

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XF

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	9216
Total RAM Bits	55296
Number of I/O	97
Number of Gates	400000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agl400v5-fgg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard I/O Banks

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended			•
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	17.24
3.3 V LVCMOS Wide Range ³	3.3	_	17.24
2.5 V LVCMOS	2.5	_	5.64
1.8 V LVCMOS	1.8	_	2.63
1.5 V LVCMOS (JESD8-11)	1.5	_	1.97
1.2 V LVCMOS ⁴	1.2	_	0.57
1.2 V LVCMOS Wide Range ⁴	1.2	_	0.57

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable for IGLOO V2 devices only.

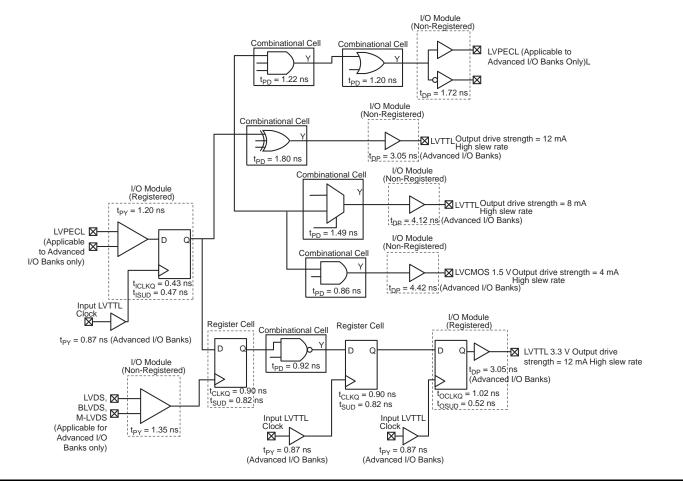
Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Advanced I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended		•		
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	136.95
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	136.95
2.5 V LVCMOS	5	2.5	_	76.84
1.8 V LVCMOS	5	1.8	-	49.31
1.5 V LVCMOS (JESD8-11)	5	1.5	-	33.36
1.2 V LVCMOS ⁵	5	1.2	-	16.24
1.2 V LVCMOS Wide Range ⁵	5	1.2	_	16.24
3.3 V PCI	10	3.3	-	194.05
3.3 V PCI-X	10	3.3	_	194.05
Differential	-			
LVDS	_	2.5	7.74	156.22
LVPECL	-	3.3	19.54	339.35

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.


3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

User I/O Characteristics

Timing Model

Figure 2-3 • Timing Model

Operating Conditions: Std. Speed, Commercial Temperature Range ($T_J = 70^{\circ}$ C), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices

Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equivalent			VIL	V _{IH}		VOL	V _{OH}	I _{OL} 1	I _{OH} 1
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VDD-0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS ⁴	1 mA	1 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	1	1
1.2 V LVCMOS Wide Range ^{4,5}	100 µA	1 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.1	VCCI – 0.1	0.1	0.1

Notes:

1. Currents are measured at 85°C junction temperature.

2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to V2 Devices operating at VCCI \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

Detailed I/O DC Characteristics

Table 2-37 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-38 • I/O Output Buffer Maximum Resistances¹ Applicable to Advanced I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
1.2 V LVCMOS ⁴	2 mA	158	164
1.2 V LVCMOS Wide Range ⁴	100 μA	Same as regular 1.2 V LVCMOS	Same as regular 1.2 V LVCMOS
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO V2 Devices operating at VCCI ≥ VCC

3.3 V LVCMC	S Wide Range	VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μ Α ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10

Table 2-64 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard Plus I/O Banks

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-77 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case V_{CC} = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	1.55	6.44	0.26	1.29	1.10	6.44	5.64	2.99	3.28	ns
100 µA	4 mA	Std.	1.55	6.44	0.26	1.29	1.10	6.44	5.64	2.99	3.28	ns
100 µA	6 mA	Std.	1.55	5.41	0.26	1.29	1.10	5.41	4.91	3.35	3.89	ns
100 µA	8 mA	Std.	1.55	5.41	0.26	1.29	1.10	5.41	4.91	3.35	3.89	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-78 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Standard Banks

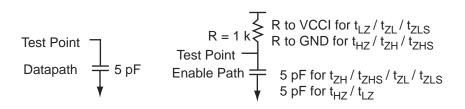
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	1.55	3.89	0.26	1.29	1.10	3.89	3.13	2.99	3.45	ns
100 µA	4 mA	Std.	1.55	3.89	0.26	1.29	1.10	3.89	3.13	2.99	3.45	ns
100 µA	6 mA	Std.	1.55	3.33	0.26	1.29	1.10	3.33	2.62	3.34	4.07	ns
100 µA	8 mA	Std.	1.55	3.33	0.26	1.29	1.10	3.33	2.62	3.34	4.07	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.


