

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc886-6ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

				`	/
Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P0.4	1/64		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
P0.5	2/1		Hi-Z	MRST_1 EXINT0_0 T2EX1_1 RXD1_0	SSC Master Receive Input/Slave Transmit Output External Interrupt Input 0 Timer 21 External Trigger Input UART1 Receive Data Input
				COUT62_1	Output of Capture/Compare channel 2
P0.6	-/2		PU	GPIO	
P0.7	47/62		PU	CLKOUT_1	Clock Output

Pin Definitions and Functions (cont'd) Table 3

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function			
P5		I/O		Port 5 Port 5 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for UART, UART1 and JTAG.			
P5.0	-/8		PU	EXINT1_1	External Interrupt Input 1		
P5.1	-/9		PU	EXINT2_1	External Interrupt Input 2		
P5.2	-/12		PU	RXD_2	UART Receive Data Input		
P5.3	-/13		PU	TXD_2	UART Transmit Data Output/Clock Output		
P5.4	_/14		PU	RXDO_2	UART Transmit Data Output		
P5.5	-/15		PU	TDO_2 TXD1_2	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output		
P5.6	-/19		PU	TCK_2 RXDO1_2	JTAG Clock Input UART1 Transmit Data Output		
P5.7	-/20		PU	TDI_2 RXD1_2	JTAG Serial Data Input UART1 Receive Data Input		

Table 3Pin Definitions and Functions (cont'd)

3.2 Memory Organization

The XC886/888 CPU operates in the following five address spaces:

- 12 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 1.5 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- A 128-byte Special Function Register area
- 24/32 Kbytes of Flash program memory (Flash devices); or 24/32 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices)

Figure 7 illustrates the memory address spaces of the 32-Kbyte Flash devices. For the 24-Kbyte Flash devices, the shaded banks are not available.

Figure 7 Memory Map of XC886/888 Flash Device

For both 24-Kbyte and 32-Kbyte ROM devices, the last four bytes of the ROM from $7FFC_{H}$ to $7FFF_{H}$ are reserved for the ROM signature and cannot be used to store user

Address Extension by Mapping

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC886/888 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

Table 7CORDIC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
^{∆0} H	CD_STATC Reset: 00 _H CORDIC Status and Data	Bit Field	KEEP Z	KEEP Y	KEEP X	DMAP	INT_E N	EOC	ERRO R	BSY
Control Register	Control Register	Туре	rw	rw	rw	rw	rw	rwh	rh	rh
а1 _Н	CD_CON Reset: 00 _H CORDIC Control Register	Bit Field	MPS		X_USI GN	ST_M ODE	ROTV EC	MC	DE	ST
		Туре	r	N	rw	rw	rw	r	w	rwh

3.2.4.4 System Control Registers

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Addr Bit 7 3 2 1 **Register Name** 6 5 4 0 RMAP = 0 or 1 IMOD 8F_H SYSCON0 Reset: 04_H Bit Field 0 0 1 0 RMAP System Control Register 0 F r r r r rw Туре rw RMAP = 0 SCU_PAGE STNR PAGE BFH Reset: 00_H Bit Field OP 0 Page Register Туре w w r rw RMAP = 0, PAGE 0 Reset: 00_H Bit Field URRIS JTAGT JTAGT EXINT EXINT EXINT URRIS MODPISEL 0 B3_H Peripheral Input Select Register Н DIS CKS 2IS 1IS 0IS rw Туре r rw rw rw rw rw rw Reset: 00_H B4_H **IRCON0** Bit Field 0 **EXINT** EXINT EXINT EXINT EXINT EXINT EXINT Interrupt Request Register 0 4 3 0 6 5 2 1 rwh Туре r rwh rwh rwh rwh rwh rwh Reset: 00_H в5_Н CANS **IRCON1** Bit Field 0 CANS ADCS ADCS RIR TIR EIR Interrupt Request Register 1 RC2 RC1 R0 R1 Туре r rwh rwh rwh rwh rwh rwh rwh B6_H Reset: 00_H 0 CANS 0 CANS **IRCON2** Bit Field Interrupt Request Register 2 RC3 RC0 Туре rwh rwh r r B7_H EXICON0 EXINT3 EXINT2 EXINT1 EXINT0 Reset: F0µ Bit Field External Interrupt Control Туре rw rw rw rw Register 0 Reset: 3F_H BAH EXICON1 Bit Field 0 EXINT6 EXINT5 EXINT4 External Interrupt Control rw rw rw Туре r Register 1 ввн NMICON Reset: 00_H Bit Field 0 NMI NMI NMI NMI NMI NMI NMI NMI Control Register ECC VDDP VDD OCDS FLASH PLL WDT Туре r rw rw rw rw rw rw rw

