

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc886-8ffi-3v3-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Features: (continued)

- Power-on reset generation
- Brownout detection for core logic supply
- On-chip OSC and PLL for clock generation
 - PLL loss-of-lock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0
 - clock gating control to each peripheral
- Programmable 16-bit Watchdog Timer (WDT)
- Six ports
 - Up to 48 pins as digital I/O
 - 8 pins as digital/analog input
- 8-channel, 10-bit ADC
- Four 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2 and Timer 21 (T2 and T21)
- Multiplication/Division Unit for arithmetic operations (MDU)
- Software libraries to support floating point and MDU calculations
- CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions
- MultiCAN with 2 nodes, 32 message objects
- Capture/compare unit for PWM signal generation (CCU6)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 12-Kbyte Boot ROM)
 - 64 bytes of monitor RAM
- Packages:
 - PG-TQFP-48
 - PG-TQFP-64
- Temperature range *T*_A:
 - SAF (-40 to 85 °C)
 - SAK (-40 to 125 °C)

Summary of Features

Table 2Device Profile (cont'd)

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 3V3	Flash	32	3.3	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 3V3	Flash	24	3.3	-40 to 85	Industrial

- Note: The asterisk (*) above denotes the device configuration letters from **Table 1**. Corresponding ROM derivatives will be available on request.
- Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC886/888 throughout this document.

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery

For the available ordering codes for the XC886/888, please refer to your responsible sales representative or your local distributor.

Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

General Device Information

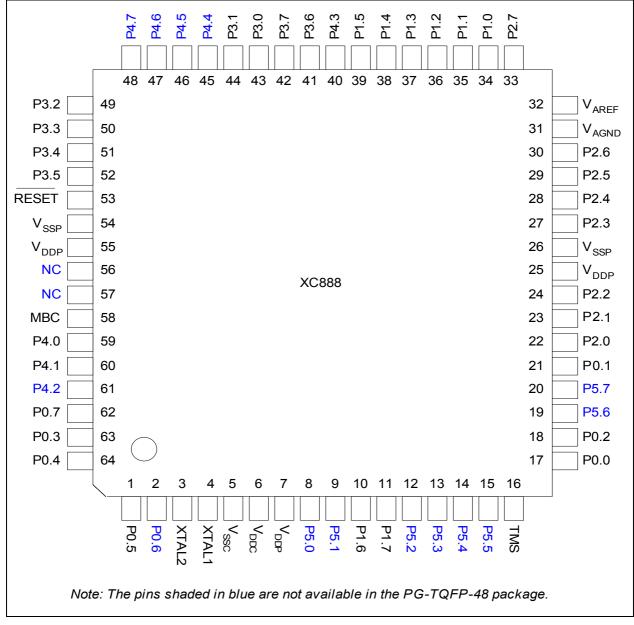


Figure 5 XC888 Pin Configuration, PG-TQFP-64 Package (top view)

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
Р3		I/O		I/O port. It ca	B-bit bidirectional general purpose an be used as alternate functions ART1, Timer 21 and MultiCAN.
P3.0	35/43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output
P3.1	36/44		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output
P3.2	37/49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1
P3.3	38/50		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output
P3.4	39/51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input
P3.5	40/52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output
P3.6	33/41		PD	CTRAP_0	CCU6 Trap Input

Table 3Pin Definitions and Functions (cont'd)

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P5		I/O		I/O port. It ca	8-bit bidirectional general purpose an be used as alternate functions IART1 and JTAG.
P5.0	-/8		PU	EXINT1_1	External Interrupt Input 1
P5.1	-/9		PU	EXINT2_1	External Interrupt Input 2
P5.2	-/12		PU	RXD_2	UART Receive Data Input
P5.3	-/13		PU	TXD_2	UART Transmit Data Output/Clock Output
P5.4	_/14		PU	RXDO_2	UART Transmit Data Output
P5.5	-/15		PU	TDO_2 TXD1_2	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output
P5.6	-/19		PU	TCK_2 RXDO1_2	JTAG Clock Input UART1 Transmit Data Output
P5.7	-/20		PU	TDI_2 RXD1_2	JTAG Serial Data Input UART1 Receive Data Input

