

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	9216
Total RAM Bits	55296
Number of I/O	194
Number of Gates	400000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agl400v2-fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature¹

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 on page 2-2 for device operating conditions and absolute limits.

Table 2-4 • Overshoot and Undershoot Limits¹

vcci	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

1. Based on reliability requirements at junction temperature at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

IGLOO I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 Devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V

Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	122.16
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	122.16
2.5 V LVCMOS	5	2.5	_	68.37
1.8 V LVCMOS	5	1.8	_	34.53
1.5 V LVCMOS (JESD8-11)	5	1.5	_	23.66
1.2 V LVCMOS ⁵	5	1.2	_	14.90
1.2 V LVCMOS Wide Range ⁵	5	1.2	_	14.90
3.3 V PCI	10	3.3	_	181.06
3.3 V PCI-X	10	3.3	_	181.06

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC7} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	_	104.38
3.3 V LVCMOS Wide Range ⁴	5	3.3	_	104.38
2.5 V LVCMOS	5	2.5	_	59.86
1.8 V LVCMOS	5	1.8	_	31.26
1.5 V LVCMOS (JESD8-11)	5	1.5	_	21.96
1.2 V LVCMOS ⁵	5	1.2	_	13.49
1.2 V LVCMOS Wide Range ⁵	5	1.2	_	13.49

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Table 2-28 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

	Com	mercial ¹	Industrial ²			
	IIL⁴	IIH ⁵	IIL ⁴	IIH ⁵		
DC I/O Standards	μΑ	μΑ	μA	μA		
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15		
3.3 V LVCMOS Wide Range	10	10	15	15		
2.5 V LVCMOS	10	10	15	15		
1.8 V LVCMOS	10	10	15	15		
1.5 V LVCMOS	10	10	15	15		
1.2 V LVCMOS ³	10	10	15	15		
1.2 V LVCMOS Wide Range ³	10	10	15	15		
3.3 V PCI	10	10	15	15		
3.3 V PCI-X	10	10	15	15		

Notes:

1. Commercial range ($0^{\circ}C < T_A < 70^{\circ}C$)

2. Industrial range (–40°C < T_A < 85°C)

3. Applicable to V2 Devices operating at VCCI \geq VCC.

4. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

5. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3.3 V LVCMOS Wide Range

 Table 2-63 •
 Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range

 Applicable to Advanced I/O Banks

3.3 V LVCMOS	Wide Range	\	/IL	V	ΊH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μA ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	268	181	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-81 •	Minimum and Maximum DC Input and Output Levels
	Applicable to Standard I/O Banks

2.5 V LVCMOS	v	ΊL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow $R = 1 k$
 $Test Point$
Enable Path \downarrow $Test Point$
 $F = 1 k$
 $R to VCCI for t_{LZ} / t_{ZL} / t_{ZLS}$
 $R to GND for t_{HZ} / t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$

