

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	235
Number of Gates	600000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1agl600v2-fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

	AGL015 ¹	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000
Package					M1AGL250		M1AGL600	M1AGL1000
QN48	-	C, I	-	-	-	-	-	-
QN68	C, I	-	-	-	-	-	-	-
UC81	_	C, I	_	-	-	_	_	-
CS81	_	C, I	_	-	-	_	_	-
CS121	-	-	C, I	C, I	-	-	-	-
VQ100	-	C, I	C, I	C, I	C, I	-	-	-
QN132 ²	-	C, I	C, I ²	C, I	-	-	_	-
CS196	-	-	-	C, I	C, I	C, I	-	-
FG144	-	-	-	C, I	C, I	C, I	C, I	C, I
FG256	-	-	-	-	-	C, I	C, I	C, I
CS281	-	-	-	-	-	-	C, I	C, I
FG484	-	_	-	-	-	C, I	C, I	C, I

Notes:

1. AGL015 is not recommended for new designs.

2. Package not available.

C = Commercial temperature range: 0°C to 85°C junction temperature.

I = Industrial temperature range: -40°C to 100°C junction temperature.

IGLOO Device Status

IGLOO Devices	Status	M1 IGLOO Devices	Status
AGL015	Not recommended for new designs.		
AGL030	Production		
AGL060	Production		
AGL125	Production		
AGL250	Production	M1AGL250	Production
AGL400	Production		
AGL600	Production	M1AGL600	Production
AGL1000	Production	M1AGL1000	Production

References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/soc/contact/default.aspx.

AGL015 and AGL030

The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features.

Devices Not Recommended For New Designs

AGL015 is not recommended for new designs.

- Wide input frequency range ($f_{IN CCC}$) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = $50\% \pm 1.5\%$ or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time is 300 µs (for PLL only)
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / f_{OUT_CCC} (for PLL only)

Global Clocking

IGLOO devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

I/Os with Advanced I/O Standards

The IGLOO family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOO FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

			I/O Standards Su	pported
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS
Advanced	East and west banks of AGL250 and larger devices	\checkmark	\checkmark	\checkmark
Standard Plus	North and south banks of AGL250 and larger devices All banks of AGL060 and AGL125K	\checkmark	\checkmark	Not supported
Standard	All banks of AGL015 and AGL030	\checkmark	Not supported	Not supported