Table 2-97 •	Minimum and Maximum DC Input and Output Levels
	Applicable to Standard I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	17	22	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-99 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	6.38	0.18	1.01	0.66	6.51	5.93	2.33	1.56	10.10	9.53	ns
4 mA	Std.	0.97	5.35	0.18	1.01	0.66	5.46	5.04	2.67	2.38	9.05	8.64	ns
6 mA	Std.	0.97	4.62	0.18	1.01	0.66	4.71	4.44	2.90	2.79	8.31	8.04	ns
8 mA	Std.	0.97	4.37	0.18	1.01	0.66	4.46	4.31	2.95	2.89	8.05	7.90	ns
12 mA	Std.	0.97	4.32	0.18	1.01	0.66	4.37	4.32	3.03	3.30	7.97	7.92	ns
16 mA	Std.	0.97	4.32	0.18	1.01	0.66	4.37	4.32	3.03	3.30	7.97	7.92	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-158 • Input Data Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.68	ns
t _{ISUD}	Data Setup Time for the Input Data Register		ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	1.02	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	1.19	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	1.19	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Output Register

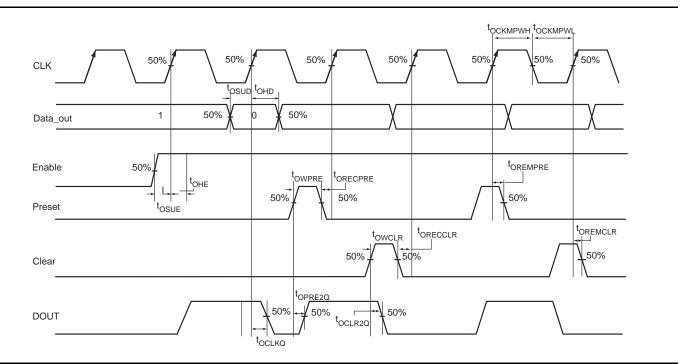
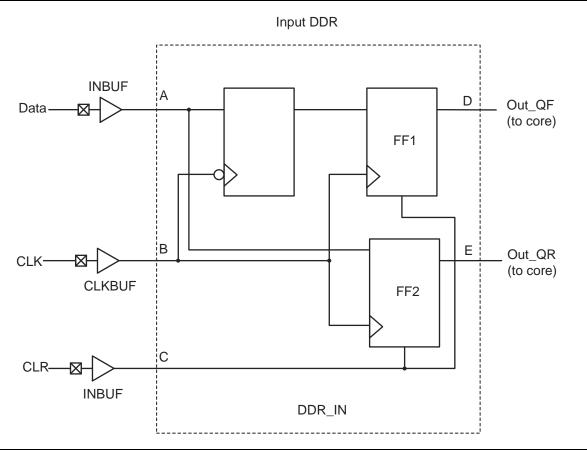



Figure 2-19 • Output Register Timing Diagram

DDR Module Specifications

Input DDR Module

Figure 2-21 • Input DDR Timing Model

Table 2-163 • F	Parameter	Definitions
-----------------	-----------	-------------

Parameter Name	Parameter Definition	Measuring Nodes (from, to)		
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D		
tDDRICLKQ2	Clock-to-Out Out_QF	B, E		
tDDRISUD	Data Setup Time of DDR input	A, B		
	Data Hold Time of DDR input	A, B		
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D		
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E		
t _{DDRIREMCLR}	Clear Removal	С, В		
t _{DDRIRECCLR}	Clear Recovery	С, В		

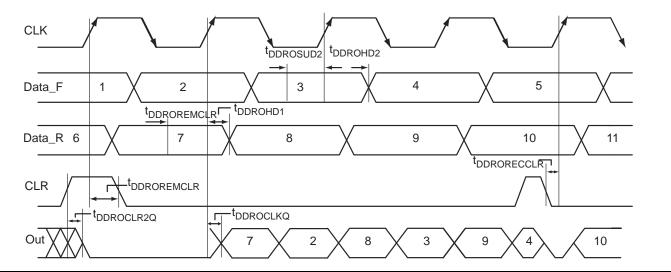


Figure 2-24 • Output DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-167 • Output DDR Propagation Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.67	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR		ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR		ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR		ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR		ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR		ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-181 • AGL015 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.79	2.09	ns
t _{RCKH}	Input High Delay for Global Clock	1.87	2.26	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.39	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-182 • AGL030 Global Resource

Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.14 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.80	2.09	ns
t _{RCKH}	Input High Delay for Global Clock	1.88	2.27	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.39	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-20 for more details.

