

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc886-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Features: (continued)

- Power-on reset generation
- Brownout detection for core logic supply
- On-chip OSC and PLL for clock generation
 - PLL loss-of-lock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0
 - clock gating control to each peripheral
- Programmable 16-bit Watchdog Timer (WDT)
- Six ports
 - Up to 48 pins as digital I/O
 - 8 pins as digital/analog input
- 8-channel, 10-bit ADC
- Four 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2 and Timer 21 (T2 and T21)
- Multiplication/Division Unit for arithmetic operations (MDU)
- Software libraries to support floating point and MDU calculations
- CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions
- MultiCAN with 2 nodes, 32 message objects
- Capture/compare unit for PWM signal generation (CCU6)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 12-Kbyte Boot ROM)
 - 64 bytes of monitor RAM
- Packages:
 - PG-TQFP-48
 - PG-TQFP-64
- Temperature range *T*_A:
 - SAF (-40 to 85 °C)
 - SAK (-40 to 125 °C)

General Device Information

2.2 Logic Symbol

The logic symbols of the XC886/888 are shown in Figure 3.

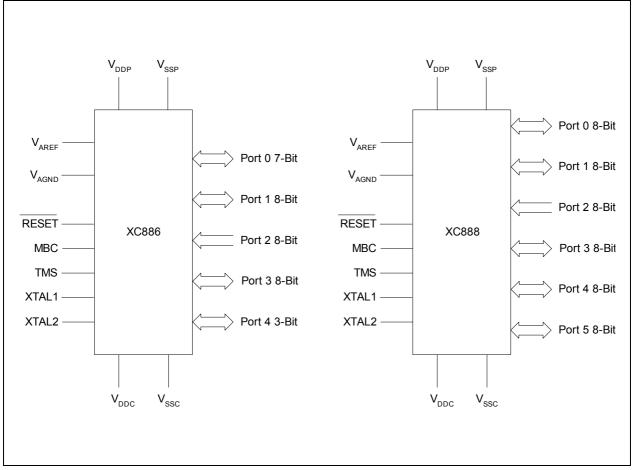


Figure 3 XC886/888 Logic Symbol

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

3.2.4 XC886/888 Register Overview

The SFRs of the XC886/888 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.1** to **Chapter 3.2.4.14**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0 or 1	I.								
81 _H	SP Reset: 07 _H	Bit Field				S	P			
	Stack Pointer Register	Туре				r	W			
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE
	Power Control Register	Туре	rw		r		rw	rw	r	rw
⁸⁸ H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw
89 _H	TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1	1M	GATE 0	TOS	T	M
		Туре	rw	rw	r	w	rw	rw	r	w
8A _H	TL0 Reset: 00 _H	Bit Field		•		V	AL	•		
	Timer 0 Register Low	Туре				rv	vh			
8B _H	TL1 Reset: 00 _H	Bit Field				V	AL			
	Timer 1 Register Low	Туре				rv	vh			
8C _H	THO Reset: 00 _H	Bit Field				V	AL			
	Timer 0 Register High	Туре				rv	vh			
8D _H	TH1 Reset: 00 _H	Bit Field				V	AL			
	Timer 1 Register High	Туре				rv	vh			
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
99 _H	SBUF Reset: 00 _H	Bit Field				V	AL			
	Serial Data Buffer Register	Туре				rv	vh			
A2 _H	EO Reset: 00 _H Extended Operation Register	Bit Field		0		TRAP_ EN		0		DPSE L0
		Туре		r		rw		r		rw

Table 5 CPU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
B3 _H	MR1 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 1	Туре				r	h				
B4 _H	MD2 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 2	Туре				r	w				
B4 _H	MR2 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 2	Туре				r	h				
в5 _Н	MD3 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 3	Туре	rw								
в5 _Н	MR3 Reset: 00 _H	Bit Field	eld DATA								
	MDU Result Register 3	Туре				r	h				
B6 _H	MD4 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 4	Туре				r	w				
B6 _H	MR4 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 4	Туре				r	h				
в7 _Н	MD5 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 5	Туре				r	w				
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 5	Туре				r	'n				

Table 6MDU Register Overview (cont'd)