Table 1-1 • I/O Standards Supported

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

IGLOO banks for the AGL250 device and above support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	4.47	0.18	0.85	0.66	4.56	3.89	2.24	2.19	8.15	7.48	ns
4 mA	Std.	0.97	4.47	0.18	0.85	0.66	4.56	3.89	2.24	2.19	8.15	7.48	ns
6 mA	Std.	0.97	3.74	0.18	0.85	0.66	3.82	3.37	2.49	2.63	7.42	6.96	ns
8 mA	Std.	0.97	3.74	0.18	0.85	0.66	3.82	3.37	2.49	2.63	7.42	6.96	ns
12 mA	Std.	0.97	3.23	0.18	0.85	0.66	3.30	2.98	2.66	2.91	6.89	6.57	ns
16 mA	Std.	0.97	3.08	0.18	0.85	0.66	3.14	2.89	2.70	2.99	6.74	6.48	ns
24 mA	Std.	0.97	3.00	0.18	0.85	0.66	3.06	2.91	2.74	3.27	6.66	6.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.73	0.18	0.85	0.66	2.79	2.22	2.25	2.32	6.38	5.82	ns
4 mA	Std.	0.97	2.73	0.18	0.85	0.66	2.79	2.22	2.25	2.32	6.38	5.82	ns
6 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.85	2.50	2.76	5.96	5.45	ns
8 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.85	2.50	2.76	5.96	5.45	ns
12 mA	Std.	0.97	2.09	0.18	0.85	0.66	2.14	1.68	2.67	3.05	5.73	5.27	ns
16 mA	Std.	0.97	2.05	0.18	0.85	0.66	2.10	1.64	2.70	3.12	5.69	5.24	ns
24 mA	Std.	0.97	2.07	0.18	0.85	0.66	2.12	1.60	2.75	3.41	5.71	5.20	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	3.94	0.18	0.85	0.66	4.02	3.46	1.98	2.03	7.62	7.05	ns
4 mA	Std.	0.97	3.94	0.18	0.85	0.66	4.02	3.46	1.98	2.03	7.62	7.05	ns
6 mA	Std.	0.97	3.24	0.18	0.85	0.66	3.31	2.99	2.21	2.42	6.90	6.59	ns
8 mA	Std.	0.97	3.24	0.18	0.85	0.66	3.31	2.99	2.21	2.42	6.90	6.59	ns
12 mA	Std.	0.97	2.76	0.18	0.85	0.66	2.82	2.63	2.36	2.68	6.42	6.22	ns
16 mA	Std.	0.97	2.76	0.18	0.85	0.66	2.82	2.63	2.36	2.68	6.42	6.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-100 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	3.25	0.18	1.01	0.66	3.21	3.25	2.33	1.61	6.80	6.85	ns
4 mA	Std.	0.97	2.62	0.18	1.01	0.66	2.68	2.51	2.66	2.46	6.27	6.11	ns
6 mA	Std.	0.97	2.31	0.18	1.01	0.66	2.36	2.15	2.90	2.87	5.95	5.75	ns
8 mA	Std.	0.97	2.25	0.18	1.01	0.66	2.30	2.08	2.95	2.98	5.89	5.68	ns
12 mA	Std.	0.97	2.24	0.18	1.01	0.66	2.29	2.00	3.02	3.40	5.88	5.60	ns
16 mA	Std.	0.97	2.24	0.18	1.01	0.66	2.29	2.00	3.02	3.40	5.88	5.60	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-101 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	5.78	0.18	1.01	0.66	5.90	5.32	1.95	1.47	9.49	8.91	ns
4 mA	Std.	0.97	4.75	0.18	1.01	0.66	4.85	4.54	2.25	2.21	8.44	8.13	ns
6 mA	Std.	0.97	4.07	0.18	1.01	0.66	4.15	3.98	2.46	2.58	7.75	7.57	ns
8 mA	Std.	0.97	4.07	0.18	1.01	0.66	4.15	3.98	2.46	2.58	7.75	7.57	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-102 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.76	0.18	1.01	0.66	2.79	2.76	1.94	1.51	6.39	6.35	ns
4 mA	Std.	0.97	2.25	0.18	1.01	0.66	2.30	2.09	2.24	2.29	5.89	5.69	ns
6 mA	Std.	0.97	1.97	0.18	1.01	0.66	2.02	1.76	2.46	2.66	5.61	5.36	ns
8 mA	Std.	0.97	1.97	0.18	1.01	0.66	2.02	1.76	2.46	2.66	5.61	5.36	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-103 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	5.63	0.18	0.98	0.66	5.74	5.30	1.68	1.24	ns
4 mA	Std.	0.97	4.69	0.18	0.98	0.66	4.79	4.52	1.97	1.98	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-107 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	6.32	0.26	1.11	1.10	6.43	5.81	2.47	2.16	12.22	11.60	ns
4 mA	Std.	1.55	5.27	0.26	1.11	1.10	5.35	5.01	2.78	2.92	11.14	10.79	ns
6 mA	Std.	1.55	4.56	0.26	1.11	1.10	4.64	4.44	3.00	3.30	10.42	10.22	ns
8 mA	Std.	1.55	4.56	0.26	1.11	1.10	4.64	4.44	3.00	3.30	10.42	10.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-108 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.22	0.26	1.11	1.10	3.26	3.18	2.47	2.20	9.05	8.97	ns
4 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.75	2.50	2.78	3.01	8.54	8.29	ns
6 mA	Std.	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns
8 mA	Std.	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-109 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	6.13	0.26	1.08	1.10	6.24	5.79	2.08	1.78	ns
4 mA	Std.	1.55	5.17	0.26	1.08	1.10	5.26	4.98	2.38	2.54	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-110 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	3.06	0.26	1.08	1.10	3.10	3.01	2.08	1.83	3.06	ns
4 mA	Std.	2.60	0.26	1.08	1.10	2.64	2.33	2.38	2.62	2.60	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-111 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	32	39	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	66	55	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	66	55	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-112 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-14. The input and output buffer delays are available in the LVDS section in Table 2-149 on page 2-81 and Table 2-150 on page 2-81.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-15. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation

Table 2-175 • AGL060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.33	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	1.35	1.62	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-176 • AGL125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description		Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock	1.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-191 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.83	ns
t _{AH}	Address hold time	0.16	ns
t _{ENS}	REN, WEN setup time	0.81	ns
t _{ENH}	REN, WEN hold time	0.16	ns
t _{BKS}	BLK setup time	1.65	ns
t _{BKH}	BLK hold time	0.16	ns
t _{DS}	Input data (DIN) setup time	0.71	ns
t _{DH}	Input data (DIN) hold time	0.36	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	3.53	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	3.06	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	1.81	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge	0.23	ns
t _{C2CRWL} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge	0.41	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	2.06	ns
	RESET Low to data out Low on DOUT (pipelined)	2.06	ns
t _{REMRSTB}	RESET removal	0.61	ns
t _{RECRSTB}	RESET recovery	3.21	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-20 for more details.

Timing Characteristics

Table 2-199 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description		Std.	Units
t _{DISU}	Test Data Input Setup Time		1.00	ns
t _{DIHD}	ID Test Data Input Hold Time		2.00	ns
t _{TMSSU}	t _{TMSSU} Test Mode Select Setup Time		1.00	ns
t _{TMDHD}	t _{TMDHD} Test Mode Select Hold Time		2.00	ns
t _{TCK2Q} Clock to Q (data out)			8.00	ns
t _{RSTB2Q}	Reset to Q (data out)		25.00	ns
F _{TCKMAX}	TCK Maximum Frequency		15	MHz
t _{TRSTREM} ResetB Removal Time			0.58	ns
TRSTREC ResetB Recovery Time			0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse		TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-200 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
TRSTREM ResetB Removal Time		1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

User Guides

IGLOO FPGA Fabric User Guide http://www.microsemi.com/soc/documents/IGLOO_UG.pdf

Packaging Documents

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are available on the Microsemi SoC Products Group website at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

4 – Package Pin Assignments

UC81

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

IGLOO Low Power Flash FPGAs

	CS196		CS196
Pin Number	AGL125 Function	Pin Number	AGL125 Function
H11	GCB0/IO54RSB0	L5	IO91RSB1
H12	GCA1/IO55RSB0	L6	IO90RSB1
H13	IO49RSB0	L7	IO83RSB1
H14	GCA2/IO57RSB0	L8	IO81RSB1
J1	GFC2/IO115RSB1	L9	IO71RSB1
J2	IO110RSB1	L10	IO70RSB1
J3	IO94RSB1	L11	VPUMP
J4	IO93RSB1	L12	VJTAG
J5	IO89RSB1	L13	GDA0/IO66RSB0
J6	NC	L14	GDB0/IO64RSB0
J7	VCC	M1	GEB0/IO106RSB1
J8	VCC	M2	GEA1/IO105RSB1
J9	NC	M3	GNDQ
J10	IO60RSB0	M4	VCCIB1
J11	GCB2/IO58RSB0	M5	IO92RSB1
J12	IO50RSB0	M6	IO88RSB1
J13	GDC1/IO61RSB0	M7	NC
J14	GDC0/IO62RSB0	M8	VCCIB1
K1	IO99RSB1	M9	IO76RSB1
K2	GND	M10	GDB2/IO68RSB1
K3	IO95RSB1	M11	VCCIB1
K4	VCCIB1	M12	VMV1
K5	NC	M13	TRST
K6	IO86RSB1	M14	VCCIB0
K7	IO80RSB1	N1	GEA0/IO104RSB1
K8	IO74RSB1	N2	VMV1
K9	IO72RSB1	N3	GEC2/IO101RSB1
K10	NC	N4	IO100RSB1
K11	VCCIB0	N5	GND
K12	GDA1/IO65RSB0	N6	IO87RSB1
K13	GND	N7	IO82RSB1
K14	GDB1/IO63RSB0	N8	IO78RSB1
L1	GEB1/IO107RSB1	N9	IO73RSB1
L2	GEC1/IO109RSB1	N10	GND
L3	GEC0/IO108RSB1	N11	ТСК
L4	IO96RSB1	N12	TDI

	CS196
Pin Number	AGL125 Function
N13	GNDQ
N14	TDO
P1	GND
P2	GEA2/IO103RSB1
P3	FF/GEB2/IO102RSB1
P4	IO98RSB1
P5	IO97RSB1
P6	IO85RSB1
P7	IO84RSB1
P8	IO79RSB1
P9	IO77RSB1
P10	IO75RSB1
P11	GDC2/IO69RSB1
P12	GDA2/IO67RSB1
P13	TMS
P14	GND