Table 3Pin Definitions and Functions (cont'd)

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function
V _{DDP}	7, 17, 43/ 7, 25, 55	_	-	I/O Port Supply (3.3 or 5.0 V) Also used by EVR and analog modules. All pins must be connected.
$V_{\rm SSP}$	18, 42/26, 54	_	-	I/O Port Ground All pins must be connected.
V_{DDC}	6/6	_	_	Core Supply Monitor (2.5 V)
V _{SSC}	5/5	_	_	Core Supply Ground
V_{AREF}	24/32	_	_	ADC Reference Voltage
V_{AGND}	23/31	_	_	ADC Reference Ground
XTAL1	4/4	I	Hi-Z	External Oscillator Input (backup for on-chip OSC, normally NC)
XTAL2	3/3	0	Hi-Z	External Oscillator Output (backup for on-chip OSC, normally NC)
TMS	10/16	1	PD	Test Mode Select
RESET	41/53	1	PU	Reset Input
MBC ¹⁾	44/58	1	PU	Monitor & BootStrap Loader Control
NC	-/56, 57	_	-	No Connection

Table 3Pin Definitions and Functions (cont'd)

1) An external pull-up device in the range of 4.7 k Ω to 100 k Ω . is required to enter user mode. Alternatively MBC can be tied to high if alternate functions (for debugging) of the pin are not utilized.

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

Table 7CORDIC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A0 _H	CORDIC Status and Data		KEEP Z	KEEP Y	KEEP X	DMAP	INT_E N	EOC	ERRO R	BSY
	Control Register	Туре	rw	rw	rw	rw	rw	rwh	rh	rh
А1 _Н	CD_CON Reset: 00 _H CORDIC Control Register	Bit Field	MPS		X_USI GN	ST_M ODE	ROTV EC	MC	DE	ST
		Туре	r	N	rw	rw	rw	rw		rwh

3.2.4.4 System Control Registers

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Addr Bit 7 3 2 1 **Register Name** 6 5 4 0 RMAP = 0 or 1 IMOD 8F_H SYSCON0 Reset: 04_H Bit Field 0 0 1 0 RMAP System Control Register 0 F r r r r rw Туре rw RMAP = 0 SCU_PAGE STNR PAGE BFH Reset: 00_H Bit Field OP 0 Page Register Туре w w r rw RMAP = 0, PAGE 0 Reset: 00_H Bit Field URRIS JTAGT JTAGT EXINT EXINT EXINT URRIS MODPISEL 0 B3_H Peripheral Input Select Register Н DIS CKS 2IS 1IS 0IS rw Туре r rw rw rw rw rw rw Reset: 00_H B4_H **IRCON0** Bit Field 0 **EXINT** EXINT EXINT EXINT EXINT EXINT EXINT Interrupt Request Register 0 4 3 0 6 5 2 1 rwh Туре r rwh rwh rwh rwh rwh rwh Reset: 00_H в5_Н CANS **IRCON1** Bit Field 0 CANS ADCS ADCS RIR TIR EIR Interrupt Request Register 1 RC2 RC1 R0 R1 Туре r rwh rwh rwh rwh rwh rwh rwh B6_H Reset: 00_H 0 CANS 0 CANS **IRCON2** Bit Field Interrupt Request Register 2 RC3 RC0 Туре rwh rwh r r B7_H EXICON0 EXINT3 EXINT2 EXINT1 EXINT0 Reset: F0µ Bit Field External Interrupt Control Туре rw rw rw rw Register 0 Reset: 3F_H BAH EXICON1 Bit Field 0 EXINT6 EXINT5 EXINT4 External Interrupt Control rw rw rw Туре r Register 1 ввн NMICON Reset: 00_H Bit Field 0 NMI NMI NMI NMI NMI NMI NMI NMI Control Register ECC VDDP VDD OCDS FLASH PLL WDT Туре r rw rw rw rw rw rw rw

