

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	28
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l021k4t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Ultra-low-power STM32L021x4 device features and peripheral counts	. 11
Table 2.	Functionalities depending on the operating power supply range	. 15
Table 3.	CPU frequency range depending on dynamic voltage scaling	. 16
Table 4.	Functionalities depending on the working mode	
	(from Run/active down to standby)	. 16
Table 5.	STM32L021x4 peripherals interconnect matrix	. 18
Table 6.	Timer feature comparison	. 28
Table 7.	Comparison of I2C analog and digital filters	. 30
Table 8.	STM32L021x4 I ² C implementation	. 30
Table 9.	USART implementation	. 31
Table 10.	SPI implementation.	. 32
Table 11.	Legend/abbreviations used in the pinout table	. 35
Table 12.	Pin definitions	. 36
Table 13.	Alternate functions	. 41
Table 14.	Voltage characteristics	. 46
Table 15.	Current characteristics	. 47
Table 16.	Thermal characteristics.	. 47
Table 17.	General operating conditions	. 48
Table 18.	Embedded reset and power control block characteristics.	. 49
Table 19.	Embedded internal reference voltage calibration values	. 51
Table 20.	Embedded internal reference voltage	51
Table 21.	Current consumption in Run mode, code with data processing running from Flash	53
Table 22.	Current consumption in Run mode vs code type,	
	code with data processing running from Flash	. 53
Table 23.	Current consumption in Run mode, code with data processing running from RAM	55
Table 24.	Current consumption in Run mode vs code type.	
	code with data processing running from RAM	. 55
Table 25.	Current consumption in Sleep mode	56
Table 26.	Current consumption in Low-power Run mode	57
Table 27.	Current consumption in Low-power Sleep mode	58
Table 28.	Typical and maximum current consumptions in Stop mode	. 59
Table 29.	Typical and maximum current consumptions in Standby mode	. 60
Table 30.	Average current consumption during wakeup	. 60
Table 31.	Peripheral current consumption in run or Sleep mode	. 61
Table 32.	Peripheral current consumption in Stop and Standby mode	62
Table 33.	Low-power mode wakeup timings	62
Table 34.	High-speed external user clock characteristics.	. 64
Table 35.	Low-speed external user clock characteristics	. 65
Table 36.	LSE oscillator characteristics	66
Table 37.	16 MHz HSI16 oscillator characteristics	. 67
Table 38.	I SI oscillator characteristics	68
Table 39.	MSI oscillator characteristics	68
Table 40.	PLL characteristics	69
Table 41	RAM and hardware registers	70
Table 42	Flash memory and data EEPROM characteristics	71
Table 43	Flash memory and data EEPROM endurance and retention	71
Table 44		70
	EMS characteristics	
Table 45	EMS characteristics	.72

Figure 42.	Example of UFQFPN20 marking (package top view)	102
Figure 43.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,	
	package outline	103
Figure 44.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,	
	package footprint	104
Figure 45.	TSSOP14 – 14-lead thin shrink small outline, 5.0 x 4.4 mm, 0.65 mm pitch,	
	package outline	105
Figure 46.	Example of TSSOP14 marking (package top view)	106
Figure 47.	Thermal resistance	107

2.1 Device overview

Table 1. Ultra-low-power STM32L021x4 device features and peripheral counts

Peripheral		STM32 L021D4	STM32 L021F4	STM32 L021G4	STM32L021K4	
Flash (Kbytes)		16				
Data EEPROM (bytes)			5	12		
RAM (Kbytes)				2		
AES				1		
Timers	General- purpose	2				
	LPTIM			1		
RTC/SYSTICK/IWDG/ WWDG			1/1/	/1/1		
	SPI			1		
Communication	l ² C	1				
interfaces	USART	1				
	LPUART	1				
GPIOs		11	16	24	26/28 ⁽¹⁾	
Clocks: HSE ⁽²⁾ /LSE/HS	/MSI/LSI	1/1/1/1				
12-bit synchronized AE Number of channels	C	1 4	1 7/9 ⁽³⁾	1	I O	
Comparators		2				
Max. CPU frequency		32 MHz				
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option1.65 V to 3.6 V without BOR option				
Operating temperature	S	Ambient temperature: –40 to +125 °C Junction temperature: –40 to +130 °C				
Packages		TSSOP14	TSSOP20, UFQFPN20	UFQFPN28	LQFP32, UFQFPN32	

1. The devices feature 26 and 28 GPIOs on LQFP32 and UFQFPN32, respectively.

2. HSE available only as external clock input (HSE bypass).

3. The devices feature 7 and 9 ADC channels on UFQFPN20 and TSSOP20, respectively.

Figure 1. STM32L021x4 block diagram

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM[®] Cortex[®]-M4, including ARM[®] Cortex[®]-M3 and ARM[®] Cortex[®]-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 Ultra-low-power series are the best solution for applications such as gas/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power Run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements.

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

Clock prescaler

To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.

• Safe clock switching

Clock sources can be changed safely on the fly in Run mode through a configuration register.

