		
K5	IO119RSB2		
K6	IO111RSB2		
K7	GND		
K8	IO94RSB2		
K9	GDC2/IO91RSB2		
K10	GND		
K11	GDA0/IO88NDB1		
K12	GDB0/IO87NDB1		
L1	GND		
L2	VMV3		
L3	FF/GEB2/IO142RSB2		
L4	IO136RSB2		
L5	VCCIB2		
L6	IO115RSB2		
L7	IO103RSB2		
L8	IO97RSB2		
L9	TMS		
L10	VJTAG		
L11	VMV2		
L12	TRST		
M1	GNDQ		
M2	GEC2/IO141RSB2		
M3	IO138RSB2		
M4	IO123RSB2		
M5	IO126RSB2		
M6	IO134RSB2		
M7	IO108RSB2		
M8	IO99RSB2		
M9	TDI		
M10	VCCIB2		
M11	VPUMP		
M12	GNDQ		

FG484			
Pin Number	AGL400 Function		
K11	GND		
K12	GND		
K13	GND		
K14	VCC		
K15	VCCIB1		
K16	GCC1/IO67PPB1		
K17	IO64NPB1		
K18	IO73PDB1		
K19	IO73NDB1		
K20	NC		
K21	NC		
K22	NC		
L1	NC		
L2	NC		
L3	NC		
L4	GFB0/IO146NPB3		
L5	GFA0/IO145NDB3		
L6	GFB1/IO146PPB3		
L7	VCOMPLF		
L8	GFC0/IO147NPB3		
L9	VCC		
L10	GND		
L11	GND		
L12	GND		
L13	GND		
L14	VCC		
L15	GCC0/IO67NPB1		
L16	GCB1/IO68PPB1		
L17	GCA0/IO69NPB1		
L18	NC		
L19	GCB0/IO68NPB1		
L20	NC		
L21	NC		
L22	NC		
M1	NC		
M2	NC		

FG484			
Pin Number	AGL400 Function		
N17	IO74RSB1		
N18	IO72NPB1		
N19	IO70NDB1		
N20	NC		
N21	NC		
N22	NC		
P1	NC		
P2	NC		
P3	NC		
P4	IO142NDB3		
P5	IO141NPB3		
P6	IO125RSB2		
P7	IO139RSB3		
P8	VCCIB3		
P9	GND		
P10	VCC		
P11	VCC		
P12	VCC		
P13	VCC		
P14	GND		
P15	VCCIB1		
P16	GDB0/IO78VPB1		
P17	IO76VDB1		
P18	IO76UDB1		
P19	IO75PDB1		
P20	NC		
P21	NC		
P22	NC		
R1	NC		
R2	NC		
R3	VCC		
R4	IO140PDB3		
R5	IO130RSB2		
R6	IO138NPB3		
R7	GEC0/IO137NPB3		
R8	VMV3		

FG484			
Pin Number	AGL600 Function		
G5	IO171PDB3		
G6	GAC2/IO172PDB3		
G7	IO06RSB0		
G8	GNDQ		
G9	IO10RSB0		
G10	IO19RSB0		
G11	IO26RSB0		
G12	IO30RSB0		
G13	IO40RSB0		
G14	IO45RSB0		
G15	GNDQ		
G16	IO50RSB0		
G17	GBB2/IO61PPB1		
G18	IO53RSB0		
G19	IO63NDB1		
G20	NC		
G21	NC		
G22	NC		
H1	NC		
H2	NC		
H3	VCC		
H4	IO166PDB3		
H5	IO167NPB3		
H6	IO172NDB3		
H7	IO169NDB3		
H8	VMV0		
H9	VCCIB0		
H10	VCCIB0		
H11	IO25RSB0		
H12	IO31RSB0		
H13	VCCIB0		
H14	VCCIB0		
H15	VMV1		
H16	GBC2/IO62PDB1		
H17	IO67PPB1		
H18	IO64PPB1		

FG484			
Pin Number	AGL600 Function		
U1	IO149PDB3		
U2	IO149NDB3		
U3	NC		
U4	GEB1/IO145PDB3		
U5	GEB0/IO145NDB3		
U6	VMV2		
U7	IO138RSB2		
U8	IO136RSB2		
U9	IO131RSB2		
U10	IO124RSB2		
U11	IO119RSB2		
U12	IO107RSB2		
U13	IO104RSB2		
U14	IO97RSB2		
U15	VMV1		
U16	ТСК		
U17	VPUMP		
U18	TRST		
U19	GDA0/IO88NDB1		
U20	NC		
U21	IO83NDB1		
U22	NC		
V1	NC		
V2	NC		
V3	GND		
V4	GEA1/IO144PDB3		
V5	GEA0/IO144NDB3		
V6	IO139RSB2		
V7	GEC2/IO141RSB2		
V8	IO132RSB2		
V9	IO127RSB2		
V10	IO121RSB2		
V11	IO114RSB2		
V12	IO109RSB2		
V13	IO105RSB2		
V14	IO98RSB2		

