

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	9216
Total RAM Bits	55296
Number of I/O	97
Number of Gates	400000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agl400v5-fg144i

Email: info@E-XFL.COM

E·XF

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/Os Per Package¹

IGLOO Devices	AGL015 ²	AGL030	AGL060	AGL125	AGL	.250	AGL	400	AGL	AGL600		1000
ARM-Enabled IGLOO Devices					M1AG	GL250			M1AG	GL600	M1AG	L1000
					1/0	O Type ³						
Package	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O ⁴	Differential I/O Pairs						
QN48	_	34	-	_	_	_	-	-	-	-	-	-
QN68	49	49	-	—	-	-	-	-	-	-	-	-
UC81	_	66	-	_	_	_	_	_	-	-	-	-
CS81	_	66	-	_	_	_	_	_	-	-	-	-
CS121	_	-	96	96	-	-	-	-	-	-	-	-
VQ100	_	77	71	71	68	13	-	-	-	-	-	-
QN132 ⁶	_	81	80	84	-	-	-	-	-	-	-	-
CS196	_	-	_	133	143 ⁵	35 ⁵	143	35	-	-	-	-
FG144	_	-	_	97	97	24	97	25	97	25	97	25
FG256 ⁷	_	-	_	_	-	-	178	38	177	43	177	44
CS281	_	-	-	—	-	-	-	—	215	53	215	53
FG484 ⁷	_	—	—	_	-	-	194	38	235	60	300	74

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOO FPGA Fabric User Guide to ensure compliance with design and board migration requirements.

 AGL015 is not recommended for new designs.
 When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.

4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.

5. The M1AGL250 device does not support QN132 or CS196 packages.

Package not available.
 FG256 and FG484 are footprint-compatible packages.

Table 1 •	IGLOO FPGAs Package Sizes Dimensions
	IGLOOT FORS Fackage Sizes Dimensions

Package	UC81	CS81	CS121	QN48	QN68	QN132 [*]	CS196	CS281	FG144	VQ100	FG256	FG484
Length × Width (mm\mm)	4 × 4	5 × 5	6×6	6×6	8×8	8 × 8	8 × 8	10 × 10	13 x 13	14 x 14	17 × 17	23 × 23
Nominal Area (mm ²)	16	25	36	36	64	64	64	100	169	196	289	529
Pitch (mm)	0.4	0.5	0.5	0.4	0.4	0.5	0.5	0.5	1.0	0.5	1.0	1.0
Height (mm)	0.80	0.80	0.99	0.90	0.90	0.75	1.20	1.05	1.45	1.00	1.60	2.23

Note: * Package not available. Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V for V5 devices, and 0.75 V \pm 0.2 V for V2 devices), the PLL output lock signal goes low and/or the output clock is lost. Refer to the Brownout Voltage section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *ProASIC*[®]3 and *ProASIC3E* FPGA fabric user guides for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for the AGL1000-FG484 package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{23.3°C/W} = 1.28 \text{ W}$$

EQ 2

					θ_{ja}		
Package Type	Device	Pin Count	θ j_c	Still Air	1 m/s	2.5 m/s	Unit
Quad Flat No Lead (QN)	AGL030	132	13.1	21.4	16.8	15.3	C/W
	AGL060	132	11.0	21.2	16.6	15.0	C/W
	AGL125	132	9.2	21.1	16.5	14.9	C/W
	AGL250	132	8.9	21.0	16.4	14.8	C/W
	AGL030	68	13.4	68.4	45.8	43.1	C/W
Very Thin Quad Flat Pack (VQ)*		100	10.0	35.3	29.4	27.1	C/W
Chip Scale Package (CS)	AGL1000	281	6.0	28.0	22.8	21.5	C/W
	AGL400	196	7.2	37.1	31.1	28.9	C/W
	AGL250	196	7.6	38.3	32.2	30.0	C/W
	AGL125	196	8.0	39.5	33.4	31.1	C/W
	AGL030	81	12.4	32.8	28.5	27.2	C/W
	AGL060	81	11.1	28.8	24.8	23.5	C/W
	AGL250	81	10.4	26.9	22.3	20.9	C/W
Micro Chip Scale Package (UC)	AGL030	81	16.9	40.6	35.2	33.7	C/W
Fine Pitch Ball Grid Array (FG)	AGL060	144	18.6	55.2	49.4	47.2	C/W
	AGL1000	144	6.3	31.6	26.2	24.2	C/W
	AGL400	144	6.8	37.6	31.2	29.0	C/W
	AGL250	256	12.0	38.6	34.7	33.0	C/W
	AGL1000	256	6.6	28.1	24.4	22.7	C/W
	AGL1000	484	8.0	23.3	19.0	16.7	C/W

Table 2-5 • Package Thermal Resistivities

Note: *Thermal resistances for other device-package combinations will be posted in a later revision.

