

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	235
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1agl600v5-fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO Ordering Information

Note: Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly.

Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V for V5 devices, and 0.75 V \pm 0.2 V for V2 devices), the PLL output lock signal goes low and/or the output clock is lost. Refer to the Brownout Voltage section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *ProASIC*[®]3 and *ProASIC3E* FPGA fabric user guides for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Table 2-28 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

	Com	mercial ¹	Indu	strial ²
	IIL⁴	IIH ⁵	IIL ⁴	IIH ⁵
DC I/O Standards	μΑ	μΑ	μA	μA
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
3.3 V LVCMOS Wide Range	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
1.2 V LVCMOS ³	10	10	15	15
1.2 V LVCMOS Wide Range ³	10	10	15	15
3.3 V PCI	10	10	15	15
3.3 V PCI-X	10	10	15	15

Notes:

1. Commercial range ($0^{\circ}C < T_A < 70^{\circ}C$)

2. Industrial range (–40°C < T_A < 85°C)

3. Applicable to V2 Devices operating at VCCI \geq VCC.

4. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

5. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	4.47	0.18	0.85	0.66	4.56	3.89	2.24	2.19	8.15	7.48	ns
4 mA	Std.	0.97	4.47	0.18	0.85	0.66	4.56	3.89	2.24	2.19	8.15	7.48	ns
6 mA	Std.	0.97	3.74	0.18	0.85	0.66	3.82	3.37	2.49	2.63	7.42	6.96	ns
8 mA	Std.	0.97	3.74	0.18	0.85	0.66	3.82	3.37	2.49	2.63	7.42	6.96	ns
12 mA	Std.	0.97	3.23	0.18	0.85	0.66	3.30	2.98	2.66	2.91	6.89	6.57	ns
16 mA	Std.	0.97	3.08	0.18	0.85	0.66	3.14	2.89	2.70	2.99	6.74	6.48	ns
24 mA	Std.	0.97	3.00	0.18	0.85	0.66	3.06	2.91	2.74	3.27	6.66	6.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.73	0.18	0.85	0.66	2.79	2.22	2.25	2.32	6.38	5.82	ns
4 mA	Std.	0.97	2.73	0.18	0.85	0.66	2.79	2.22	2.25	2.32	6.38	5.82	ns
6 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.85	2.50	2.76	5.96	5.45	ns
8 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.85	2.50	2.76	5.96	5.45	ns
12 mA	Std.	0.97	2.09	0.18	0.85	0.66	2.14	1.68	2.67	3.05	5.73	5.27	ns
16 mA	Std.	0.97	2.05	0.18	0.85	0.66	2.10	1.64	2.70	3.12	5.69	5.24	ns
24 mA	Std.	0.97	2.07	0.18	0.85	0.66	2.12	1.60	2.75	3.41	5.71	5.20	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	3.94	0.18	0.85	0.66	4.02	3.46	1.98	2.03	7.62	7.05	ns
4 mA	Std.	0.97	3.94	0.18	0.85	0.66	4.02	3.46	1.98	2.03	7.62	7.05	ns
6 mA	Std.	0.97	3.24	0.18	0.85	0.66	3.31	2.99	2.21	2.42	6.90	6.59	ns
8 mA	Std.	0.97	3.24	0.18	0.85	0.66	3.31	2.99	2.21	2.42	6.90	6.59	ns
12 mA	Std.	0.97	2.76	0.18	0.85	0.66	2.82	2.63	2.36	2.68	6.42	6.22	ns
16 mA	Std.	0.97	2.76	0.18	0.85	0.66	2.82	2.63	2.36	2.68	6.42	6.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	1L	v	IH	VOL	VОН	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	83	87	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	169	124	10	10

Table 2-79 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

 Table 2-80 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	v	ΊL	v	ΊH	VOL	vон	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-123 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.43	0.26	1.27	1.10	6.54	5.95	2.82	2.83	12.32	11.74	ns
4 mA	Std.	1.55	5.59	0.26	1.27	1.10	5.68	5.27	3.07	3.27	11.47	11.05	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-124 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.02	0.26	1.27	1.10	3.07	2.81	2.82	2.92	8.85	8.59	ns
4 mA	Std.	1.55	2.68	0.26	1.27	1.10	2.72	2.39	3.07	3.37	8.50	8.18	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-125 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	6.35	0.26	1.22	1.10	6.46	5.93	2.40	2.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-126 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	2.92	0.26	1.22	1.10	2.96	2.60	2.40	2.56	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Test Point
Datapath
$$\downarrow$$
 5 pF
 $R = 1 k$
Enable Path \downarrow R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
 R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $5 pF for t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$