Clock management

To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.

• System clock source

Three different clock sources can be used to drive the master clock SYSCLK:

- 0-32 MHz high-speed external (HSE bypass), that can supply a PLL
- 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
- Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

Auxiliary clock source

Two ultra-low-power clock sources that can be used to drive the real-time clock:

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

RTC clock sources

The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system clock.

• Startup clock

After reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an LSE clock failure occurs, it provides an interrupt or wakeup event which is generated assuming it has been previously enabled. This feature is not available on the HSE clock.

Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

Figure 2. Clock tree

3.6 Low-power real-time clock and backup registers

The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
- Two programmable alarms with wake up from Stop and Standby mode capability
- Periodic wakeup from Stop and Standby with programmable resolution and period
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 37 kHz)
- The high-speed external clock

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

The BOOT0 pin is shared with PB9 GPIO pin. This pin is an input-only pin. If nBOOT_SEL option bit is reset, sampling this pin on NRST rising edge gives the internal BOOT0 state. This pin then works as PB9 pin. The input voltage characteristics of this pin are specific for BOOT0 pin type (see *Table 49: I/O static characteristics*).

Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 26 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14: Voltage characteristics*, *Table 15: Current characteristics*, and *Table 16: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V _{DDA} , V _{DD}) ⁽¹⁾	-0.3	4.0	
	Input voltage on FT and FTf pins	V _{SS} –0.3	V _{DD} +4.0	
$V_{\rm IN}^{(2)}$	Input voltage on TC pins	V _{SS} –0.3	4.0	V
	Input voltage on BOOT0	V_{SS}	V _{DD} +4.0	
	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DD} $	Variations between different V_{DDx} power pins	-	50	
V _{DDA} -V _{DDx}	$\frac{ V_{DDA}-V_{DDx} }{pins^{(3)}}$ Variations between any V_{DDx} and V_{DDA} power		300	mV
$ \Delta V_{SS} $	Variations between all different ground pins	-	50	
V _{ESD(HBM)} Electrostatic discharge voltage (human body model)		see Secti	on 6.3.11	

Table 14	. Voltage	characteristics
----------	-----------	-----------------

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 15* for maximum allowed injected current values.

3. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and device operation. its value does not need to respect this rule.

Symbol	Parameter	Co	nditions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
Supply I _{DD} current in (Run Run mode,				1 MHz	140	180	
			Range 3, V_{CORE} =1.2 V	2 MHz	245	290	μA
				4 MHz	460	540	
		f _{HSE} = f _{HCLK} up to		4 MHz	0.56	0.65	
		16 MHz included, $f_{HSE} = f_{HCL} \frac{1}{2} above$	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10.	8 MHz	1.1	1.3	- mA
	Cumply	in ode,		16 MHz	2.1	2.4	
	current in		Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	8 MHz	1.3	1.6	
	Run mode,			16 MHz	2.6	3	
Flash)	executed			32 MHz	5.3	6.5	
	from Flash	from Flash MSI clock	Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	65 kHz	34.5	54	
				524 kHz	86	120	μA
				4.2 MHz	505	560	
			Range 2, V _{CORE} =1.5 V, VOS[1:0]=10,	16 MHz	2.2	2.6	m (
			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	5.4	5.9	

Table 21.	. Current consumptio	n in Run mode. coo	le with data proces	sing running from Flash
10.010 = 11				o

1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 22. Current consumption in Run mode vs code type,
code with data processing running from Flash

Symbol	Parameter	Conditions			f _{HCLK}	Тур	Unit
Supply I _{DD} current in (Run Run mode,				Dhrystone		460	
		Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	CoreMark		440		
			Fibonacci	4 MHz	330	μA	
			while(1)		305		
	current in Run mode,	$f_{HSE} = f_{HCLK}$ up to 16 MHz included, $f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL ON) ⁽¹⁾		while(1), prefetch OFF		320	
from Flash)	code			Dhrystone		5.4	
from Flash	from Flash			CoreMark]	4.9	
		Range 1, VOS[1:0]=01	Fibonacci	32 MHz	5	mA	
			V _{CORE} =1.8 V	while(1)		4.35	
				while(1), prefetch OFF		3.7	

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾		Тур	Max	Unit
f _{LSE}	LSE oscillator frequency		-	32.768	-	kHz
		LSEDRV[1:0]=00 lower driving capability	-	-	0.5	
C	Baximum critical crystal transconductance	LSEDRV[1:0]= 01 medium low driving capability	-	-	0.75	
Om		LSEDRV[1:0] = 10 medium high driving capability	-	-	1.7	μ~ν
		LSEDRV[1:0]=11 higher driving capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	s

Table 36. LSE	oscillator	characteristics ⁽¹⁾
---------------	------------	--------------------------------

1. Guaranteed by design, not tested in production.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. Guaranteed by characterization results, not tested in production. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>http://www.st.com</u>.