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1							1		
9A _H	CD_CORDXL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC X Data Low Byte	Туре				r	W			
9B _H	CD_CORDXH Reset: 00 _H	Bit Field				DA	TAH			
	CORDIC X Data High Byte	Туре				r	W			
9CH	CD_CORDYL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC Y Data Low Byte	Туре				r	W			
9D _H	CD_CORDYH Reset: 00 _H	Bit Field				DA	TAH			
	CORDIC Y Data High Byte	Туре				r	W			
9E _H	CD_CORDZL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC Z Data Low Byte	Туре				r	W			
9F _H	CD_CORDZH Reset: 00 _H	Bit Field				DA	ТАН			
	CORDIC Z Data High Byte	Туре				r	W			

Table 8SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
вс _Н	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
вd _Н	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BRDIS		BRPRE		R
	Baud Rate Control Register	Туре	r	N	r	rw		rw rv		
be _h	BG Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer/Reload Register	Туре				rv	h			
E9 _H	FDCON Reset: 00 _H Fractional Divider Control Register	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	EP			
	Fractional Divider Reload Register	Туре				r	N			
EB _H	FDRES Reset: 00 _H	Bit Field				RES	ULT			
	Fractional Divider Result Register	Туре				r	h			
RMAP =	: 0, PAGE 1									
вз _Н	ID Reset: UU _H	Bit Field			PRODID			VERID		
	Identity Register	Туре			r		r			
B4 _H	PMCON0 Reset: 00 _H Power Mode Control Register 0	Bit Field	0	WDT RST	WKRS	WK SEL	SD	PD	V	/S
		Туре	r	rwh	rwh	rw	rw	rwh	r	w
в5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2_ DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
в6 _Н	OSC_CON Reset: 08 _H OSC Control Register	Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR
		Туре		r		rw	rw	rw	rwh	rh
в7 _Н	PLL_CON Reset: 90 _H PLL Control Register	Bit Field		N	VIV		VCO BYP	OSC DISC	RESL D	LOCK
		Туре		r	w		rw	rw	rwh	rh
ва _Н	CMCON Reset: 10 _H Clock Control Register	Bit Field	VCO SEL	KDIV	0	FCCF G		CLK	REL	
		Туре	rw	rw	r	rw		n	N	
вв _Н	PASSWD Reset: 07 _H Password Register	Bit Field			PASS			PROT ECT_S	MC	DE
		Туре			wh			rh	r	w
вс _Н	FEAL Reset: 00 _H	Bit Field				ECCER	RADDR	DDR		
	Flash Error Address Register	Туре				r	 ו			
вd _Н	FEAH Reset: 00 _H	Bit Field				ECCER	RADDR			
	Flash Error Address Register	Туре				r	h			

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 3 High	Туре				r	h			
RMAP =	0, PAGE 3									
CA _H	ADC_RESRA0L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 0, View A Low	Туре		rh		rh	rh		rh	
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 0, View A High	Туре				r	h			
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 1, View A Low	Туре		rh		rh	rh		rh	
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 1, View A High	Туре				r	h			
Ce _H	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 2, View A Low	Туре		rh		rh	rh		rh	
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 2, View A High	Туре				r	h			
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 3, View A Low	Туре		rh		rh	rh		rh	
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 3, View A High	Туре				r	h			
RMAP =	= 0, PAGE 4									
CA _H	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CDH	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
Ce _H	ADC_VFCR Reset: 00 _H	Bit Field			ט		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре			r		w	w	w	w
RMAP =	= 0, PAGE 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh							
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
cc ^H	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	W	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw							
Ceh	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	()	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	()	EVINC 1	EVINC 0
	Register	Туре	w	w	w	w		r	w	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	()	EVINS 1	EVINS 0
		Туре	w	w	w	w		r	w	w
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	()	EVINP 1	EVINP 0
	Register	Туре	rw	rw	rw	rw		r	rw	rw
RMAP =	= 0, PAGE 6									
CA _H	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4		()	
	Conversion Request Control Register 1	Туре	rwh	rwh	rwh	rwh		I	r	
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		()	
	Conversion Request Pending Register 1	Туре	rwh	rwh	rwh	rwh		I	r	
сс ^н	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw
CD _H	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT
		Туре	w	w	w	w	r	rw	r	rw
Ceh	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	()	FI	LL
		Туре	r	r	rh	rh		r	r	h
CF _H	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
	Queue 0 Register 0	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	۲
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	२
	Queue Input Register 0	Туре	w	w	w		r		w	