Datasheet Information

Revision	Changes	Page
Revision 21 (continued)	Pin description table for AGL125 CS121 was removed as it was incorrectly added to the datasheet in revision 19 (SAR 38217).	-
Revision 20 (March 2012)	Notes indicating that AGL015 is not recommended for new designs have been added. The "Devices Not Recommended For New Designs" section is new (SAR 35015).	I to IV
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been reinserted (SAR 33689).	I to IV
	Values for the power data for PAC1, PAC2, PAC3, PAC4, PAC7, and PAC8 were revised in Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices and Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices to match the SmartPower tool in Libero software version 9.0 SP1 and Power Calculator spreadsheet v7a released on 08/10/2010 (SAR 33768).	2-15
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO FPGA Fabric User Guide</i> (SAR 34730).	
	Figure 2-4 • Input Buffer Timing Model and Delays (example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to t _{DIN} (SAR 37104).	2-21
	 Added missing characteristics for 3.3 V LVCMOS, 3.3 V LVCMOS Wide range, 1.2 V LVCMOS, and 1.2 V LVCMOS Wide range to the following tables: Table 2-38, Table 2-39, Table 2-40, Table 2-42, Table 2-43, and Table 2-44 (SARs 33854 and 36891) Table 2-63, Table 2-64, and Table 2-65 (SAR 33854) Table 2-127, Table 2-128, Table 2-129, Table 2-137, Table 2-138, and Table 2-139 (SAR 36891). 	2-40, 2-47 to 2-49, 2-74, 2-77, and
	AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match Table 2-50 · AC Waveforms, Measuring Points, and Capacitive Loads (SAR 34878).	
	Added values for minimum pulse width and removed the FRMAX row from Table 2-173 through Table 2-188 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SAR 29271).	
Revision 19 (September 2011)	CS121 was added to the product tables in the "IGLOO Low Power Flash FPGAs" section for AGL125 (SAR 22737). CS81 was added for AGL250 (SAR 22737).	I
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been removed (SAR 33689).	I to IV
	M1AGL400 was removed from the "I/Os Per Package1" table. This device was discontinued in April 2009 (SAR 32450).	II
	Dimensions for the QN48 package were added to Table 1 • IGLOO FPGAs Package Sizes Dimensions (SAR 30537).	II
	The Y security option and Licensed DPA Logo were added to the "IGLOO Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151).	
	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 19 (continued)	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 28756).	1-3
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-8
	Values for VCCPLL at 1.2 V –1.5 V DC core supply voltage were revised in Table 2-2 • Recommended Operating Conditions 1 (SAR 22356).	2-2
	The value for VPUMP operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 25220).	
	The value for VCCPLL 1.5 V DC core supply voltage was changed from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 26551).	
	The notes in the table were renumbered in order of their appearance in the table (SAR 21869).	
	The temperature used in EQ 2 was revised from 110°C to 100°C for consistency with the limits given in Table 2-2 • Recommended Operating Conditions 1. The resulting maximum power allowed is thus 1.28 W. Formerly it was 1.71 W (SAR 26259).	2-6
	Values for CS196, CS281, and QN132 packages were added to Table 2-5 • Package Thermal Resistivities (SARs 26228, 32301).	2-6
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.14 V) were updated to remove the column for –20°C and shift the data over to correct columns (SAR 23041).	2-7
	The tables in the "Quiescent Supply Current" section were updated with revised notes on IDD (SAR 24112). Table 2-8 • Power Supply State per Mode is new.	2-7
	The formulas in the table notes for Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 21348).	2-37
	The row for 110°C was removed from Table 2-45 • Duration of Short Circuit Event before Failure. The example in the associated paragraph was changed from 110°C to 100°C. Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 was revised to change 110° to 100°C. (SAR 26259).	2-40
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics –	2-28,
	Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	2-47, 2-77
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-56
	The values for $F_{DDRIMAX}$ and F_{DDOMAX} were updated in the tables in the "Input DDR Module" section and "Output DDR Module" section (SAR 23919).	2-94, 2-97
	The following notes were removed from Table 2-147 • Minimum and Maximum DC Input and Output Levels (SAR 29428): ±5%	2-81
	Differential input voltage = ±350 mV	
	Table 2-189 • IGLOO CCC/PLL Specification and Table 2-190 • IGLOO CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-115

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
DC & Switching, cont'd.	Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range is new.	2-39
Revision 9 (Jul 2008) Product Brief v1.1 DC and Switching Characteristics Advance v0.3	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
Revision 8 (Jun 2008)	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
DC and Switching Characteristics Advance v0.2	Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set. DDR Tables have two additional data points added to reflect both edges for Input DDR setup and hold time. The power data table has been updated to match SmartPower data rather then simulation values. AGL015 global clock delays have been added.	N/A
	Table 2-1 • Absolute Maximum Ratings was updated to combine the VCCI and VMV parameters in one row. The word "output" from the parameter description for VCCI and VMV, and table note 3 was added.	2-1
	Table 2-2 • Recommended Operating Conditions 1 was updated to add references to tables notes 4, 6, 7, and 8. VMV was added to the VCCI parameter row, and table note 9 was added.	2-2
	In Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature1, the maximum operating junction temperature was changed from 110° to 100°.	2-3
	VMV was removed from Table 2-4 • Overshoot and Undershoot Limits 1. The table title was modified to remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels is new.	2-5
	EQ 2 was updated. The temperature was changed to 100°C, and therefore the end result changed.	2-6
	The table notes for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mode*, Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode*, and Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode were updated to remove VMV and include PDC6 and PDC7. VCCI and VJTAG were removed from the statement about IDD in the table note for Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode.	2-7
	Note 2 of Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1 was updated to include VCCPLL. Note 4 was updated to include PDC6 and PDC7.	2-9