Figure 21. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.7 Internal clock source characteristics

The parameters given in *Table 37* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal 16 MHz (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
(1)(2)	HSI16 user-	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	trimmed resolution	Trimming code is a multiple of 16	-	-	±1.5	%
ACC _{HSI16}		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI16 oscillator	V_{DDA} = 3.0 V, T_{A} = 0 to 55 °C		-	1.5	%
		V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
		V _{DDA} = 3.0 V, T _A = -10 to 85 °C	-2.5	-	2	%
		V _{DDA} = 3.0 V, T _A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 125 °C	-5.45	-	3.25	%
t _{SU(HSI16)} ⁽²⁾	HSI16 oscillator startup time	-		3.7	6	μs
I _{DD(HSI16)} ⁽²⁾	HSI16 oscillator power consumption	-		100	140	μA

Table 37. 16 MHz HSI16 oscillator characteristics

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results, not tested in production.

3. Guaranteed by test in production.

Figure 22. HSI16 minimum and maximum value versus temperature

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
+	Programming time for	Erasing	-	3.28	3.94	ms
Lprog	word or half-page	Programming	-	3.28	3.94	
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

Table 42. Flash memory and data EEPROM characteristics

1. Guaranteed by design, not tested in production.

0h.al	Demonster	O an diti ana	Value	11 14	
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	T = 40°C to 105 °C	10		
	Cycling (erase / write) EEPROM data memory		100	kcycles	
	Cycling (erase / write) Program memory	T = 40°C to 125 °C	0.2		
	Cycling (erase / write) EEPROM data memory	TA+0 C 10 125 C	2		
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T _A = 85 °C	T = +85 °C	30		
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \text{ °C}$	TRET - 105 C	30		
	Data retention (program memory) after 10 kcycles at T _A = 105 °C	T = +105 °C			
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 105$ °C	TRET - TIUS C	10	years	
	Data retention (program memory) after 200 cycles at T _A = 125 °C	T - +125 °C	10		
	Data retention (EEPROM data memory) after 2 kcycles at T_A = 125 °C	1 RET - 123 C			

Table 43. Flash memory and data EEPROM endurance and retention

1. Guaranteed by characterization results, not tested in production.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} , except when it is internally driven low (see *Table 52*).

Unless otherwise specified, the parameters given in *Table 52* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	$0.3V_{DD}$	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.39V _{DD} + 0.59	-	-	
V _{OL(NRST)} ⁽¹⁾		I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	V
	INKST Output low level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 52. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. 200 mV minimum value

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
I _{COMP2}	Current concumption $^{(4)}$	Fast mode	-	3.5	5	- μΑ	
		Slow mode	-	0.5	2		

Table 59. Comparator 2 characteristics (continued)

1. Guaranteed by characterization results, not tested in production.

- 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.
- In TSSOP14 package, where V_{DDA} pin is shared with V_{DD} pin, I/O toggling should be minimized to reach the values given in the above table. I/O toggling with loaded I/O pins can generate ripple on V_{DD}/V_{DDA} and degrade the comparator performance.
- 4. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

6.3.18 Timer characteristics

TIM timer characteristics

The parameters given in the Table 60 are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{res(TIM)}	Timor resolution time		1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 32 MHz	31.25	-	ns
f	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz
Res _{TIM}	Timer resolution	-		16	bit
	16-bit counter clock	-	1	65536	t _{TIMxCLK}
t _{COUNTER}	is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs
t	Maximum possible count	_	-	65536 × 65536	t _{TIMxCLK}
^I MAX_COUNT		f _{TIMxCLK} = 32 MHz	-	134.2	S

Table 60. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2 and TIM21 timers.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			8	
f _{SCK}	SPI clock frequency	Slave mode Transmitter 1.65 <v<sub>DD<3.6V</v<sub>	-	-	8	MHz
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>			8 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input actus tima	Master mode	3	-	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	6	-	-	
t _{h(SI)}	Data input hold time	Slave mode	2	-	-	ns
t _{a(SO}	Data output access time	Slave mode	18	-	52	
t _{dis(SO)}	Data output disable time	Slave mode	12	-	42	
t _{v(SO)}	Data output valid time	Slave mode	-	16	33	
		Master mode	-	4	6	
t _{v(MO)}	Data output hold time	Slave mode	11	-	-	
t _{h(SO)}		Master mode	3	-	-	

				(4)
Table 65. SPI	characteristics in	voltage	Range	2 (1)

1. Guaranteed by characterization results, not tested in production.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 31. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
A	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.300	0.370	0.450	0.0118	0.0146	0.0177	
с	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.600	-	-	0.2205	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.600	-	-	0.2205	-	
е	-	0.800	-	-	0.0315	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.100	-	-	0.0039	
A	-	-	1.600	-	-	0.0630	

Table 67. LQFP32	, 7 x 7 mm,	32-pin low-p	profile quad	flat package	mechanical data
------------------	-------------	--------------	--------------	--------------	-----------------

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 33. LQFP32 recommended footprint

1. Dimensions are expressed in millimeters.

7.4 UFQFPN20 package information

1. Drawing is not to scale.

UFQFPN20 device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.

Figure 42. Example of UFQFPN20 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