Figure 2-11 • AC Loading

Table 2-130 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

1.2 V DC Core Voltage

Table 2-131 • 1.2 V LVCMOS Low Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	8.37	0.26	1.60	1.10	8.04	7.17	3.94	3.52	13.82	12.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-132 • 1.2 V LVCMOS High Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.60	0.26	1.60	1.10	3.47	3.36	3.93	3.65	9.26	9.14	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-133 • 1.2 V LVCMOS High Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	7.59	0.26	1.59	1.10	7.29	6.54	3.30	3.35	13.08	12.33	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-134 • 1.2 V LVCMOS High Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.22	0.26	1.59	1.10	3.11	2.78	3.29	3.48	8.90	8.57	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-14. The input and output buffer delays are available in the LVDS section in Table 2-149 on page 2-81 and Table 2-150 on page 2-81.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-15. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation

Timing Characteristics

1.5 V DC Core Voltage

Table 2-169 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y =!A	t _{PD}	0.80	ns
AND2	$Y = A \cdot B$	t _{PD}	0.84	ns
NAND2	Y =!(A · B)	t _{PD}	0.90	ns
OR2	Y = A + B	t _{PD}	1.19	ns
NOR2	Y = !(A + B)	t _{PD}	1.10	ns
XOR2	Y = A ⊕ B	t _{PD}	1.37	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.33	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	1.79	ns
MUX2	Y = A !S + B S	t _{PD}	1.48	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-170 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.34	ns
AND2	$Y = A \cdot B$	t _{PD}	1.43	ns
NAND2	$Y = !(A \cdot B)$	t _{PD}	1.59	ns
OR2	Y=A+B	t _{PD}	2.30	ns
NOR2	Y = !(A + B)	t _{PD}	2.07	ns
XOR2	Y = A ⊕ B	t _{PD}	2.46	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.46	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	3.12	ns
MUX2	Y = A !S + B S	t _{PD}	2.83	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-190 • IGLOO CCC/PLL Specification For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz
Delay Increments in Programmable Delay Blocks ^{1,2}		580 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	ns
Input Cycle-to-Cycle Jitter (peak magnitude)			0.25	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1,2}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2, 5}		5.7		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Maxim	um Peak-to-F	Peak Jitter Dat	a ^{7,8}
	$SSO \geq 4^9$	$SSO \geq 8^9$	$SSO \geq 16^9$	
0.75 MHz to 50 MHz	1.20%	2.00%	3.00%	
50 MHz to 160 MHz	5.00%	7.00%	15.00%	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C$, $V_{CC} = 1.2 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

5. The AGL030 device does not support a PLL.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.

Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

 SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

10. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User Guide.

Embedded FlashROM Characteristics

Figure 2-45 • Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-197 • Embedded FlashROM Access TimeWorst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.57	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{СК2Q}	Clock to Out	34.14	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

1.2 V DC Core Voltage

Table 2-198 • Embedded FlashROM Access TimeWorst Commercial-Case Conditions: $T_J = 70^{\circ}$ C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	52.90	ns
F _{MAX}	Maximum Clock Frequency	10	MHz

Microsemi

Package Pin Assignments

	UC81		UC81
Pin Number	AGL030 Function	Pin Number	AGL030 Function
A1	IO00RSB0	E1	GEB0/IO71RSB1
A2	IO02RSB0	E2	GEA0/IO72RSB1
A3	IO06RSB0	E3	GEC0/IO73RSB1
A4	IO11RSB0	E4	VCCIB1
A5	IO16RSB0	E5	VCC
A6	IO19RSB0	E6	VCCIB0
A7	IO22RSB0	E7	GDC0/IO32RSB0
A8	IO24RSB0	E8	GDA0/IO33RSB0
A9	IO26RSB0	E9	GDB0/IO34RSB0
B1	IO81RSB1	F1	IO68RSB1
B2	IO04RSB0	F2	IO67RSB1
B3	IO10RSB0	F3	IO64RSB1
B4	IO13RSB0	F4	GND
B5	IO15RSB0	F5	VCCIB1
B6	IO20RSB0	F6	IO47RSB1
B7	IO21RSB0	F7	IO36RSB0
B8	IO28RSB0	F8	IO38RSB0
B9	IO25RSB0	F9	IO40RSB0
C1	IO79RSB1	G1	IO65RSB1
C2	IO80RSB1	G2	IO66RSB1
C3	IO08RSB0	G3	IO57RSB1
C4	IO12RSB0	G4	IO53RSB1
C5	IO17RSB0	G5	IO49RSB1
C6	IO14RSB0	G6	IO45RSB1
C7	IO18RSB0	G7	IO46RSB1
C8	IO29RSB0	G8	VJTAG
C9	IO27RSB0	G9	TRST
D1	IO74RSB1	H1	IO62RSB1
D2	IO76RSB1	H2	FF/IO60RSB1
D3	IO77RSB1	H3	IO58RSB1
D4	VCC	H4	IO54RSB1
D5	VCCIB0	H5	IO48RSB1
D6	GND	H6	IO43RSB1
D7	IO23RSB0	H7	IO42RSB1
D8	IO31RSB0	H8	TDI
D9	IO30RSB0	H9	TDO