Timing Characteristics

Table 2-199 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.00	ns
t _{DIHD}	Test Data Input Hold Time	2.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.00	ns
t _{TMDHD}	Test Mode Select Hold Time	2.00	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	25.00	ns
F _{TCKMAX}	TCK Maximum Frequency	15	MHz
t _{TRSTREM}	ResetB Removal Time	0.58	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-200 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
t _{TRSTREM}	ResetB Removal Time	1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

Microsemi

Package Pin Assignments

CS281			CS281	CS281		
Pin Number	Pin Number AGL600 Function		AGL600 Function	Pin Number	AGL600 Function	
H8	VCC	K15	IO73NPB1	N4	IO150PPB3	
H9	VCCIB0	K16	GND	N5	IO148NPB3	
H10	VCC	K18	IO74NPB1	N7	GEA2/IO143RSB2	
H11	VCCIB0	K19	VCCIB1	N8	VCCIB2	
H12	VCC	L1	GFB2/IO160PDB3	N9	IO117RSB2	
H13	VCCIB1	L2	IO160NDB3	N10	IO115RSB2	
H15	IO68NPB1	L4	GFC2/IO159PPB3	N11	IO114RSB2	
H16	GCB0/IO70NPB1	L5	IO153PPB3	N12	VCCIB2	
H18	GCA1/IO71PPB1	L7	IO153NPB3	N13	VPUMP	
H19	GCA2/IO72PPB1	L8	VCCIB3	N15	IO82PPB1	
J1	VCOMPLF	L9	GND	N16	IO85PPB1	
J2	GFA0/IO162NDB3	L10	GND	N18	IO82NPB1	
J4	VCCPLF	L11	GND	N19	IO81PPB1	
J5	GFC0/IO164NPB3	L12	VCCIB1	P1	IO151PDB3	
J7	GFA2/IO161PDB3	L13	IO76PPB1	P2	GND	
J8	VCCIB3	L15	IO76NPB1	P3	IO151NDB3	
J9	GND	L16	IO77PPB1	P4	IO149PPB3	
J10	GND	L18	IO78NPB1	P5	GEA0/IO144NPB3	
J11	GND	L19	IO77NPB1	P15	IO83NDB1	
J12	VCCIB1	M1	IO158PDB3	P16	IO83PDB1	
J13	GCC1/IO69PPB1	M2	IO158NDB3	P17	GDC1/IO86PPB1	
J15	GCA0/IO71NPB1	M4	IO154NPB3	P18	GND	
J16	GCB2/IO73PPB1	M5	IO152PPB3	P19	IO85NPB1	
J18	IO72NPB1	M7	VCCIB3	R1	IO150NPB3	
J19	IO75PSB1	M8	VCC	R2	IO149NPB3	
K1	VCCIB3	M9	VCCIB2	R4	GEC1/IO146PPB3	
K2	GFA1/IO162PDB3	M10	VCC	R5	GEB1/IO145PPB3	
K4	GND	M11	VCCIB2	R6	IO138RSB2	
K5	IO159NPB3	M12	VCC	R7	IO127RSB2	
K7	IO161NDB3	M13	VCCIB1	R8	IO123RSB2	
K8	VCC	M15	IO79NPB1	R9	IO118RSB2	
K9	GND	M16	IO81NPB1	R10	IO111RSB2	
K10	GND	M18	IO79PPB1	R11	IO106RSB2	
K11	GND	M19	IO78PPB1	R12	IO103RSB2	
K12	VCC	N1	IO154PPB3	R13	IO97RSB2	
K13	GCC2/IO74PPB1	N2	IO152NPB3	R14	IO95RSB2	