Disclaimer:

The simulation for determining the junction-to-air thermal resistance is based on JEDEC standards (JESD51) and assumptions made in building the model. Junction-to-case is based on SEMI G38-88. JESD51 is only used for comparing one package to another package, provided the two tests uses the same condition. They have little relevance in actual application and therefore should be used with a degree of caution.

Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard Plus I/O Banks

		Equivalent			VIL	VIH		VOL	VOH	I _{OL}	I _{OH}
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VDD-0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	8 mA	8 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	8	8
1.5 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4
1.2 V LVCMOS ⁴	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS Wide Range ⁴	100 µA	2 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	1.575	0.1	VCCI - 0.1	0.1	0.1
3.3 V PCI		-		-	Per F	CI specification	ons				
3.3 V PCI-X					Per P(CI-X specificat	ions				

Notes:

1. Currents are measured at 85°C junction temperature.

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to V2 Devices operating at VCCI \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

Table 2-69 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Plus Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	0.97	5.84	0.18	1.20	0.66	5.86	5.04	2.74	2.71	9.46	8.64	ns
100 µA	4 mA	Std.	0.97	5.84	0.18	1.20	0.66	5.86	5.04	2.74	2.71	9.46	8.64	ns
100 µA	6 mA	Std.	0.97	4.76	0.18	1.20	0.66	4.78	4.33	3.09	3.33	8.37	7.93	ns
100 µA	8 mA	Std.	0.97	4.76	0.18	1.20	0.66	4.78	4.33	3.09	3.33	8.37	7.93	ns
100 µA	12 mA	Std.	0.97	4.02	0.18	1.20	0.66	4.04	3.78	3.33	3.73	7.64	7.37	ns
100 µA	16 mA	Std.	0.97	4.02	0.18	1.20	0.66	4.04	3.78	3.33	3.73	7.64	7.37	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-70 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Plus Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	0.97	3.33	0.18	1.20	0.66	3.35	2.68	2.73	2.88	6.94	6.27	ns
100 µA	4 mA	Std.	0.97	3.33	0.18	1.20	0.66	3.35	2.68	2.73	2.88	6.94	6.27	ns
100 µA	6 mA	Std.	0.97	2.75	0.18	1.20	0.66	2.77	2.17	3.08	3.50	6.36	5.77	ns
100 µA	8 mA	Std.	0.97	2.75	0.18	1.20	0.66	2.77	2.17	3.08	3.50	6.36	5.77	ns
100 µA	12 mA	Std.	0.97	2.45	0.18	1.20	0.66	2.47	1.92	3.33	3.90	6.06	5.51	ns
100 µA	16 mA	Std.	0.97	2.45	0.18	1.20	0.66	2.47	1.92	3.33	3.90	6.06	5.51	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
tORECCLR	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	HH, EOUT
tOESUD	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
tOESUE	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
tIREMCLR	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-156 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-17 on page 2-86 for more information.

1.2 V DC Core Voltage

Table 2-168 • Output DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.60	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	1.09	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	1.16	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.99	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.24	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-185 • AGL250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.11	2.57	ns
t _{RCKH}	Input High Delay for Global Clock	2.19	2.81	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-186 • AGL400 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.18	2.64	ns
t _{RCKH}	Input High Delay for Global Clock	2.27	2.89	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-187 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.22	2.67	ns
t _{RCKH}	Input High Delay for Global Clock	2.32	2.93	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-188 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.31	2.76	ns
t _{RCKH}	Input High Delay for Global Clock	2.42	3.03	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