Figure 2-8 • AC Loading

Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-83 •2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	4.96	0.18	1.08	0.66	5.06	4.59	2.26	2.00	8.66	8.19	ns
4 mA	Std.	0.97	4.96	0.18	1.08	0.66	5.06	4.59	2.26	2.00	8.66	8.19	ns
6 mA	Std.	0.97	4.15	0.18	1.08	0.66	4.24	3.94	2.54	2.51	7.83	7.53	ns
8 mA	Std.	0.97	4.15	0.18	1.08	0.66	4.24	3.94	2.54	2.51	7.83	7.53	ns
12 mA	Std.	0.97	3.57	0.18	1.08	0.66	3.65	3.47	2.73	2.84	7.24	7.06	ns
16 mA	Std.	0.97	3.39	0.18	1.08	0.66	3.46	3.36	2.78	2.92	7.06	6.95	ns
24 mA	Std.	0.97	3.38	0.18	1.08	0.66	3.38	3.38	2.83	3.25	6.98	6.98	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-84 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.77	0.18	1.08	0.66	2.83	2.60	2.26	2.08	6.42	6.19	ns
4 mA	Std.	0.97	2.77	0.18	1.08	0.66	2.83	2.60	2.26	2.08	6.42	6.19	ns
6 mA	Std.	0.97	2.34	0.18	1.08	0.66	2.39	2.08	2.54	2.60	5.99	5.68	ns
8 mA	Std.	0.97	2.34	0.18	1.08	0.66	2.39	2.08	2.54	2.60	5.99	5.68	ns
12 mA	Std.	0.97	2.09	0.18	1.08	0.66	2.14	1.83	2.73	2.93	5.73	5.43	ns
16 mA	Std.	0.97	2.05	0.18	1.08	0.66	2.09	1.78	2.78	3.02	5.69	5.38	ns
24 mA	Std.	0.97	2.06	0.18	1.08	0.66	2.10	1.72	2.83	3.35	5.70	5.32	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-85 •2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	4.42	0.18	1.08	0.66	4.51	4.10	1.96	1.85	8.10	7.69	ns
4 mA	Std.	0.97	4.42	0.18	1.08	0.66	4.51	4.10	1.96	1.85	8.10	7.69	ns
6 mA	Std.	0.97	3.62	0.18	1.08	0.66	3.70	3.52	2.21	2.32	7.29	7.11	ns
8 mA	Std.	0.97	3.62	0.18	1.08	0.66	3.70	3.52	2.21	2.32	7.29	7.11	ns
12 mA	Std.	0.97	3.09	0.18	1.08	0.66	3.15	3.09	2.39	2.61	6.74	6.68	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-104 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	2.62	0.18	0.98	0.66	2.67	2.59	1.67	1.29	2.62	ns
4 mA	Std.	2.18	0.18	0.98	0.66	2.22	1.93	1.97	2.06	2.18	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-105 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.97	0.26	1.11	1.10	7.08	6.48	2.87	2.29	12.87	12.27	ns
4 mA	Std.	1.55	5.91	0.26	1.11	1.10	6.01	5.57	3.21	3.14	11.79	11.36	ns
6 mA	Std.	1.55	5.16	0.26	1.11	1.10	5.24	4.95	3.45	3.55	11.03	10.74	ns
8 mA	Std.	1.55	4.90	0.26	1.11	1.10	4.98	4.81	3.50	3.66	10.77	10.60	ns
12 mA	Std.	1.55	4.83	0.26	1.11	1.10	4.90	4.83	3.58	4.08	10.68	10.61	ns
16 mA	Std.	1.55	4.83	0.26	1.11	1.10	4.90	4.83	3.58	4.08	10.68	10.61	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-106 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.73	0.26	1.11	1.10	3.71	3.73	2.86	2.34	9.49	9.51	ns
4 mA	Std.	1.55	3.12	0.26	1.11	1.10	3.16	2.97	3.21	3.22	8.95	8.75	ns
6 mA	Std.	1.55	2.79	0.26	1.11	1.10	2.83	2.59	3.45	3.65	8.62	8.38	ns
8 mA	Std.	1.55	2.73	0.26	1.11	1.10	2.77	2.52	3.50	3.75	8.56	8.30	ns
12 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns
16 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-123 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.43	0.26	1.27	1.10	6.54	5.95	2.82	2.83	12.32	11.74	ns
4 mA	Std.	1.55	5.59	0.26	1.27	1.10	5.68	5.27	3.07	3.27	11.47	11.05	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-124 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.02	0.26	1.27	1.10	3.07	2.81	2.82	2.92	8.85	8.59	ns
4 mA	Std.	1.55	2.68	0.26	1.27	1.10	2.72	2.39	3.07	3.37	8.50	8.18	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-125 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	6.35	0.26	1.22	1.10	6.46	5.93	2.40	2.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-126 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	2.92	0.26	1.22	1.10	2.96	2.60	2.40	2.56	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-14. The input and output buffer delays are available in the LVDS section in Table 2-149 on page 2-81 and Table 2-150 on page 2-81.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-15. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	H, DOUT
tOSUD	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
tIRECPRE	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-155 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-16 on page 2-84 for more information.

Table 2-183 • AGL060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.04	2.33	ns
t _{RCKH}	Input High Delay for Global Clock	2.10	2.51	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.40	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-184 • AGL125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.08	2.54	ns
t _{RCKH}	Input High Delay for Global Clock	2.15	2.77	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3 – Pin Descriptions

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOO V5 devices, and 1.2 V or 1.5 V for IGLOO V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

For IGLOO V2 devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on IGLOO devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.

- 1.5 V for IGLOO V5 devices
- 1.2 V or 1.5 V for IGLOO V2 devices

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide* for a complete board solution for the PLL analog power supply and ground.

• There is one VCCPLF pin on IGLOO devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO devices.