Microsemi

IGLOO Low Power Flash FPGAs

	FG144		FG144	FG144		
Pin Number	AGL1000 Function	Pin Number	AGL1000 Function	Pin Number	AGL1000 Function	
A1	GNDQ	D1	IO213PDB3	G1	GFA1/IO207PPB3	
A2	VMV0	D2	IO213NDB3	G2	GND	
A3	GAB0/IO02RSB0	D3	IO223NDB3	G3	VCCPLF	
A4	GAB1/IO03RSB0	D4	GAA2/IO225PPB3	G4	GFA0/IO207NPB3	
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND	
A6	GND	D6	GAC1/IO05RSB0	G6	GND	
A7	IO44RSB0	D7	GBC0/IO72RSB0	G7	GND	
A8	VCC	D8	GBC1/IO73RSB0	G8	GDC1/IO111PPB1	
A9	IO69RSB0	D9	GBB2/IO79PDB1	G9	IO96NDB1	
A10	GBA0/IO76RSB0	D10	IO79NDB1	G10	GCC2/IO96PDB1	
A11	GBA1/IO77RSB0	D11	IO80NPB1	G11	IO95NDB1	
A12	GNDQ	D12	GCB1/IO92PPB1	G12	GCB2/IO95PDB1	
B1	GAB2/IO224PDB3	E1	VCC	H1	VCC	
B2	GND	E2	GFC0/IO209NDB3	H2	GFB2/IO205PDB3	
B3	GAA0/IO00RSB0	E3	GFC1/IO209PDB3	H3	GFC2/IO204PSB3	
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO190PDB3	
B5	IO13RSB0	E5	IO225NPB3	H5	VCC	
B6	IO26RSB0	E6	VCCIB0	H6	IO105PDB1	
B7	IO35RSB0	E7	VCCIB0	H7	IO105NDB1	
B8	IO60RSB0	E8	GCC1/IO91PDB1	H8	GDB2/IO115RSB2	
B9	GBB0/IO74RSB0	E9	VCCIB1	H9	GDC0/IO111NPB1	
B10	GBB1/IO75RSB0	E10	VCC	H10	VCCIB1	
B11	GND	E11	GCA0/IO93NDB1	H11	IO101PSB1	
B12	VMV1	E12	IO94NDB1	H12	VCC	
C1	IO224NDB3	F1	GFB0/IO208NPB3	J1	GEB1/IO189PDB3	
C2	GFA2/IO206PPB3	F2	VCOMPLF	J2	IO205NDB3	
C3	GAC2/IO223PDB3	F3	GFB1/IO208PPB3	J3	VCCIB3	
C4	VCC	F4	IO206NPB3	J4	GEC0/IO190NDB3	
C5	IO16RSB0	F5	GND	J5	IO160RSB2	
C6	IO29RSB0	F6	GND	J6	IO157RSB2	
C7	IO32RSB0	F7	GND	J7	VCC	
C8	IO63RSB0	F8	GCC0/IO91NDB1	J8	ТСК	
C9	IO66RSB0	F9	GCB0/IO92NPB1	J9	GDA2/IO114RSB2	
C10	GBA2/IO78PDB1	F10	GND	J10	TDO	
C11	IO78NDB1	F11	GCA1/IO93PDB1	J11	GDA1/IO113PDB1	
C12	GBC2/IO80PPB1	F12	GCA2/IO94PDB1	J12	GDB1/IO112PDB1	

	FG484
Pin Number	AGL400 Function
G5	IO151UDB3
G6	GAC2/IO153UDB3
G7	IO06RSB0
G8	GNDQ
G9	IO10RSB0
G10	IO19RSB0
G11	IO26RSB0
G12	IO30RSB0
G13	IO40RSB0
G14	IO46RSB0
G15	GNDQ
G16	IO47RSB0
G17	GBB2/IO61PPB1
G18	IO53RSB0
G19	IO63NDB1
G20	NC
G21	NC
G22	NC
H1	NC
H2	NC
H3	VCC
H4	IO150PDB3
H5	IO08RSB0
H6	IO153VDB3
H7	IO152VDB3
H8	VMV0
H9	VCCIB0
H10	VCCIB0
H11	IO25RSB0
H12	IO31RSB0
H13	VCCIB0
H14	VCCIB0
H15	VMV1
H16	GBC2/IO62PDB1
H17	IO65RSB1
H18	IO52RSB0

FG484			
Pin Number	AGL400 Function		
Y7	NC		
Y8	VCC		
Y9	VCC		
Y10	NC		
Y11	NC		
Y12	NC		
Y13	NC		
Y14	VCC		
Y15	VCC		
Y16	NC		
Y17	NC		
Y18	GND		
Y19	NC		
Y20	NC		
Y21	NC		
Y22	VCCIB1		