CS281		CS281		
Pin Number	AGL600 Function	Pin Number	AGL600 Function	
R15	IO94RSB2	V10	IO112RSB2	
R16	GDA1/IO88PPB1	V11	IO110RSB2	
R18	GDB0/IO87NPB1	V12	IO108RSB2	
R19	GDC0/IO86NPB1	V13	IO102RSB2	
T1	IO148PPB3	V14	GND	
T2	GEC0/IO146NPB3	V15	IO93RSB2	
T4	GEB0/IO145NPB3	V16	GDA2/IO89RSB2	
T5	IO132RSB2	V17	TDI	
Т6	IO136RSB2	V18	VCCIB2	
T7	IO130RSB2	V19	TDO	
Т8	IO126RSB2	W1	GND	
Т9	IO120RSB2	W2	FF/GEB2/IO142RSB2	
T10	GND	W3	IO139RSB2	
T11	IO113RSB2	W4	IO137RSB2	
T12	IO104RSB2	W5	IO134RSB2	
T13	IO101RSB2	W6	IO133RSB2	
T14	IO98RSB2	W7	IO128RSB2	
T15	GDC2/IO91RSB2	W8	IO124RSB2	
T16	TMS	W9	IO119RSB2	
T18	VJTAG	W10	VCCIB2	
T19	GDB1/IO87PPB1	W11	IO109RSB2	
U1	IO147PDB3	W12	IO107RSB2	
U2	GEA1/IO144PPB3	W13	IO105RSB2	
U6	IO131RSB2	W14	IO100RSB2	
U14	IO99RSB2	W15	IO96RSB2	
U18	TRST	W16	IO92RSB2	
U19	GDA0/IO88NPB1	W17	GDB2/IO90RSB2	
V1	IO147NDB3	W18	ТСК	
V2	VCCIB3	W19	GND	
V3	GEC2/IO141RSB2			
V4	IO140RSB2			
V5	IO135RSB2]		
V6	GND			
V7	IO125RSB2			
V8	IO122RSB2	1		

V9

IO116RSB2

Microsemi

IGLOO Low Power Flash FPGAs

Pin NumberAGL060 FunctionPin NumberAGL060 FunctionPin NumberAGL060 FunctionA1GAB2/IO00RSB1A37GBB1/IO25RSB0B24GDC0/IO49FA2IO93RSB1A38GBC0/IO22RSB0B25GNDA3VCCIB1A39VCCIB0B26NCA4GFC1/IO89RSB1A40IO21RSB0B27GCB2/IO45F
A1 GAB2/IO00RSB1 A37 GBB1/IO25RSB0 B24 GDC0/IO49F A2 IO93RSB1 A38 GBC0/IO22RSB0 B25 GND A3 VCCIB1 A39 VCCIB0 B26 NC A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45F
A2 IO93RSB1 A38 GBC0/IO22RSB0 B25 GND A3 VCCIB1 A39 VCCIB0 B26 NC A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45R
A3 VCCIB1 A39 VCCIB0 B26 NC A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45R
A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45R
A5 GFB0/IO86RSB1 A41 IO18RSB0 B28 GND
A6 VCCPLF A42 IO15RSB0 B29 GCB0/IO41R
A7 GFA1/IO84RSB1 A43 IO14RSB0 B30 GCC1/IO38F
A8 GFC2/IO81RSB1 A44 IO11RSB0 B31 GND
A9 IO78RSB1 A45 GAB1/IO08RSB0 B32 GBB2/IO30R
A10 VCC A46 NC B33 VMV0
A11 GEB1/IO75RSB1 A47 GAB0/IO07RSB0 B34 GBA0/IO26R
A12 GEA0/IO72RSB1 A48 IO04RSB0 B35 GBC1/IO23R
A13 GEC2/IO69RSB1 B1 IO01RSB1 B36 GND
A14 IO65RSB1 B2 GAC2/IO94RSB1 B37 IO20RSB
A15 VCC B3 GND B38 IO17RSB
A16 IO64RSB1 B4 GFC0/IO88RSB1 B39 GND
A17 IO63RSB1 B5 VCOMPLF B40 IO12RSB
A18 IO62RSB1 B6 GND B41 GAC0/IO09R
A19 IO61RSB1 B7 GFB2/IO82RSB1 B42 GND
A20 IO58RSB1 B8 IO79RSB1 B43 GAA1/IO06R
A21 GDB2/IO55RSB1 B9 GND B44 GNDQ
A22 NC B10 GEB0/IO74RSB1 C1 GAA2/IO02R
A23 GDA2/IO54RSB1 B11 VMV1 C2 IO95RSB
A24 TDI B12 FF/GEB2/IO70RSB C3 VCC
A25 TRST 1 C4 GFB1/IO87R
A26 GDC1/IO48RSB0 B13 IO67RSB1 C5 GFA0/IO85R
A27 VCC B14 GND C6 GFA2/IO83R
A28 IO47RSB0 B15 NC C7 IO80RSB
A29 GCC2/IO46RSB0 B16 NC C8 VCCIB1
A30 GCA2/IO44RSB0 B17 GND C9 GEA1/IO73R
A31 GCA0/IO43RSB0 B18 IO59RSB1 C10 GNDQ
A32 GCB1/IO40RSB0 B19 GDC2/IO56RSB1 C11 GEA2/IO71R
A33 IO36RSB0 B20 GND C12 IO68RSB
A34 VCC B21 GNDQ C13 VCCIB1
A35 IO31RSB0 B22 TMS C14 NC
A36 GBA2/IO28RSB0 B23 TDO C15 NC

