

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	235
Number of Gates	600000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1agl600v2-fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-65 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard I/O Banks

3.3 V LVCMOS Wide Range		VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μA ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-66 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Table 2-104 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	2.62	0.18	0.98	0.66	2.67	2.59	1.67	1.29	2.62	ns
4 mA	Std.	2.18	0.18	0.98	0.66	2.22	1.93	1.97	2.06	2.18	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-105 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.97	0.26	1.11	1.10	7.08	6.48	2.87	2.29	12.87	12.27	ns
4 mA	Std.	1.55	5.91	0.26	1.11	1.10	6.01	5.57	3.21	3.14	11.79	11.36	ns
6 mA	Std.	1.55	5.16	0.26	1.11	1.10	5.24	4.95	3.45	3.55	11.03	10.74	ns
8 mA	Std.	1.55	4.90	0.26	1.11	1.10	4.98	4.81	3.50	3.66	10.77	10.60	ns
12 mA	Std.	1.55	4.83	0.26	1.11	1.10	4.90	4.83	3.58	4.08	10.68	10.61	ns
16 mA	Std.	1.55	4.83	0.26	1.11	1.10	4.90	4.83	3.58	4.08	10.68	10.61	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-106 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.73	0.26	1.11	1.10	3.71	3.73	2.86	2.34	9.49	9.51	ns
4 mA	Std.	1.55	3.12	0.26	1.11	1.10	3.16	2.97	3.21	3.22	8.95	8.75	ns
6 mA	Std.	1.55	2.79	0.26	1.11	1.10	2.83	2.59	3.45	3.65	8.62	8.38	ns
8 mA	Std.	1.55	2.73	0.26	1.11	1.10	2.77	2.52	3.50	3.75	8.56	8.30	ns
12 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns
16 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage		3.0		3.3		3.6	
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
V _{ODIFF}	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
V _{OCM}	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
V _{ICM}	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
V _{IDIFF}	Input Differential Voltage	300		300		300		mV

Table 2-151 • Minimum and Maximum DC Input and Output Levels

Table 2-152 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.64	1.94	Cross point

Note: *Measuring point = Vtrip. See Table 2-28 on page 2-104 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-153 • LVPECL – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.97	1.67	0.19	1.16	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-154 • LVPECL – Applies to 1.2 V DC Core Voltage

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	1.55	2.24	0.25	1.37	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-16 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	H, DOUT
tOSUD	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
tIRECPRE	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-155 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-16 on page 2-84 for more information.

Figure 2-26 • Timing Model and Waveforms

Table 2-179 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹ Max. ²		Units
t _{RCKL}	Input Low Delay for Global Clock	1.48	1.82	ns
t _{RCKH}	Input High Delay for Global Clock	1.52	1.94	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-180 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.55	1.89	ns
t _{RCKH}	Input High Delay for Global Clock	1.60	2.02	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Embedded SRAM and FIFO Characteristics

SRAM

Figure 2-31 • RAM Models

Timing Waveforms

Figure 2-32 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-33 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

1.2 V DC Core Voltage

Table 2-193 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.53	ns
t _{AH}	Address hold time	0.29	ns
t _{ENS}	REN WEN setup time	1.50	ns
t _{ENH}	REN, WEN hold time	0.29	ns
t _{BKS}	BLK setup time	3.05	ns
t _{BKH}	BLK hold time	0.29	ns
t _{DS}	Input data (DIN) setup time	1.33	ns
t _{DH}	Input data (DIN) hold time	0.66	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	6.61	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	5.72	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	3.38	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge	1.01	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	3.86	ns
	RESET Low to data out Low on DOUT (pipelined)	3.86	ns
t _{REMRSTB}	RESET removal	1.12	ns
t _{RECRSTB}	RESET recovery	5.93	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3 – Pin Descriptions

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOO V5 devices, and 1.2 V or 1.5 V for IGLOO V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

For IGLOO V2 devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on IGLOO devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.

- 1.5 V for IGLOO V5 devices
- 1.2 V or 1.5 V for IGLOO V2 devices

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide* for a complete board solution for the PLL analog power supply and ground.

• There is one VCCPLF pin on IGLOO devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO devices.