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field			<u> </u>	CC6	OSL	<u> </u>	<u> </u>	
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh			
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field				CC6	0SH			
	Capture/Compare Shadow Register for Channel CC60 High	Туре				rv	vh			
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field				CC6	51SL			
	Capture/Compare Shadow Register for Channel CC61 Low	Туре				rv	vh			
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field				CC6	1SH			
	Capture/Compare Shadow Register for Channel CC61 High	Туре				rv	vh			
Fe _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	2SL			
	Capture/Compare Shadow Register for Channel CC62 Low	Туре				rv	vh			
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field				CC6	2SH			
	Capture/Compare Shadow Register for Channel CC62 High	Туре				rv	vh			
RMAP =	0, PAGE 1									
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL			
	Capture/Compare Register for Channel CC63 Low	Туре				r	h			
98 _H	CCU6_CC63RH Reset: 00 _H	Bit Field				CC6	3VH			
	Capture/Compare Register for Channel CC63 High	Туре				r	h			
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field				T12	PVL			
	Timer T12 Period Register Low	Туре				rv	vh			
9D _H	CCU6_T12PRH Reset: 00 _H Timer T12 Period Register High	Bit Field				T12	PVH			
		Туре				rv	vh			
9E _H	CCU6_T13PRLReset: 00HTimer T13 Period Register Low	Bit Field				T13	PVL			
		Туре				rv	vh			
9F _H	CCU6_T13PRH Reset: 00 _H Timer T13 Period Register High	Bit Field				T13	PVH			
		Туре				rv	vh			
A4 _H	CCU6_T12DTCL Reset: 00 _H Dead-Time Control Register for	Bit Field				D	ΓM			
	Timer T12 Low	Туре				r	N			
А5 _Н	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	СТМ	CDIR	STE1 2	T12R	T12 PRE		T12CLK	
		Туре	rw	rh	rh	rh	rw		rw	
А7 _Н	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field		0	STE1 3	T13R	T13 PRE		T13CLK	
		Туре		r	rh	rh	rw		rw	
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CC6	60VL			
	Capture/Compare Register for Channel CC60 Low	Туре				r	h			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FB _H	CCU6_CC60RH Reset: 00 _H	Bit Field		1	1	CC6	60VH	1	1	1
	Capture/Compare Register for Channel CC60 High	Туре				r	'n			
FC _H	CCU6_CC61RL Reset: 00 _H	Bit Field				CC6	61VL			
	Capture/Compare Register for Channel CC61 Low	Туре				r	'n			
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field				CC6	61VH			
	Capture/Compare Register for Channel CC61 High	Туре	rh							
FE _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CC6	62VL			
	Capture/Compare Register for Channel CC62 Low	Туре				r	h			
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	62VH			
	Capture/Compare Register for Channel CC62 High	Туре				r	'n			
RMAP =	0, PAGE 2	_					_			
9A _H	CCU6_T12MSELL Reset: 00 _H	Bit Field		MS	EL61			MSE	EL60	
	T12 Capture/Compare Mode Select Register Low	Туре		r	w			r	w	
9В _Н	CCU6_T12MSELH Reset: 00 _H	Bit Field	DBYP		HSYNC			MSE	EL62	
	T12 Capture/Compare Mode Select Register High	Туре	rw		rw			r	w	
9CH	CCU6_IENL Reset: 00 _H	Bit Field	ENT1	ENT1	ENCC	ENCC	ENCC	ENCC	ENCC	ENCC
	Capture/Compare Interrupt Enable Register Low		2 PM	2 OM	62F	62R	61F	61R	60F	60R
		Туре	rw	rw						
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPO	CC61	INPO	CC60
	Capture/Compare Interrupt Node Pointer Register Low	Туре	r	w	r	w	r	w	r	w
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	(0	INP	T13	INF	PT12	INP	ERR
	Capture/Compare Interrupt Node Pointer Register High	Туре		r	r	w	r	w	r	w
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R
	Set Register Low	Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM
	Set Register High	Туре	w	w	w	w	w	w	w	w
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL	•	
	Passive State Level Register	Туре	rwh	r			rv	vh		
а7 _Н	CCU6_MCMCTR Reset: 00 _H	Bit Field	(0	SW	SYN	0		SWSEL	
	Multi-Channel Mode Control Register	Туре		r	r	w	r		rw	
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC
		Туре	r	r	W		rw		rw	rw

Functional Description

Interrupt Source	Vector Address	Assignment for XC886/888	Enable Bit	SFR
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21		
		CORDIC		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]	1	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4	1	
		External Interrupt 5		
		External Interrupt 6		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

Table 25 shows the VCO range for the XC886/888.