IGLOO Low Power Flash FPGAs

	CS196	CS196	
Pin Number	AGL250 Function	Pin Number	AGL250 Function
H11	GCB0/IO49NDB1	L5	IO89RSB2
H12	GCA1/IO50PDB1	L6	IO92RSB2
H13	IO51NDB1	L7	IO75RSB2
H14	GCA2/IO51PDB1	L8	IO66RSB2
J1	GFC2/IO105PDB3	L9	IO65RSB2
J2	IO104PPB3	L10	IO71RSB2
J3	IO106NPB3	L11	VPUMP
J4	IO103PDB3	L12	VJTAG
J5	IO103NDB3	L13	GDA0/IO60VPB1
J6	IO80RSB2	L14	GDB0/IO59VDB1
J7	VCC	M1	GEB0/IO99NDB3
J8	VCC	M2	GEA1/IO98PPB3
J9	IO64RSB2	M3	GNDQ
J10	IO56PDB1	M4	VCCIB2
J11	GCB2/IO52PDB1	M5	IO88RSB2
J12	IO52NDB1	M6	IO87RSB2
J13	GDC1/IO58UDB1	M7	IO82RSB2
J14	GDC0/IO58VDB1	M8	VCCIB2
K1	IO105NDB3	M9	IO67RSB2
K2	GND	M10	GDB2/IO62RSB2
K3	IO104NPB3	M11	VCCIB2
K4	VCCIB3	M12	VMV2
K5	IO101PPB3	M13	TRST
K6	IO91RSB2	M14	VCCIB1
K7	IO81RSB2	N1	GEA0/IO98NPB3
K8	IO73RSB2	N2	VMV3
K9	IO77RSB2	N3	GEC2/IO95RSB2
K10	IO56NDB1	N4	IO94RSB2
K11	VCCIB1	N5	GND
K12	GDA1/IO60UPB1	N6	IO86RSB2
K13	GND	N7	IO78RSB2
K14	GDB1/IO59UDB1	N8	IO74RSB2
L1	GEB1/IO99PDB3	N9	IO69RSB2
L2	GEC1/IO100PDB3	N10	GND
L3	GEC0/IO100NDB3	N11	ТСК
L4	IO101NPB3	N12	TDI

CS196			
Pin Number	AGL250 Function		
N13	GNDQ		
N14	TDO		
P1	GND		
P2	GEA2/IO97RSB2		
P3	FF/GEB2/IO96RSB2		
P4	IO90RSB2		
P5	IO85RSB2		
P6	IO83RSB2		
P7	IO79RSB2		
P8	IO76RSB2		
P9	IO72RSB2		
P10	IO68RSB2		
P11	GDC2/IO63RSB2		
P12	GDA2/IO61RSB2		
P13	TMS		
P14	GND		

QN68		
Pin Number	AGL030 Function	
1	IO82RSB1	
2	IO80RSB1	
3	IO78RSB1	
4	IO76RSB1	
5	GEC0/IO73RSB1	
6	GEA0/IO72RSB1	
7	GEB0/IO71RSB1	
8	VCC	
9	GND	
10	VCCIB1	
11	IO68RSB1	
12	IO67RSB1	
13	IO66RSB1	
14	IO65RSB1	
15	IO64RSB1	
16	IO63RSB1	
17	IO62RSB1	
18	FF/IO60RSB1	
19	IO58RSB1	
20	IO56RSB1	
21	IO54RSB1	
22	IO52RSB1	
23	IO51RSB1	
24	VCC	
25	GND	
26	VCCIB1	
27	IO50RSB1	
28	IO48RSB1	
29	IO46RSB1	
30	IO44RSB1	
31	IO42RSB1	Γ
32	тск	
33	TDI	
34	TMS	
35	VPUMP	
36	TDO	

	QN68		
I	Pin Number	AGL030 Function	
	37	TRST	
	38	VJTAG	
	39	IO40RSB0	
	40	IO37RSB0	
	41	GDB0/IO34RSB0	
	42	GDA0/IO33RSB0	
	43	GDC0/IO32RSB0	
	44	VCCIB0	
	45	GND	
	46	VCC	
	47	IO31RSB0	
	48	IO29RSB0	
	49	IO28RSB0	
	50	IO27RSB0	
	51	IO25RSB0	
	52	IO24RSB0	
	53	IO22RSB0	
	54	IO21RSB0	
	55	IO19RSB0	
	56	IO17RSB0	
	57	IO15RSB0	
	58	IO14RSB0	
	59	VCCIB0	
	60	GND	
	61	VCC	
	62	IO12RSB0	
	63	IO10RSB0	
	64	IO08RSB0	
	65	IO06RSB0	
	66	IO04RSB0	
	67	IO02RSB0	
	68	IO00RSB0	

FG256		
Pin Number	AGL600 Function	
R5	IO132RSB2	
R6	IO127RSB2	
R7	IO121RSB2	
R8	IO114RSB2	
R9	IO109RSB2	
R10	IO105RSB2	
R11	IO98RSB2	
R12	IO96RSB2	
R13	GDB2/IO90RSB2	
R14	TDI	
R15	GNDQ	
R16	TDO	
T1	GND	
T2	IO137RSB2	
Т3	FF/GEB2/IO142RSB2	
T4	IO134RSB2	
T5	IO125RSB2	
T6	IO123RSB2	
T7	IO118RSB2	
T8	IO115RSB2	
Т9	IO111RSB2	
T10	IO106RSB2	
T11	IO102RSB2	
T12	GDC2/IO91RSB2	
T13	IO93RSB2	
T14	GDA2/IO89RSB2	
T15	TMS	
T16	GND	