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

Package Pin Assignments

	QN68	QN68	
Pin Number	AGL015 Function	Pin Number	AGL015 Function
1	IO82RSB1	37	TRST
2	IO80RSB1	38	VJTAG
3	IO78RSB1	39	IO40RSB0
4	IO76RSB1	40	IO37RSB0
5	GEC0/IO73RSB1	41	GDB0/IO34RSB0
6	GEA0/IO72RSB1	42	GDA0/IO33RSB0
7	GEB0/IO71RSB1	43	GDC0/IO32RSB0
8	VCC	44	VCCIB0
9	GND	45	GND
10	VCCIB1	46	VCC
11	IO68RSB1	47	IO31RSB0
12	IO67RSB1	48	IO29RSB0
13	IO66RSB1	49	IO28RSB0
14	IO65RSB1	50	IO27RSB0
15	IO64RSB1	51	IO25RSB0
16	IO63RSB1	52	IO24RSB0
17	IO62RSB1	53	IO22RSB0
18	FF/IO60RSB1	54	IO21RSB0
19	IO58RSB1	55	IO19RSB0
20	IO56RSB1	56	IO17RSB0
21	IO54RSB1	57	IO15RSB0
22	IO52RSB1	58	IO14RSB0
23	IO51RSB1	59	VCCIB0
24	VCC	60	GND
25	GND	61	VCC
26	VCCIB1	62	IO12RSB0
27	IO50RSB1	63	IO10RSB0
28	IO48RSB1	64	IO08RSB0
29	IO46RSB1	65	IO06RSB0
30	IO44RSB1	66	IO04RSB0
31	IO42RSB1	67	IO02RSB0
32	ТСК	68	IO00RSB0
33	TDI		-
34	TMS		
35	VPUMP		
36	TDO		

Microsemi

IGLOO Low Power Flash FPGAs

Pin NumberAGL060 FunctionPin NumberAGL060 FunctionPin NumberAGL060 FunctionA1GAB2/IO00RSB1A37GBB1/IO25RSB0B24GDC0/IO49FA2IO93RSB1A38GBC0/IO22RSB0B25GNDA3VCCIB1A39VCCIB0B26NCA4GFC1/IO89RSB1A40IO21RSB0B27GCB2/IO45F
A1 GAB2/IO00RSB1 A37 GBB1/IO25RSB0 B24 GDC0/IO49F A2 IO93RSB1 A38 GBC0/IO22RSB0 B25 GND A3 VCCIB1 A39 VCCIB0 B26 NC A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45F
A2 IO93RSB1 A38 GBC0/IO22RSB0 B25 GND A3 VCCIB1 A39 VCCIB0 B26 NC A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45R
A3 VCCIB1 A39 VCCIB0 B26 NC A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45R
A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45R
A5 GFB0/IO86RSB1 A41 IO18RSB0 B28 GND
A6 VCCPLF A42 IO15RSB0 B29 GCB0/IO41R
A7 GFA1/IO84RSB1 A43 IO14RSB0 B30 GCC1/IO38F
A8 GFC2/IO81RSB1 A44 IO11RSB0 B31 GND
A9 IO78RSB1 A45 GAB1/IO08RSB0 B32 GBB2/IO30R
A10 VCC A46 NC B33 VMV0
A11 GEB1/IO75RSB1 A47 GAB0/IO07RSB0 B34 GBA0/IO26R
A12 GEA0/IO72RSB1 A48 IO04RSB0 B35 GBC1/IO23R
A13 GEC2/IO69RSB1 B1 IO01RSB1 B36 GND
A14 IO65RSB1 B2 GAC2/IO94RSB1 B37 IO20RSB
A15 VCC B3 GND B38 IO17RSB
A16 IO64RSB1 B4 GFC0/IO88RSB1 B39 GND
A17 IO63RSB1 B5 VCOMPLF B40 IO12RSB
A18 IO62RSB1 B6 GND B41 GAC0/IO09R
A19 IO61RSB1 B7 GFB2/IO82RSB1 B42 GND
A20 IO58RSB1 B8 IO79RSB1 B43 GAA1/IO06R
A21 GDB2/IO55RSB1 B9 GND B44 GNDQ
A22 NC B10 GEB0/IO74RSB1 C1 GAA2/IO02R
A23 GDA2/IO54RSB1 B11 VMV1 C2 IO95RSB
A24 TDI B12 FF/GEB2/IO70RSB C3 VCC
A25 TRST 1 C4 GFB1/IO87R
A26 GDC1/IO48RSB0 B13 IO67RSB1 C5 GFA0/IO85R
A27 VCC B14 GND C6 GFA2/IO83R
A28 IO47RSB0 B15 NC C7 IO80RSB
A29 GCC2/IO46RSB0 B16 NC C8 VCCIB1
A30 GCA2/IO44RSB0 B17 GND C9 GEA1/IO73R
A31 GCA0/IO43RSB0 B18 IO59RSB1 C10 GNDQ
A32 GCB1/IO40RSB0 B19 GDC2/IO56RSB1 C11 GEA2/IO71R
A33 IO36RSB0 B20 GND C12 IO68RSB
A34 VCC B21 GNDQ C13 VCCIB1
A35 IO31RSB0 B22 TMS C14 NC
A36 GBA2/IO28RSB0 B23 TDO C15 NC

FG484			
Pin Number AGL400 Function			
C21	NC		
C22	VCCIB1		
D1	NC		
D2	NC		
D3	NC		
D4	GND		
D5	GAA0/IO00RSB0		
D6	GAA1/IO01RSB0		
D7	GAB0/IO02RSB0		
D8	IO16RSB0		
D9	IO17RSB0		
D10	IO22RSB0		
D11	IO28RSB0		
D12	IO34RSB0		
D13	IO37RSB0		
D14	IO41RSB0		
D15	IO43RSB0		
D16	GBB1/IO57RSB0		
D17	GBA0/IO58RSB0		
D18	GBA1/IO59RSB0		
D19	GND		
D20	NC		
D21	NC		
D22	NC		
E1	NC		
E2	NC		
E3	GND		
E4	GAB2/IO154UDB3		
E5	GAA2/IO155UDB3		
E6	IO12RSB0		
E7	GAB1/IO03RSB0		
E8	IO13RSB0		
E9	IO14RSB0		
E10	IO21RSB0		
E11	IO27RSB0		
E12	IO32RSB0		