Table 8SCU Register Overview

XC886/888CLM

Functional Description

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0, PAGE 1								L	
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Select Register	Туре	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
в1 _Н	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2									
⁸⁰ H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H P0 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H P1 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
91 _H	P1_ALTSEL1 Reset: 00 _H P1 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H P5 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0										
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field			0			CIS	SIS	MIS	
	Port Input Select Register	Туре			r			rw	rw	rw	
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М		
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw	rw				
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С		
	Control Register Low Operating Mode	Туре		l	r		rh				
ав _Н	B _H SSC_CONH Reset: 00 _H Control Register High Programming Mode	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
		Туре	rw	rw	r	rw	rw	rw	rw	rw	
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
ac _h	SSC_TBL Reset: 00 _H	Bit Field				TB_V	ALUE				
	Transmitter Buffer Register Low	Туре				n	N				
ad _H	SSC_RBL Reset: 00 _H	Bit Field				RB_V	ALUE				
	Receiver Buffer Register Low	Туре				rl	า				
ае _Н	SSC_BRL Reset: 00 _H	Bit Field	it Field BR_VALUE								
	Baud Rate Timer Reload Register Low	Туре	rw								
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer Reload Register High	Туре				n	N				

Table 16 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 0									
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AU	AD	BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	r	W	rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _h	ADH Reset: 00 _H CAN Address Register High	Bit Field		()		CA13	CA12	CA11	CA10
		Туре			ſ		rwh	rwh	rwh	rwh

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC886/888 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 13 to **Figure 17** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

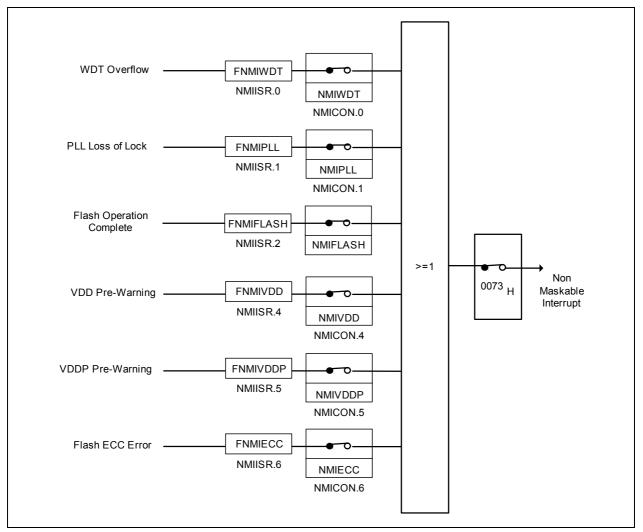


Figure 13 Non-Maskable Interrupt Request Sources

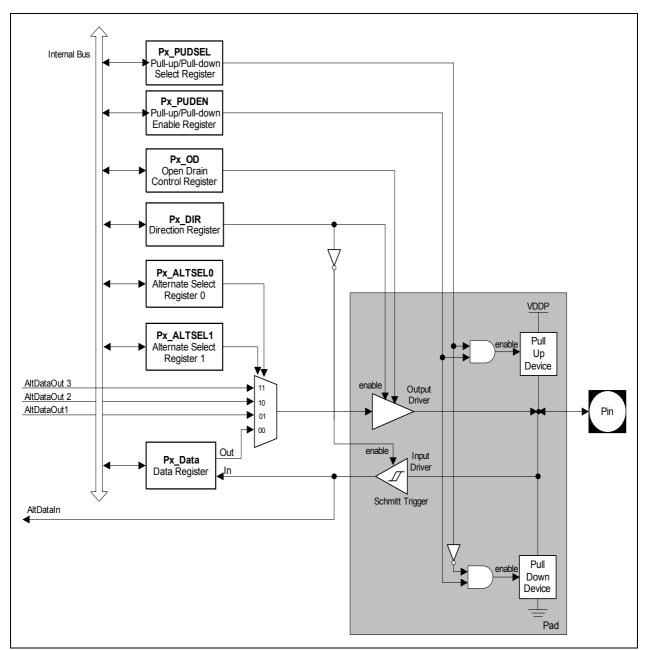
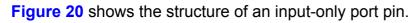