FG484		
Pin Number AGL600 Function		
C21	NC	
C22	VCCIB1	
D1	NC	
D2	NC	
D3	NC	
D4	GND	
D5	GAA0/IO00RSB0	
D6	GAA1/IO01RSB0	
D7	GAB0/IO02RSB0	
D8	IO11RSB0	
D9	IO16RSB0	
D10	IO18RSB0	
D11	IO28RSB0	
D12	IO34RSB0	
D13	IO37RSB0	
D14	IO41RSB0	
D15	IO43RSB0	
D16	GBB1/IO57RSB0	
D17	GBA0/IO58RSB0	
D18	GBA1/IO59RSB0	
D19	GND	
D20	NC	
D21	NC	
D22	NC	
E1	NC	
E2	NC	
E3	GND	
E4	GAB2/IO173PDB3	
E5	GAA2/IO174PDB3	
E6	GNDQ	
E7	GAB1/IO03RSB0	
E8	IO13RSB0	
E9	IO14RSB0	
E10	IO21RSB0	
E11	IO27RSB0	
E12	IO32RSB0	

	FG484		
Pin Number	AGL1000 Function		
N17	IO100NPB1		
N18	IO102NDB1		
N19	IO102PDB1		
N20	NC		
N21	IO101NPB1		
N22	IO103PDB1		
P1	NC		
P2	IO199PDB3		
P3	IO199NDB3		
P4	IO202NDB3		
P5	IO202PDB3		
P6	IO196PPB3		
P7	IO193PPB3		
P8	VCCIB3		
P9	GND		
P10	VCC		
P11	VCC		
P12	VCC		
P13	VCC		
P14	GND		
P15	VCCIB1		
P16	GDB0/IO112NPB1		
P17	IO106NDB1		
P18	IO106PDB1		
P19	IO107PDB1		
P20	NC		
P21	IO104PDB1		
P22	IO103NDB1		
R1	NC		
R2	IO197PPB3		
R3	VCC		
R4	IO197NPB3		
R5	IO196NPB3		
R6	IO193NPB3		
R7	GEC0/IO190NPB3		
R8	VMV3		

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
Revision 18 (Nov 2009)	The version changed to v2.0 for IGLOO datasheet chapters, indicating the datasheet contains information based on final characterization. Please review the datasheet carefully as most tables were updated with new data.	N/A
Revision 17 (Sep 2009) Product Brief v1.6	The "Reprogrammable Flash Technology" section was modified to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."	I
	"IGLOO Ordering Information" was revised to note that halogen-free packages are available with RoHS-compliant packaging.	
	Table 1-1 • I/O Standards Supported is new.	1-7
	The definitions of hot-swap and cold-sparing were added to the "I/Os with Advanced I/O Standards" section.	1-7
Product Brief v1.5 pro Off The colu Info rem Thi Adv v0. Ple	M1AGL400 is no longer offered and was removed from the "IGLOO Devices" product table, "IGLOO Ordering Information", and "Temperature Grade Offerings".	I, III, IV
	The –F speed grade is no longer offered for IGLOO devices. The speed grade column and note regarding –F speed grade were removed from "IGLOO Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV
	This datasheet now has fully characterized data and has moved from being Advance to a Production version. The version number changed from Advance v0.5 to v2.0.	N/A
	Please review the datasheet carefully as most tables were updated with new data.	
DC and Switching Characteristics Advance v0.6	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	
	$\rm I_{\rm IL}$ and $\rm I_{\rm IH}$ input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	-F was removed from the datasheet. The speed grade is no longer supported.	N/A
	The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.	2-2
	Table 2-4 • Overshoot and Undershoot Limits 1 was updated.	2-3
	Table 2-5 • Package Thermal Resistivities was updated.	2-6
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}$ C, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}$ C, VCC = 1.14 V) were updated.	2-7
	In Table 2-191 • RAM4K9 and Table 2-193 • RAM4K9, the following specifications were removed:	2-122 and
	twro	2-124
	tсскн	
	In Table 2-192 • RAM512X18 and Table 2-194 • RAM512X18, the following specifications were removed:	2-123 and
	twro	2-125
	tсскн	
Revision 15 (Feb 2009)	The "QN132" pin table for the AGL060 device is new.	4-31
Packaging v1.9		