FG484	
Pin Number	AGL600 Function
C21	NC
C22	VCCIB1
D1	NC
D2	NC
D3	NC
D4	GND
D5	GAA0/IO00RSB0
D6	GAA1/IO01RSB0
D7	GAB0/IO02RSB0
D8	IO11RSB0
D9	IO16RSB0
D10	IO18RSB0
D11	IO28RSB0
D12	IO34RSB0
D13	IO37RSB0
D14	IO41RSB0
D15	IO43RSB0
D16	GBB1/IO57RSB0
D17	GBA0/IO58RSB0
D18	GBA1/IO59RSB0
D19	GND
D20	NC
D21	NC
D22	NC
E1	NC
E2	NC
E3	GND
E4	GAB2/IO173PDB3
E5	GAA2/IO174PDB3
E6	GNDQ
E7	GAB1/IO03RSB0
E8	IO13RSB0
E9	IO14RSB0
E10	IO21RSB0
E11	IO27RSB0
E12	IO32RSB0

FG484		
Pin Number	AGL600 Function	
M3	IO158NPB3	
M4	GFA2/IO161PPB3	
M5	GFA1/IO162PDB3	
M6	VCCPLF	
M7	IO160NDB3	
M8	GFB2/IO160PDB3	
M9	VCC	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO73PPB1	
M16	GCA1/IO71PPB1	
M17	GCC2/IO74PPB1	
M18	IO80PPB1	
M19	GCA2/IO72PDB1	
M20	IO79PPB1	
M21	IO78PPB1	
M22	NC	
N1	IO154NDB3	
N2	IO154PDB3	
N3	NC	
N4	GFC2/IO159PDB3	
N5	IO161NPB3	
N6	IO156PPB3	
N7	IO129RSB2	
N8	VCCIB3	
N9	VCC	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	VCC	
N15	VCCIB1	
N16	IO73NPB1	

FG484				
Pin Number	AGL600 Function			
Y7	NC			
Y8	VCC			
Y9	VCC			
Y10	NC			
Y11	NC			
Y12	NC			
Y13	NC			
Y14	VCC			
Y15	VCC			
Y16	NC			
Y17	NC			
Y18	GND			
Y19	NC			
Y20	NC			
Y21	NC			
Y22	VCCIB1			

Revision / Version	Changes	Page
Advance v0.4 (September 2007)	Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature Grade Offerings.	i, ii, iii, iv
	The number of single-ended I/Os for the CS81 package for AGL030 was updated to 66 in the "I/Os Per Package1" table.	ii
	The "Power Conservation Techniques" section was updated to recommend that unused I/O signals be left floating.	2-51
Advance v0.3 (August 2007)	In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	i
	The CS81 and CS121 packages were added to the "I/Os Per Package1" table. The number of single-ended I/Os was removed for the CS196 package in AGL060. Table note 6 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	ï
	The CS81 and CS121 packages were added to the Temperature Grade Offerings table. The temperature grade offerings were removed for the CS196 package in AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	iv
	The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent).	2-61
Advance v0.2	The words "ambient temperature" were added to the temperature range in the "IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2