UC81						
Pin Number	AGL030 Function					
J1	IO63RSB1					
J2	IO61RSB1					
J3	IO59RSB1					
J4	IO56RSB1					
J5	IO52RSB1					
J6	IO44RSB1					
J7	ТСК					
J8	TMS					
J9	VPUMP					

QN68						
Pin Number	AGL030 Function					
1	IO82RSB1					
2	IO80RSB1					
3	IO78RSB1					
4	IO76RSB1					
5	GEC0/IO73RSB1					
6	GEA0/IO72RSB1					
7	GEB0/IO71RSB1					
8	VCC					
9	GND					
10	VCCIB1					
11	IO68RSB1					
12	IO67RSB1					
13	IO66RSB1					
14	IO65RSB1					
15	IO64RSB1					
16	IO63RSB1					
17	IO62RSB1					
18	FF/IO60RSB1					
19	IO58RSB1					
20	IO56RSB1					
21	IO54RSB1					
22	IO52RSB1					
23	IO51RSB1					
24	VCC					
25	GND					
26	VCCIB1					
27	IO50RSB1					
28	IO48RSB1					
29	IO46RSB1					
30	IO44RSB1					
31	IO42RSB1	Γ				
32	тск					
33	TDI					
34	TMS					
35	VPUMP					
36	TDO					

	QN68	
I	Pin Number	AGL030 Function
	37	TRST
	38	VJTAG
	39	IO40RSB0
	40	IO37RSB0
	41	GDB0/IO34RSB0
	42	GDA0/IO33RSB0
	43	GDC0/IO32RSB0
	44	VCCIB0
	45	GND
	46	VCC
	47	IO31RSB0
	48	IO29RSB0
	49	IO28RSB0
	50	IO27RSB0
	51	IO25RSB0
	52	IO24RSB0
	53	IO22RSB0
	54	IO21RSB0
	55	IO19RSB0
	56	IO17RSB0
	57	IO15RSB0
	58	IO14RSB0
	59	VCCIB0
	60	GND
	61	VCC
	62	IO12RSB0
	63	IO10RSB0
	64	IO08RSB0
	65	IO06RSB0
	66	IO04RSB0
	67	IO02RSB0
	68	IO00RSB0

Package Pin Assignments

FG256		
Pin Number	AGL1000 Function	
R5	IO168RSB2	
R6	IO163RSB2	
R7	IO157RSB2	
R8	IO149RSB2	
R9	IO143RSB2	
R10	IO138RSB2	
R11	IO131RSB2	
R12	IO125RSB2	
R13	GDB2/IO115RSB2	
R14	TDI	
R15	GNDQ	
R16	TDO	
T1	GND	
T2	IO183RSB2	
Т3	FF/GEB2/IO186RSB2	
T4	IO172RSB2	
T5	IO170RSB2	
T6	IO164RSB2	
T7	IO158RSB2	
T8	IO153RSB2	
Т9	IO142RSB2	
T10	IO135RSB2	
T11	IO130RSB2	
T12	GDC2/IO116RSB2	
T13	IO120RSB2	
T14	GDA2/IO114RSB2	
T15	TMS	
T16	GND	

	FG484
Pin Number AGL400 Function	
N17	IO74RSB1
N18	IO72NPB1
N19	IO70NDB1
N20	NC
N21	NC
N22	NC
P1	NC
P2	NC
P3	NC
P4	IO142NDB3
P5	IO141NPB3
P6	IO125RSB2
P7	IO139RSB3
P8	VCCIB3
P9	GND
P10	VCC
P11	VCC
P12	VCC
P13	VCC
P14	GND
P15	VCCIB1
P16	GDB0/IO78VPB1
P17	IO76VDB1
P18	IO76UDB1
P19	IO75PDB1
P20	NC
P21	NC
P22	NC
R1	NC
R2	NC
R3	VCC
R4	IO140PDB3
R5	IO130RSB2
R6	IO138NPB3
R7	GEC0/IO137NPB3
R8	VMV3