Figure 19 General Structure of Bidirectional Port

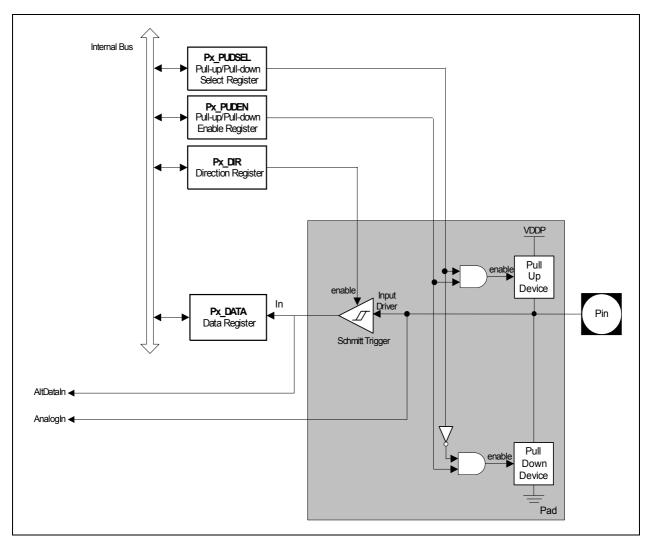


Figure 20 General Structure of Input Port

XC886/888CLM

Functional Description

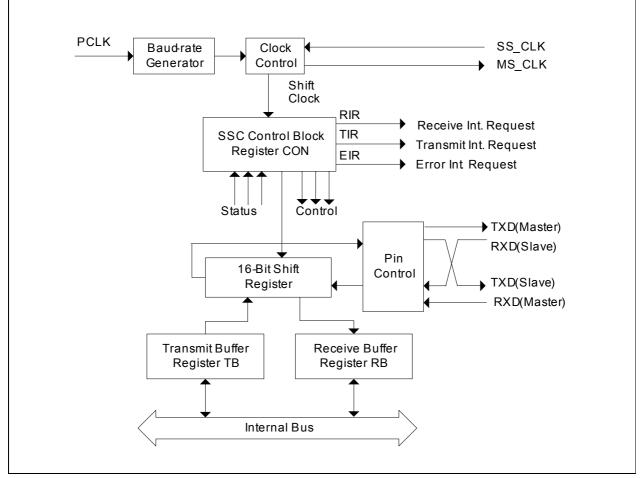


Figure 32 SSC Block Diagram

3.23 Chip Identification Number

The XC886/888 identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 09_{H} for Flash devices and 22_{H} for ROM devices. However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 36 lists the chip identification numbers of available XC886/888 Flash and ROM device variants.