	CS196		CS196		CS196
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function
A1	GND	C9	IO23RSB0	F3	IO113RSB1
A2	GAA0/IO00RSB0	C10	IO29RSB0	F4	IO112RSB1
A3	GAC0/IO04RSB0	C11	VCCIB0	F5	IO111RSB1
A4	GAC1/IO05RSB0	C12	IO42RSB0	F6	NC
A5	IO09RSB0	C13	GNDQ	F7	VCC
A6	IO15RSB0	C14	IO44RSB0	F8	VCC
A7	IO18RSB0	D1	IO127RSB1	F9	NC
A8	IO22RSB0	D2	IO129RSB1	F10	IO07RSB0
A9	IO27RSB0	D3	GAA2/IO132RSB1	F11	IO25RSB0
A10	GBC0/IO35RSB0	D4	IO126RSB1	F12	IO10RSB0
A11	GBB0/IO37RSB0	D5	IO06RSB0	F13	IO33RSB0
A12	GBB1/IO38RSB0	D6	IO13RSB0	F14	IO47RSB0
A13	GBA1/IO40RSB0	D7	IO19RSB0	G1	GFB1/IO121RSB1
A14	GND	D8	IO21RSB0	G2	GFA0/IO119RSB1
B1	VCCIB1	D9	IO26RSB0	G3	GFA2/IO117RSB1
B2	VMV0	D10	IO31RSB0	G4	VCOMPLF
B3	GAA1/IO01RSB0	D11	IO30RSB0	G5	GFC0/IO122RSB1
B4	GAB1/IO03RSB0	D12	VMV0	G6	VCC
B5	GND	D13	IO46RSB0	G7	GND
B6	IO16RSB0	D14	GBC2/IO45RSB0	G8	GND
B7	IO20RSB0	E1	IO125RSB1	G9	VCC
B8	IO24RSB0	E2	GND	G10	GCC0/IO52RSB0
B9	IO28RSB0	E3	IO131RSB1	G11	GCB1/IO53RSB0
B10	GND	E4	VCCIB1	G12	GCA0/IO56RSB0
B11	GBC1/IO36RSB0	E5	NC	G13	IO48RSB0
B12	GBA0/IO39RSB0	E6	IO08RSB0	G14	GCC2/IO59RSB0
B13	GBA2/IO41RSB0	E7	IO17RSB0	H1	GFB0/IO120RSB1
B14	GBB2/IO43RSB0	E8	IO12RSB0	H2	GFA1/IO118RSB1
C1	GAC2/IO128RSB1	E9	IO11RSB0	H3	VCCPLF
C2	GAB2/IO130RSB1	E10	NC	H4	GFB2/IO116RSB1
C3	GNDQ	E11	VCCIB0	H5	GFC1/IO123RSB1
C4	VCCIB0	E12	IO32RSB0	H6	VCC
C5	GAB0/IO02RSB0	E13	GND	H7	GND
C6	IO14RSB0	E14	IO34RSB0	H8	GND
C7	VCCIB0	F1	IO124RSB1	H9	VCC
C8	NC	F2	IO114RSB1	H10	GCC1/IO51RSB0

IGLOO Low Power Flash FPGAs

	CS281	
Pin Number	AGL1000 Function	Pin Nu
H8	VCC	K1
H9	VCCIB0	K1
H10	VCC	K1
H11	VCCIB0	K1
H12	VCC	L
H13	VCCIB1	L
H15	IO90NPB1	L
H16	GCB0/IO92NPB1	L
H18	GCA1/IO93PPB1	Ľ
H19	GCA2/IO94PPB1	L
J1	VCOMPLF	L
J2	GFA0/IO207NDB3	L1
J4	VCCPLF	L1
J5	GFC0/IO209NPB3	L1
J7	GFA2/IO206PDB3	L1
J8	VCCIB3	L1
J9	GND	L1
J10	GND	L1
J11	GND	L1
J12	VCCIB1	М
J13	GCC1/IO91PPB1	М
J15	GCA0/IO93NPB1	М
J16	GCB2/IO95PPB1	М
J18	IO94NPB1	М
J19	IO102PSB1	М
K1	VCCIB3	М
K2	GFA1/IO207PDB3	M
K4	GND	M
K5	IO204NPB3	M
K7	IO206NDB3	M
K8	VCC	M
K9	GND	M
K10	GND	M
K11	GND	M
K12	VCC	N
K13	GCC2/IO96PPB1	N