FG484		
Pin Number AGL400 Function		
U1	NC	
U2	NC	
U3	NC	
U4	GEB1/IO136PDB3	
U5	GEB0/IO136NDB3	
U6	VMV2	
U7	IO129RSB2	
U8	IO128RSB2	
U9	IO122RSB2	
U10	IO115RSB2	
U11	IO110RSB2	
U12	IO98RSB2	
U13	IO95RSB2	
U14	IO88RSB2	
U15	IO84RSB2	
U16	ТСК	
U17	VPUMP	
U18	TRST	
U19	GDA0/IO79VDB1	
U20	NC	
U21	NC	
U22	NC	
V1	NC	
V2	NC	
V3	GND	
V4	GEA1/IO135PDB3	
V5	GEA0/IO135NDB3	
V6	IO127RSB2	
V7	GEC2/IO132RSB2	
V8	IO123RSB2	
V9	IO118RSB2	
V10	IO112RSB2	
V11	IO106RSB2	
V12	IO100RSB2	
V13	IO96RSB2	
V14	IO89RSB2	

FG484	
Pin Number	AGL400 Function
Y7	NC
Y8	VCC
Y9	VCC
Y10	NC
Y11	NC
Y12	NC
Y13	NC
Y14	VCC
Y15	VCC
Y16	NC
Y17	NC
Y18	GND
Y19	NC
Y20	NC
Y21	NC
Y22	VCCIB1

FG484		
Pin Number	AGL1000 Function	
B7	IO15RSB0	
B8	IO19RSB0	
B9	IO24RSB0	
B10	IO31RSB0	
B11	IO39RSB0	
B12	IO48RSB0	
B13	IO54RSB0	
B14	IO58RSB0	
B15	IO63RSB0	
B16	IO66RSB0	
B17	IO68RSB0	
B18	IO70RSB0	
B19	NC	
B20	NC	
B21	VCCIB1	
B22	GND	
C1	VCCIB3	
C2	IO220PDB3	
C3	NC	
C4	NC	
C5	GND	
C6	IO10RSB0	
C7	IO14RSB0	
C8	VCC	
C9	VCC	
C10	IO30RSB0	
C11	IO37RSB0	
C12	IO43RSB0	
C13	NC	
C14	VCC	
C15	VCC	
C16	NC	
C17	NC	
C18	GND	
C19	NC	
C20	NC	

FG484		
Pin Number	AGL1000 Function	
C21	NC	
C22	VCCIB1	
D1	IO219PDB3	
D2	IO220NDB3	
D3	NC	
D4	GND	
D5	GAA0/IO00RSB0	
D6	GAA1/IO01RSB0	
D7	GAB0/IO02RSB0	
D8	IO16RSB0	
D9	IO22RSB0	
D10	IO28RSB0	
D11	IO35RSB0	
D12	IO45RSB0	
D13	IO50RSB0	
D14	IO55RSB0	
D15	IO61RSB0	
D16	GBB1/IO75RSB0	
D17	GBA0/IO76RSB0	
D18	GBA1/IO77RSB0	
D19	GND	
D20	NC	
D21	NC	
D22	NC	
E1	IO219NDB3	
E2	NC	
E3	GND	
E4	GAB2/IO224PDB3	
E5	GAA2/IO225PDB3	
E6	GNDQ	
E7	GAB1/IO03RSB0	
E8	IO17RSB0	
E9	IO21RSB0	
E10	IO27RSB0	
E11	IO34RSB0	
E12	IO44RSB0	

FG484		
Pin Number	AGL1000 Function	
E13	IO51RSB0	
E14	IO57RSB0	
E15	GBC1/IO73RSB0	
E16	GBB0/IO74RSB0	
E17	IO71RSB0	
E18	GBA2/IO78PDB1	
E19	IO81PDB1	
E20	GND	
E21	NC	
E22	IO84PDB1	
F1	NC	
F2	IO215PDB3	
F3	IO215NDB3	
F4	IO224NDB3	
F5	IO225NDB3	
F6	VMV3	
F7	IO11RSB0	
F8	GAC0/IO04RSB0	
F9	GAC1/IO05RSB0	
F10	IO25RSB0	
F11	IO36RSB0	
F12	IO42RSB0	
F13	IO49RSB0	
F14	IO56RSB0	
F15	GBC0/IO72RSB0	
F16	IO62RSB0	
F17	VMV0	
F18	IO78NDB1	
F19	IO81NDB1	
F20	IO82PPB1	
F21	NC	
F22	IO84NDB1	
G1	IO214NDB3	
G2	IO214PDB3	
G3	NC	
G4	IO222NDB3	