Package Pin Assignments

FG256		
Pin Number AGL1000 Function		
R5	IO168RSB2	
R6	IO163RSB2	
R7	IO157RSB2	
R8	IO149RSB2	
R9	IO143RSB2	
R10	IO138RSB2	
R11	IO131RSB2	
R12	IO125RSB2	
R13	GDB2/IO115RSB2	
R14	TDI	
R15	GNDQ	
R16	TDO	
T1	GND	
T2	IO183RSB2	
Т3	FF/GEB2/IO186RSB2	
T4	IO172RSB2	
T5	IO170RSB2	
T6	IO164RSB2	
T7	IO158RSB2	
T8	IO153RSB2	
Т9	IO142RSB2	
T10	IO135RSB2	
T11	IO130RSB2	
T12	GDC2/IO116RSB2	
T13	IO120RSB2	
T14	GDA2/IO114RSB2	
T15	TMS	
T16	GND	

FG484		
Pin Number AGL400 Function		
C21	NC	
C22	VCCIB1	
D1	NC	
D2	NC	
D3	NC	
D4	GND	
D5	GAA0/IO00RSB0	
D6	GAA1/IO01RSB0	
D7	GAB0/IO02RSB0	
D8	IO16RSB0	
D9	IO17RSB0	
D10	IO22RSB0	
D11	IO28RSB0	
D12	IO34RSB0	
D13	IO37RSB0	
D14	IO41RSB0	
D15	IO43RSB0	
D16	GBB1/IO57RSB0	
D17	GBA0/IO58RSB0	
D18	GBA1/IO59RSB0	
D19	GND	
D20	NC	
D21	NC	
D22	NC	
E1	NC	
E2	NC	
E3	GND	
E4	GAB2/IO154UDB3	
E5	GAA2/IO155UDB3	
E6	IO12RSB0	
E7	GAB1/IO03RSB0	
E8	IO13RSB0	
E9	IO14RSB0	
E10	IO21RSB0	
E11	IO27RSB0	
E12	IO32RSB0	

FG484		
Pin Number	AGL600 Function	
M3	IO158NPB3	
M4	GFA2/IO161PPB3	
M5	GFA1/IO162PDB3	
M6	VCCPLF	
M7	IO160NDB3	
M8	GFB2/IO160PDB3	
M9	VCC	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO73PPB1	
M16	GCA1/IO71PPB1	
M17	GCC2/IO74PPB1	
M18	IO80PPB1	
M19	GCA2/IO72PDB1	
M20	IO79PPB1	
M21	IO78PPB1	
M22	NC	
N1	IO154NDB3	
N2	IO154PDB3	
N3	NC	
N4	GFC2/IO159PDB3	
N5	IO161NPB3	
N6	IO156PPB3	
N7	IO129RSB2	
N8	VCCIB3	
N9	VCC	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	VCC	
N15	VCCIB1	
N16	IO73NPB1	

FG484		
Pin Number	AGL600 Function	
U1	IO149PDB3	
U2	IO149NDB3	
U3	NC	
U4	GEB1/IO145PDB3	
U5	GEB0/IO145NDB3	
U6	VMV2	
U7	IO138RSB2	
U8	IO136RSB2	
U9	IO131RSB2	
U10	IO124RSB2	
U11	IO119RSB2	
U12	IO107RSB2	
U13	IO104RSB2	
U14	IO97RSB2	
U15	VMV1	
U16	ТСК	
U17	VPUMP	
U18	TRST	
U19	GDA0/IO88NDB1	
U20	NC	
U21	IO83NDB1	
U22	NC	
V1	NC	
V2	NC	
V3	GND	
V4	GEA1/IO144PDB3	
V5	GEA0/IO144NDB3	
V6	IO139RSB2	
V7	GEC2/IO141RSB2	
V8	IO132RSB2	
V9	IO127RSB2	
V10	IO121RSB2	
V11	IO114RSB2	
V12	IO109RSB2	
V13	IO105RSB2	
V14	IO98RSB2	