<i>f</i> _{vcomin}	f _{VCOmax}	$f_{\sf VCOFREEmin}$	<i>f</i> _{VCOFREEmax}	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in **Figure 25** can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor. **Figure 25** shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, f_{sys} . During normal system operation, the typical frequencies of the different modules are as follow:

- CPU clock: CCLK, SCLK = 24 MHz
- Fast clock (used by MultiCAN): FCLK = 24 or 48 MHz
- Peripheral clock: PCLK = 24 MHz
- Flash Interface clock: CCLK2 = 48 MHz and CCLK = 24 MHz

In addition, different clock frequencies can be output to pin CLKOUT (P0.0 or P0.7). The clock output frequency, which is derived from the clock output divider (bit COREL), can further be divided by 2 using toggle latch (bit TLEN is set to 1). The resulting output frequency has a 50% duty cycle. **Figure 26** shows the clock distribution of the XC886/888.

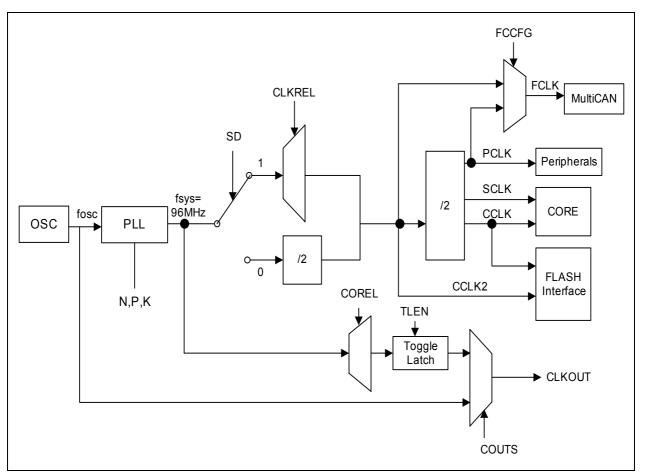
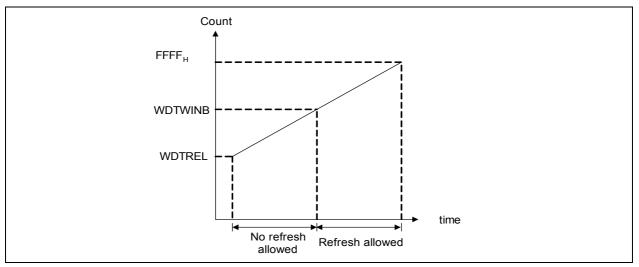



Figure 26 Clock Generation from f_{sys}

Figure 29 WDT Timing Diagram

Table 27 lists the possible watchdog time ranges that can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Table 27Watchdog Time Ranges

Reload value In WDTREL	Prescaler for <i>f</i> _{PCLK}					
	2 (WDTIN = 0)	128 (WDTIN = 1)				
	24 MHz	24 MHz				
FF _H	21.3 μs	1.37 ms				
FF _H 7F _H	2.75 ms	176 ms				
00 _H	5.46 ms	350 ms				

needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes.

In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field.

Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

STEP 1: Initialize interface for reception and timer for baud rate measurement

STEP 2: Wait for an incoming LIN frame from host

STEP 3: Synchronize the baud rate to the host

- STEP 4: Enter for Master Request Frame or for Slave Response Frame
- Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.

3.20 Controller Area Network (MultiCAN)

The MultiCAN module contains two Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Both CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each CAN node has it's own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list. A powerful, command driven list controller performs all list operations.

The bit timings for the CAN nodes are derived from the peripheral clock (f_{CAN}) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver.