Product Variant	Chip Identification Number							
	AA-Step	AB-Step	AC-Step					
Flash Devices								
XC886CLM-8FFA 3V3	-	09500102 _H	0B500102 _H					
XC888CLM-8FFA 3V3	-	09500103 _H	0B500103 _H					
XC886LM-8FFA 3V3	-	09500122 _H	0B500122 _H					
XC888LM-8FFA 3V3	-	09500123 _H	0B500123 _H					
XC886CLM-6FFA 3V3	-	09551502 _H	0B551502 _H					
XC888CLM-6FFA 3V3	-	09551503 _H	0B551503 _H					
XC886LM-6FFA 3V3	-	09551522 _H	0B551522 _H					
XC888LM-6FFA 3V3	-	09551523 _н	0B551523 _H					
XC886CM-8FFA 3V3	-	09580102 _H	0B580102 _H					
XC888CM-8FFA 3V3	-	09580103 _H	0B580103 _H					
XC886C-8FFA 3V3	-	09580142 _H	0B580142 _H					
XC888C-8FFA 3V3	-	09580143 _H	0B580143 _H					
XC886-8FFA 3V3	-	09580162 _H	0B580162 _H					
XC888-8FFA 3V3	-	09580163 _H	0B580163 _H					
XC886CM-6FFA 3V3	-	095D1502 _H	0B5D1502 _H					
XC888CM-6FFA 3V3	-	095D1503 _H	0B5D1503 _H					
XC886C-6FFA 3V3	-	095D1542 _H	0B5D1542 _H					
XC888C-6FFA 3V3	-	095D1543 _H	0B5D1543 _H					

Table 36 Chip Identification Number

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Parameter	Symbol	Limi	it Values	Unit	Notes	
		min.	max.			
Ambient temperature	T _A	-40	125	°C	under bias	
Storage temperature	T _{ST}	-65	150	°C	1)	
Junction temperature	T _J	-40	150	°C	under bias ¹⁾	
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)	
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾	
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)	
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA	1)	

Table 4-1	Absolute Maximum Rating Parameters
-----------	------------------------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 38 provides the characteristics of the input/output pins of the XC886/888.

Table 38	Input/Output Characteristics	s (Operating Conditions apply)
----------	------------------------------	--------------------------------

Parameter	Symbol		Limit Values		Unit	Test Conditions
			min.	max.		
V _{DDP} = 5 V Range						·
Output low voltage	V _{OL}	CC	-	1.0	V	I _{OL} = 15 mA
			-	1.0	V	$I_{\rm OL}$ = 5 mA, current into all pins > 60 mA
			-	0.4	V	$I_{\rm OL}$ = 5 mA, current into all pins \leq 60 mA
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{ОН} = -15 mA
			V _{DDP} - 1.0	-	V	$I_{\rm OH}$ = -5 mA, current from all pins > 60 mA
			V _{DDP} - 0.4	-	V	$I_{\rm OH}$ = -5 mA, current from all pins \leq 60 mA
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input low voltage on RESET pin	V _{ILR}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{ m DDP}$	V _{DDP}	V	CMOS Mode

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions
			min.	max.		
Input high voltage on RESET pin	V _{IHR}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode
Input Hysteresis on port pins	HYSP	CC	$0.07 \times V_{ m DDP}$	-	V	CMOS Mode ¹⁾
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)
Input low voltage at XTAL1	V_{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V	
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V	
Pull-up current	$I_{\rm PU}$	SR	-	-10	μA	V _{IHP,min}
			-150	_	μA	$V_{\rm ILP,max}$
Pull-down current	$I_{\rm PD}$	SR	-	10	μA	$V_{ILP,max}$
			150	-	μA	V _{IHP,min}
Input leakage current	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C^{2)}$
Input current at XTAL1	I_{ILX}	CC	-10	10	μA	
Overload current on any pin	I _{OV}	SR	-5	5	mA	
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)
Maximum current per pin (excluding V_{DDP} and V_{SS})	$I_{\rm M}{ m SR}$	SR	-	15	mA	
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	-	90	mA	
Maximum current into V_{DDP}	I _{mvddp}	SR	-	120	mA	3)

Parameter	Symbol		Limit Values		Unit	Test Conditions
			min.	max.		
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)
V_{DDP} = 3.3 V Range						
Output low voltage	V_{OL}	CC	_	1.0	V	I _{OL} = 8 mA
			—	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -8 mA
			V _{DDP} - 0.4	-	V	I _{ОН} = -2.5 mA
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	_	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode
Input high voltage on RESET pin	V_{IHR}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode
Input Hysteresis	HYS	CC	$0.03 \times V_{ m DDP}$	_	V	CMOS Mode ¹⁾
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V	