Pin NumberAGL1000 FundK15IO95NPB1K16GND	ction
K15 IO95NPB1 K16 GND	
K16 GND	
K18 IO96NPB1	
K19 VCCIB1	
L1 GFB2/IO205P	DB3
L2 IO205NDB	3
L4 GFC2/IO204P	PB3
L5 IO203PPB	3
L7 IO203NPB	3
L8 VCCIB3	
L9 GND	
L10 GND	
L11 GND	
L12 VCCIB1	
L13 IO103PPB	1
L15 IO103NPB	1
L16 IO97PPB1	
L18 IO98NPB1	
L19 IO97NPB1	
M1 IO202PDB	3
M2 IO202NDB	3
M4 IO201NPB	3
M5 IO198PPB	3
M7 VCCIB3	
M8 VCC	
M9 VCCIB2	
M10 VCC	
M11 VCCIB2	
M12 VCC	
M13 VCCIB1	
M15 IO104NPB	1
M16 IO100NPB	1
M18 IO104PPB	1
M19 IO98PPB1	
N1 IO201PPB	3
N2 IO198NPB	3

CS281			
Pin Number	AGL1000 Function		
N4	IO196PPB3		
N5	IO197NPB3		
N7	GEA2/IO187RSB2		
N8	VCCIB2		
N9	IO155RSB2		
N10	IO154RSB2		
N11	IO150RSB2		
N12	VCCIB2		
N13	VPUMP		
N15	IO107PPB1		
N16	IO105PPB1		
N18	IO107NPB1		
N19	IO100PPB1		
P1	IO195PDB3		
P2	GND		
P3	IO195NDB3		
P4	IO194PPB3		
P5	GEA0/IO188NPB3		
P15	IO108NDB1		
P16	IO108PDB1		
P17	GDC1/IO111PPB1		
P18	GND		
P19	IO105NPB1		
R1	IO196NPB3		
R2	IO194NPB3		
R4	GEC1/IO190PPB3		
R5	GEB1/IO189PPB3		
R6	IO184RSB2		
R7	IO173RSB2		
R8	IO168RSB2		
R9	IO160RSB2		
R10	IO151RSB2		
R11	IO141RSB2		
R12	IO136RSB2		
R13	IO127RSB2		
R14	IO124RSB2		

QN132			
Pin Number	AGL125 Function		
C17	IO83RSB1		
C18	VCCIB1		
C19	ТСК		
C20	VMV1		
C21	VPUMP		
C22	VJTAG		
C23	VCCIB0		
C24	NC		
C25	NC		
C26	GCA1/IO55RSB0		
C27	GCC0/IO52RSB0		
C28	VCCIB0		
C29	IO42RSB0		
C30	GNDQ		
C31	GBA1/IO40RSB0		
C32	GBB0/IO37RSB0		
C33	VCC		
C34	IO24RSB0		
C35	IO19RSB0		
C36	IO16RSB0		
C37	IO10RSB0		
C38	VCCIB0		
C39	GAB1/IO03RSB0		
C40	VMV0		
D1	GND		
D2	GND		
D3	GND		
D4	GND		

IGLOO Low Power Flash FPGAs

VQ100		VQ100		VQ100	
Pin Number	AGL060 Function	Pin Number	AGL060 Function	Pin Number	AGL060 Function
1	GND	37	VCC	73	GBA2/IO25RSB0
2	GAA2/IO51RSB1	38	GND	74	VMV0
3	IO52RSB1	39	VCCIB1	75	GNDQ
4	GAB2/IO53RSB1	40	IO60RSB1	76	GBA1/IO24RSB0
5	IO95RSB1	41	IO59RSB1	77	GBA0/IO23RSB0
6	GAC2/IO94RSB1	42	IO58RSB1	78	GBB1/IO22RSB0
7	IO93RSB1	43	IO57RSB1	79	GBB0/IO21RSB0
8	IO92RSB1	44	GDC2/IO56RSB1	80	GBC1/IO20RSB0
9	GND	45	GDB2/IO55RSB1	81	GBC0/IO19RSB0
10	GFB1/IO87RSB1	46	GDA2/IO54RSB1	82	IO18RSB0
11	GFB0/IO86RSB1	47	ТСК	83	IO17RSB0
12	VCOMPLF	48	TDI	84	IO15RSB0
13	GFA0/IO85RSB1	49	TMS	85	IO13RSB0
14	VCCPLF	50	VMV1	86	IO11RSB0
15	GFA1/IO84RSB1	51	GND	87	VCCIB0
16	GFA2/IO83RSB1	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB1	54	TDO	90	IO10RSB0
19	GEC1/IO77RSB1	55	TRST	91	IO09RSB0
20	GEB1/IO75RSB1	56	VJTAG	92	IO08RSB0
21	GEB0/IO74RSB1	57	GDA1/IO49RSB0	93	GAC1/IO07RSB0
22	GEA1/IO73RSB1	58	GDC0/IO46RSB0	94	GAC0/IO06RSB0
23	GEA0/IO72RSB1	59	GDC1/IO45RSB0	95	GAB1/IO05RSB0
24	VMV1	60	GCC2/IO43RSB0	96	GAB0/IO04RSB0
25	GNDQ	61	GCB2/IO42RSB0	97	GAA1/IO03RSB0
26	GEA2/IO71RSB1	62	GCA0/IO40RSB0	98	GAA0/IO02RSB0
27	FF/GEB2/IO70RSB1	63	GCA1/IO39RSB0	99	IO01RSB0
28	GEC2/IO69RSB1	64	GCC0/IO36RSB0	100	IO00RSB0
29	IO68RSB1	65	GCC1/IO35RSB0		
30	IO67RSB1	66	VCCIB0		
31	IO66RSB1	67	GND		
32	IO65RSB1	68	VCC		
33	IO64RSB1	69	IO31RSB0		
34	IO63RSB1	70	GBC2/IO29RSB0		
35	IO62RSB1	71	GBB2/IO27RSB0		
36	IO61RSB1	72	IO26RSB0		