Table 8SCU Register Overview

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1				•					
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
C9 _H	SBUF Reset: 00 _H	Bit Field				V	۹L			
	Serial Data Buffer Register	Туре				rv	vh			
CA _H	BCON Reset: 00 _H	Bit Field		()			BRPRE		R
	Baud Rate Control Register	Туре			r		rw			rw
св _Н	BG Reset: 00 _H	Bit Field	BR_VALUE							
	Baud Rate Timer/Reload Register	Туре	rwh							
сс _Н	FDCON Reset: 00 _H	Bit Field	0					NDOV	FDM	FDEN
	Fractional Divider Control Register	Туре		r				rwh	rw	rw
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register		rw							
CeH	FDRES Reset: 00 _H	Bit Field				RES	ULT			
	Fractional Divider Result Register		rh							

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

XC886/888CLM

Functional Description

Figure 14 Interrupt Request Sources (Part 1)

- 1) BSL mode is automatically entered if no valid password is installed and data at memory address 0000H equals zero.
- 2) OSC is bypassed in MultiCAN BSL mode
- 3) Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

Note: The boot options are valid only with the default set of UART and JTAG pins.

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC886/888. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support

The CGU consists of an oscillator circuit and a PLL. In the XC886/888, the oscillator can be from either of these two sources: the on-chip oscillator (9.6 MHz) or the external oscillator (4 MHz to 12 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

(3.3)

System Frequency Selection

For the XC886/888, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. Table 24 provides examples on how $f_{\rm sys}$ = 96 MHz can be obtained for the different oscillator sources.

Table 24	System frequency (<i>f</i> _{svs} = 96 MHz)
----------	--

Oscillator	Fosc	Ν	Ρ	κ	Fsys	
On-chip	9.6 MHz	20	1	2	96 MHz	
External	8 MHz	24	1	2	96 MHz	
	6 MHz	32	1	2	96 MHz	
	4 MHz	48	1	2	96 MHz	

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC886/888 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC886/888 will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 28** shows the block diagram of the WDT unit.

Figure 28 WDT Block Diagram

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value ($\langle WDTREL \rangle * 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1 + WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

(3.4)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 29**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 33**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 33	Timer 2 Modes							
Mode	Description							
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition Reload event triggered by underflow condition 							
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event 							

3.22.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC886/888 Flash devices are given in Table 35.

Device Type	Device Name	JTAG ID	
Flash	XC886/888*-8FF	1012 0083 _H	
	XC886/888*-6FF	1012 5083 _H	
ROM	XC886/888*-8RF	1013 C083 _H	
	XC886/888*-6RF	1013 D083 _H	

Table 35JTAG ID Summary

Note: The asterisk (*) above denotes all possible device configurations.

103

3.23 Chip Identification Number

The XC886/888 identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 09_{H} for Flash devices and 22_{H} for ROM devices. However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 36 lists the chip identification numbers of available XC886/888 Flash and ROM device variants.