Package Pin Assignments

FG484			
Pin Number	AGL400 Function		
E13	IO38RSB0		
E14	IO42RSB0		
E15	GBC1/IO55RSB0		
E16	GBB0/IO56RSB0		
E17	IO44RSB0		
E18	GBA2/IO60PDB1		
E19	IO60NDB1		
E20	GND		
E21	NC		
E22	NC		
F1	NC		
F2	NC		
F3	NC		
F4	IO154VDB3		
F5	IO155VDB3		
F6	IO11RSB0		
F7	IO07RSB0		
F8	GAC0/IO04RSB0		
F9	GAC1/IO05RSB0		
F10	IO20RSB0		
F11	IO24RSB0		
F12	IO33RSB0		
F13	IO39RSB0		
F14	IO45RSB0		
F15	GBC0/IO54RSB0		
F16	IO48RSB0		
F17	VMV0		
F18	IO61NPB1		
F19	IO63PDB1		
F20	NC		
F21	NC		
F22	NC		
G1	NC		
G2	NC		
G3	NC		
G4	IO151VDB3		

FG484			
Pin Number	AGL400 Function		
G5	IO151UDB3		
G6	GAC2/IO153UDB3		
G7	IO06RSB0		
G8	GNDQ		
G9	IO10RSB0		
G10	IO19RSB0		
G11	IO26RSB0		
G12	IO30RSB0		
G13	IO40RSB0		
G14	IO46RSB0		
G15	GNDQ		
G16	IO47RSB0		
G17	GBB2/IO61PPB1		
G18	IO53RSB0		
G19	IO63NDB1		
G20	NC		
G21	NC		
G22	NC		
H1	NC		
H2	NC		
H3	VCC		
H4	IO150PDB3		
H5	IO08RSB0		
H6	IO153VDB3		
H7	IO152VDB3		
H8	VMV0		
H9	VCCIB0		
H10	VCCIB0		
H11	IO25RSB0		
H12	IO31RSB0		
H13	VCCIB0		
H14	VCCIB0		
H15	VMV1		
H16	GBC2/IO62PDB1		
H17	IO65RSB1		
H18	IO52RSB0		

FG484			
Pin Number	AGL1000 Function		
V15	IO125RSB2		
V16	GDB2/IO115RSB2		
V17	TDI		
V18	GNDQ		
V19	TDO		
V20	GND		
V21	NC		
V22	IO109NDB1		
W1	NC		
W2	IO191PDB3		
W3	NC		
W4	GND		
W5	IO183RSB2		
W6	FF/GEB2/IO186RSB2		
W7	IO172RSB2		
W8	IO170RSB2		
W9	IO164RSB2		
W10	IO158RSB2		
W11	IO153RSB2		
W12	IO142RSB2		
W13	IO135RSB2		
W14	IO130RSB2		
W15	GDC2/IO116RSB2		
W16	IO120RSB2		
W17	GDA2/IO114RSB2		
W18	TMS		
W19	GND		
W20	NC		
W21	NC		
W22	NC		
Y1	VCCIB3		
Y2	IO191NDB3		
Y3	NC		
Y4	IO182RSB2		
Y5	GND		
Y6	IO177RSB2		

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 23 (December 2012)	The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173).	III
	The note in Table 2-189 · IGLOO CCC/PLL Specification and Table 2-190 · IGLOO CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42564). Additionally, note regarding SSOs was added.	2-115, 2-116
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 22 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read- back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40271).	N/A
Revision 21 (May 2012)	Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet in revision 19 and has been removed (SAR 38217).	I to IV
	Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same to '3.6' in Table 2-151 · Minimum and Maximum DC Input and Output Levels (SAR 37685).	2-82
	Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841).	2-127
	The following sentence was removed from the VMVx description in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38317). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 19	vision 19 The following figures were deleted (SAR 29991). Reference was made to a ne application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flas. Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 21770).	
	Figure 2-36 • Write Access after Write onto Same Address	
	Figure 2-37 • Read Access after Write onto Same Address	
	Figure 2-38 • Write Access after Read onto Same Address	2-119 to
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-40 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510).	2-130
	The "Pin Descriptions" chapter has been added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1
	The "CS81" pin table for AGL250 is new (SAR 22737).	4-5
	The CS121 pin table for AGL125 is new (SAR 22737).	
	The P3 function was revised in the "CS196" pin table for AGL250 (SAR 24800).	4-12
	The "QN132" pin table for AGL250 was added.	4-35,
	The "FG144" pin table for AGL060 was added (SAR 33689)	4-42
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO Device Status" table indicates the status for each device in the device family.	N/A