FG256			
Pin Number	AGL400 Function		
R5	IO123RSB2		
R6	IO118RSB2		
R7	IO112RSB2		
R8	IO106RSB2		
R9	IO100RSB2		
R10	IO96RSB2		
R11	IO89RSB2		
R12	IO85RSB2		
R13	GDB2/IO81RSB2		
R14	TDI		
R15	NC		
R16	TDO		
T1	GND		
T2	IO126RSB2		
Т3	FF/GEB2/IO133RSB2		
T4	IO124RSB2		
T5	IO116RSB2		
T6	IO113RSB2		
T7	IO107RSB2		
T8	IO105RSB2		
Т9	IO102RSB2		
T10	IO97RSB2		
T11	IO92RSB2		
T12	GDC2/IO82RSB2		
T13	IO86RSB2		
T14	GDA2/IO80RSB2		
T15	TMS		
T16	GND		

FG484		
Pin Number	AGL400 Function	
M3	NC	
M4	GFA2/IO144PPB3	
M5	GFA1/IO145PDB3	
M6	VCCPLF	
M7	IO143NDB3	
M8	GFB2/IO143PDB3	
M9	VCC	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO71PPB1	
M16	GCA1/IO69PPB1	
M17	GCC2/IO72PPB1	
M18	NC	
M19	GCA2/IO70PDB1	
M20	NC	
M21	NC	
M22	NC	
N1	NC	
N2	NC	
N3	NC	
N4	GFC2/IO142PDB3	
N5	IO144NPB3	
N6	IO141PPB3	
N7	IO120RSB2	
N8	VCCIB3	
N9	VCC	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	VCC	
N15	VCCIB1	
N16	IO71NPB1	

FG484		
Pin Number	AGL1000 Function	
E13	IO51RSB0	
E14	IO57RSB0	
E15	GBC1/IO73RSB0	
E16	GBB0/IO74RSB0	
E17	IO71RSB0	
E18	GBA2/IO78PDB1	
E19	IO81PDB1	
E20	GND	
E21	NC	
E22	IO84PDB1	
F1	NC	
F2	IO215PDB3	
F3	IO215NDB3	
F4	IO224NDB3	
F5	IO225NDB3	
F6	VMV3	
F7	IO11RSB0	
F8	GAC0/IO04RSB0	
F9	GAC1/IO05RSB0	
F10	IO25RSB0	
F11	IO36RSB0	
F12	IO42RSB0	
F13	IO49RSB0	
F14	IO56RSB0	
F15	GBC0/IO72RSB0	
F16	IO62RSB0	
F17	VMV0	
F18	IO78NDB1	
F19	IO81NDB1	
F20	IO82PPB1	
F21	NC	
F22	IO84NDB1	
G1	IO214NDB3	
G2	IO214PDB3	
G3	NC	
G4	IO222NDB3	

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 23 (December 2012)	The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173).	III
	The note in Table 2-189 · IGLOO CCC/PLL Specification and Table 2-190 · IGLOO CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42564). Additionally, note regarding SSOs was added.	2-115, 2-116
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 22 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read- back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40271).	N/A
Revision 21 (May 2012)	Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet in revision 19 and has been removed (SAR 38217).	I to IV
	Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same to '3.6' in Table 2-151 · Minimum and Maximum DC Input and Output Levels (SAR 37685).	2-82
	Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841).	2-127
	The following sentence was removed from the VMVx description in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38317). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1