Product Variant	Chip Identification Number							
	AA-Step	AB-Step	AC-Step					
Flash Devices								
XC886CLM-8FFA 3V3	-	09500102 _H	0B500102 _H					
XC888CLM-8FFA 3V3	-	09500103 _H	0B500103 _H					
XC886LM-8FFA 3V3	-	09500122 _H	0B500122 _H					
XC888LM-8FFA 3V3	-	09500123 _H	0B500123 _H					
XC886CLM-6FFA 3V3	-	09551502 _H	0B551502 _H					
XC888CLM-6FFA 3V3	-	09551503 _н	0B551503 _H					
XC886LM-6FFA 3V3	-	09551522 _H	0B551522 _H					
XC888LM-6FFA 3V3	-	09551523 _н	0B551523 _H					
XC886CM-8FFA 3V3	-	09580102 _H	0B580102 _H					
XC888CM-8FFA 3V3	-	09580103 _H	0B580103 _H					
XC886C-8FFA 3V3	-	09580142 _H	0B580142 _H					
XC888C-8FFA 3V3	-	09580143 _H	0B580143 _H					
XC886-8FFA 3V3	-	09580162 _H	0B580162 _H					
XC888-8FFA 3V3	-	09580163 _H	0B580163 _H					
XC886CM-6FFA 3V3	-	095D1502 _H	0B5D1502 _H					
XC888CM-6FFA 3V3	-	095D1503 _H	0B5D1503 _H					
XC886C-6FFA 3V3	-	095D1542 _H	0B5D1542 _H					
XC888C-6FFA 3V3	-	095D1543 _H	0B5D1543 _H					

Table 36 Chip Identification Number

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			min.	max.		
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)
V_{DDP} = 3.3 V Range						
Output low voltage	V_{OL}	CC	_	1.0	V	I _{OL} = 8 mA
			-	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -8 mA
			V _{DDP} - 0.4	-	V	I _{OH} = -2.5 mA
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode
Input high voltage on RESET pin	V_{IHR}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode
Input Hysteresis	HYS	CC	$0.03 \times V_{ m DDP}$	-	V	CMOS Mode ¹⁾
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V	

4.2.3.1 ADC Conversion Timing

Conversion time, $t_{\rm C} = t_{\rm ADC} \times (1 + r \times (3 + n + STC))$, where r = CTC + 2 for CTC = $00_{\rm B}$, $01_{\rm B}$ or $10_{\rm B}$, r = 32 for CTC = $11_{\rm B}$, CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), $t_{\rm ADC} = 1 / f_{\rm ADC}$

4.2.4 **Power Supply Current**

 Table 41, Table 42, Table 43 and Table 44 provide the characteristics of the power supply current in the XC886/888.

Table 41Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit Values		Unit	Test Condition				
		typ. ¹⁾	max. ²⁾						
V _{DDP} = 5V Range									
Active Mode	I _{DDP}	27.2	32.8	mA	Flash Device ³⁾				
		24.3	29.8	mA	ROM Device ³⁾				
Idle Mode	I _{DDP}	21.1	25.3	mA	Flash Device ⁴⁾				
		18.2	21.6	mA	ROM Device ⁴⁾				
Active Mode with slow-down	I _{DDP}	14.1	17.0	mA	Flash Device ⁵⁾				
enabled		11.9	14.3	mA	ROM Device ⁵⁾				
Idle Mode with slow-down enabled	I _{DDP}	11.7	15.0	mA	Flash Device ⁶⁾				
		9.7	11.9	mA	ROM Device ⁶⁾				

1) The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

2) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP} , no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} , no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

4.3.3 Power-on Reset and PLL Timing

Table 49 provides the characteristics of the power-on reset and PLL timing in the XC886/888.

Table 46	Power-On Reset and PLL Timing (Operating Conditions appl	ly)

Parameter	Symbol		Limit Values			Unit	Test Conditions
			min.	typ.	max.	-	
Pad operating voltage	V _{PAD}	CC	2.3	_	-	V	1)
On-Chip Oscillator start-up time	t _{OSCST}	CC	_	_	500	ns	1)
Flash initialization time	t _{FINIT}	CC	_	160	-	μS	1)
RESET hold time	t _{RST}	SR	_	500	_	μS	$V_{\rm DDP}$ rise time (10% – 90%) \leq 500µs ¹⁾²⁾
PLL lock-in in time	t _{LOCK}	CC	_	_	200	μS	1)
PLL accumulated jitter	D _P		_	-	0.7	ns	1)3)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

2) RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5 V).

3) PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1.