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 19	The following sentence was removed from the "Advanced Architecture" section:	1-3
(continued)	"In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 28756).	
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-8
	Values for VCCPLL at 1.2 V -1.5 V DC core supply voltage were revised in Table 2-2 • Recommended Operating Conditions 1 (SAR 22356).	2-2
	The value for VPUMP operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 25220).	
	The value for VCCPLL 1.5 V DC core supply voltage was changed from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 26551).	
	The notes in the table were renumbered in order of their appearance in the table (SAR 21869).	
	The temperature used in EQ 2 was revised from 110°C to 100°C for consistency with the limits given in Table 2-2 • Recommended Operating Conditions 1. The resulting maximum power allowed is thus 1.28 W. Formerly it was 1.71 W (SAR 26259).	2-6
	Values for CS196, CS281, and QN132 packages were added to Table 2-5 • Package Thermal Resistivities (SARs 26228, 32301).	2-6
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.14 V) were updated to remove the column for $-20^{\circ}C$ and shift the data over to correct columns (SAR 23041).	2-7
	The tables in the "Quiescent Supply Current" section were updated with revised notes on IDD (SAR 24112). Table 2-8 • Power Supply State per Mode is new.	2-7
	The formulas in the table notes for Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 21348).	2-37
	The row for 110°C was removed from Table 2-45 • Duration of Short Circuit Event before Failure. The example in the associated paragraph was changed from 110°C to 100°C. Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 was revised to change 110° to 100°C. (SAR 26259).	2-40
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics –	2-28,
	V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range	2-47, 2-77
	only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-56
	The values for $F_{DDRIMAX}$ and F_{DDOMAX} were updated in the tables in the "Input DDR Module" section and "Output DDR Module" section (SAR 23919).	2-94, 2-97
	The following notes were removed from Table 2-147 • Minimum and Maximum DC Input and Output Levels (SAR 29428):	2-81
	$\pm 3.7^{\circ}$ Differential input voltage = $\pm 350 \text{ mV}$	
	Table 2-189 • IGLOO CCC/PLL Specification and Table 2-190 • IGLOO CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-115

Datasheet Information

Revision / Version	Changes	Page
Revision 14 (Feb 2009) Product Brief v1.4	The "Advanced I/O" section was revised to include two bullets regarding wide range power supply voltage support.	Ι
	3.0 V wide range was added to the list of supported voltages in the "I/Os with Advanced I/O Standards" section. The "Wide Range I/O Support" section is new.	1-8
Revision 13 (Jan 2009)	The "CS121" pin table was revised to add a note regarding pins F1 and G1.	4-7
Packaging v1.8		
Revision 12 (Dec 2008)	QN48 and QN68 were added to the AGL030 for the following tables:	N/A
Product Brief v1.3	"IGLOO Devices" Product Family Table	
	"IGLOO Ordering Information"	
	"Temperature Grade Offerings"	
	QN132 is fully supported by AGL125 so footnote 3 was removed.	
Packaging v1.7	The "QN48" pin diagram and pin table are new.	4-24
	The "QN68" pin table for AGL030 is new.	4-26
Revision 12 (Dec 2008)	The AGL600 Function for pin K15 in the "FG484" table was changed to VCCIB1.	4-78
Revision 11 (Oct 2008) Product Brief v1.2	This document was updated to include AGL400 device information. The following sections were updated:	N/A
	"IGLOO Devices" Product Family Table	
	"IGLOO Ordering Information"	
	"Temperature Grade Offerings"	
	Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)	
DC and Switching Characteristics Advance v0.5	The tables in the "Quiescent Supply Current" section were updated with values for AGL400. In addition, the title was updated to include: $(VCC = VJTAG = VPP = 0 V)$.	2-7
	The tables in the "Power Consumption of Various Internal Resources" section were updated with values for AGL400.	2-13
	Table 2-178 • AGL400 Global Resource is new.	2-109
Packaging v1.6	The "CS196" table for the AGL400 device is new.	4-14
	The "FG144" table for the AGL400 device is new.	4-47
	The "FG256" table for the AGL400 device is new.	4-54
	The "FG484" table for the AGL400 device is new.	4-64
Revision 10 (Aug 2008)	3.0 V LVCMOS wide range support data was added to Table 2-2 • Recommended Operating Conditions 1.	2-2
DC and Switching Characteristics Advance v0.4	3.3 V LVCMOS wide range support data was added to Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings to Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings.	2-24 to 2-26
	3.3 V LVCMOS wide range support data was added to Table 2-28 • Summary of Maximum and Minimum DC Input Levels.	2-27
	3.3 V LVCMOS wide range support text was added to Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range.	2-39