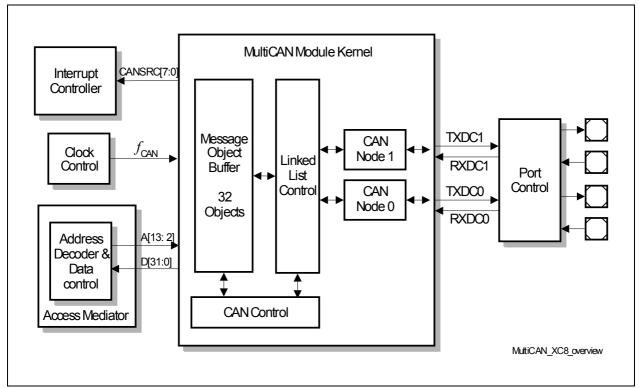


Figure 34 Overview of the MultiCAN

Features

Compliant to ISO 11898.

Electrical Parameters

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Parameter	Symbol	Limi	it Values	Unit	Notes	
		min.	max.			
Ambient temperature	T _A	-40	125	°C	under bias	
Storage temperature	T _{ST}	-65	150	°C	1)	
Junction temperature	T _J	-40	150	°C	under bias ¹⁾	
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)	
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾	
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)	
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA	1)	

Table 4-1	Absolute Maximum Rating Parameters
-----------	------------------------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Table 37

Electrical Parameters

Operating Conditions 4.1.3

The following operating conditions must not be exceeded in order to ensure correct operation of the XC886/888. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Parameter		Symbol	Limit	Values	Unit	Notes/	
			min.	max.		Condition	
Distigation		17	4 5		11		

Operating Condition Parameters

	•				
		min.	max.		Conditions
Digital power supply voltage	V_{DDP}	4.5	5.5	V	5V Device
Digital power supply voltage	V _{DDP}	3.0	3.6	V	3.3V Device
Digital ground voltage	V _{SS}	0		V	
Digital core supply voltage	V _{DDC}	2.3	2.7	V	
System Clock Frequency ¹⁾	$f_{\rm SYS}$	88.8	103.2	MHz	
Ambient temperature	T _A	-40	85	°C	SAF- XC886/888
		-40	125	°C	SAK- XC886/888

1) f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 4. Please refer to Figure 26 for detailed description.

Electrical Parameters

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 40**, **Figure 41** and **Figure 42**.

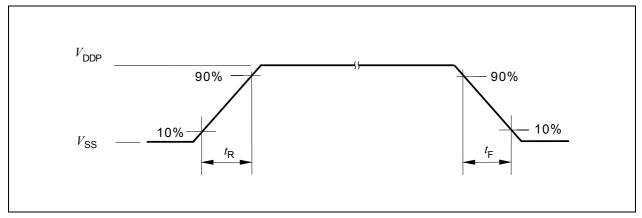


Figure 40 Rise/Fall Time Parameters

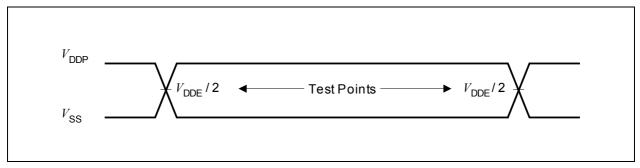


Figure 41 Testing Waveform, Output Delay

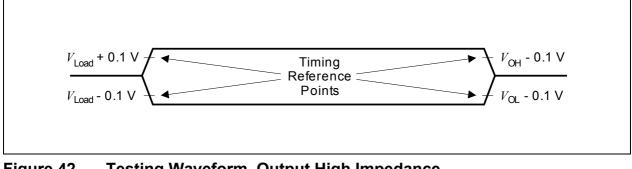


Figure 42 Testing Waveform, Output High Impedance

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC886/888 package and reliability section.

5.1 Package Parameters

Table 1 provides the thermal characteristics of the package used in XC886 and XC888.

Parameter	Symbol		Limit Values		Unit	Notes
			Min.	Max.		
PG-TQFP-48 (XC886)	1			- I	l	
Thermal resistance junction case	R _{TJC}	CC	-	13	K/W	1)2)
Thermal resistance junction lead	R _{TJL}	CC	-	32.5	K/W	1)2)_
PG-TQFP-64 (XC888)	•					
Thermal resistance junction case	R _{TJC}	CC	-	12.6	K/W	1)2)
Thermal resistance junction lead	R_{TJL}	CC	-	33.4	K/W	1)2)

Table 1 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.