

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

LINbus, SSI, UART/USART
ut Detect/Reset, POR, PWM, WDT
K x 8)
3
5V
b
85°C (TA)
Nount
48
ww.e-xfl.com/product-detail/infineon-technologies/saf-xc886clm-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

XC886/888 Variant Devices

The XC886/888 product family features devices with different configurations, program memory sizes, package options, power supply voltage, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements.

The list of XC886/888 device configurations are summarized in **Table 1**. For each configuration, 2 types of packages are available:

- PG-TQFP-48, which is denoted by XC886 and;
- PG-TQFP-64, which is denoted by XC888.

Device Name	CAN Module	LIN BSL Support	MDU Module
XC886/888	No	No	No
XC886/888C	Yes	No	No
XC886/888CM	Yes	No	Yes
XC886/888LM	No	Yes	Yes
XC886/888CLM	Yes	Yes	Yes

Table 1Device Configuration

Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

From these 10 different combinations of configuration and package type, each are further made available in many sales types, which are grouped according to device type, program memory sizes, power supply voltage, temperature and quality profile (Automotive or Industrial), as shown in Table 2.

Table 2Device Profile

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 5V	Flash	32	5.0	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 5V	Flash	24	5.0	-40 to 85	Industrial

General Device Information

2.4 Pin Definitions and Functions

The functions and default states of the XC886/888 external pins are provided in Table 3.

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function				
P0		I/O		Port 0 Port 0 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate function for the JTAG, CCU6, UART, UART1, Timer Timer 21, MultiCAN and SSC.				
P0.0	11/17		Hi-Z	TCK_0 T12HR_1 CC61_1 CLKOUT_0 RXDO_1	JTAG Clock Input CCU6 Timer 12 Hardware Run Input Input/Output of Capture/Compare channel 1 Clock Output UART Transmit Data Output			
P0.1	13/21		Hi-Z	TDI_0 T13HR_1 RXD_1 RXDC1_0 COUT61_1 EXF2_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input UART Receive Data Input MultiCAN Node 1 Receiver Input Output of Capture/Compare channel 1 Timer 2 External Flag Output			
P0.2	12/18		PU	CTRAP_2 TDO_0 TXD_1 TXDC1_0	CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 1 Transmitter Output			
P0.3	48/63		Hi-Z	SCK_1 COUT63_1 RXDO1_0	SSC Clock Input/Output Output of Capture/Compare channel 3 UART1 Transmit Data Output			

 Table 3
 Pin Definitions and Functions

General Device Information

Table 0	T III Belli				u)
Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P0.4	1/64		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
P0.5	2/1		Hi-Z	MRST_1 EXINT0_0 T2EX1_1 RXD1_0 COUT62_1	SSC Master Receive Input/Slave Transmit Output External Interrupt Input 0 Timer 21 External Trigger Input UART1 Receive Data Input Output of Capture/Compare channel 2
P0.6	-/2		PU	GPIO	
P0.7	47/62		PU	CLKOUT_1	Clock Output

Pin Definitions and Functions (cont'd) Table 3

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function				
P1		I/O		Port 1 Port 1 is an 8-bit bidirectional general pull/O port. It can be used as alternate function for the JTAG, CCU6, UART, Timer 0, Timer 2, Timer 21, MultiCAN and SSC.				
P1.0	26/34		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input			
P1.1	27/35		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output			
P1.2	28/36		PU	SCK_0	SSC Clock Input/Output			
P1.3	29/37		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output			
P1.4	30/38		PU	MRST_0 EXINT0_1 RXDC1_3	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input			
P1.5	31/39		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output			

Table 3Pin Definitions and Functions (cont'd)

code or data. Therefore, even though the ROM device contains either a 24-Kbyte or 32-Kbyte ROM, the maximum size of code that can be placed in the ROM is the given size less four bytes.

3.2.1 Memory Protection Strategy

The XC886/888 memory protection strategy includes:

- Read-out protection: The user is able to protect the contents in the Flash (for Flash devices) and ROM (for ROM devices) memory from being read
 - Flash protection is enabled by programming a valid password (8-bit non-zero value) via BSL mode 6.
 - ROM protection is fixed with the ROM mask and is always enabled.
- Flash program and erase protection: This feature is available only for Flash devices.

3.2.1.1 Flash Memory Protection

As long as a valid password is available, all external access to the device, including the Flash, will be blocked.

For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection.

Flash hardware protection is available only for Flash devices and comes in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

Flash Protection	Without hardware protection	With hardware protection							
Hardware Protection Mode	-	0	1						
Activation	Program a valid password via BSL mode 6								
Selection	Bit 4 of password = 0	Bit 4 of password = 1 MSB of password = 0	Bit 4 of password = 1 MSB of password = 1						
P-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash	Read instructions in the P-Flash or D- Flash						
External access to P-Flash	Not possible	Not possible	Not possible						

Table 4Flash Protection Modes

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

3.2.3.1 Password Register

PASSWD

Pass	Password Register Reset Value: 07 _H												
	7	6	5	4	3	2	1	0					
	PASS					PROTECT _S	МС	DE					
. <u> </u>			wh		rh	r	W						

Field	Bits	Туре	Description
MODE	[1:0]	rw	 Bit Protection Scheme Control Bits 00 Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11_B and 00_B, the bit field PASS must be written with 11000_B; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	 Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits.
PASS	[7:3]	wh	Password BitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
с₀ _Н	T2_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	0		EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	I	r	rw	rwh	rw	rw
	T2_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T2_RC2L Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register Low	Туре				rv	vh			
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре				rv	vh	'n		
C4 _H	T2_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре	rwh							
C5 _H	T2_T2H Reset: 00 _H	Bit Field				T⊦	IL2			
	Timer 2 Register High	Туре	rwh							

Table 12T2 Register Overview

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

	0									
Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1									
c₀H	T21_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	(0	EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	I	r	rw	rwh	rw	rw
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN	T2PI			DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T21_RC2L Reset: 00 _H Bit Field RC2									
	Timer 2 Reload/Capture Register Low	Туре			rwh					
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре	rwh							
C4 _H	T21_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре				٢٧	vh			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FB _H	CCU6_CC60RH Reset: 00 _H	Bit Field		1	1	CC6	60VH	1	1	1	
	Capture/Compare Register for Channel CC60 High	Туре	rh								
FC _H	CCU6_CC61RL Reset: 00 _H	Bit Field	CC61VL								
	Capture/Compare Register for Channel CC61 Low	Туре				r	'n				
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field				CC6	61VH				
	Capture/Compare Register for Channel CC61 High	Туре				r	'n				
FE _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CC6	62VL				
	Capture/Compare Register for Channel CC62 Low	Туре				r	h				
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	62VH				
	Capture/Compare Register for Channel CC62 High	Туре				r	'n				
RMAP =	0, PAGE 2	_					_				
9A _H	CCU6_T12MSELL Reset: 00 _H	Bit Field		MS	EL61			MS	EL60		
	T12 Capture/Compare Mode Select Register Low	Туре		r	w			r	w		
9В _Н	CCU6_T12MSELH Reset: 00 _H	Bit Field	DBYP		HSYNC			MSEL62			
	T12 Capture/Compare Mode Select Register High	Туре	rw		rw		rw				
9CH	CU6_IENL Reset: 00 _H	Bit Field	ENT1	ENT1	ENCC	ENCC	ENCC	ENCC	ENCC	ENCC	
Capture/Compare Inter Register Low	Capture/Compare Interrupt Enable Register Low		2 PM	2 OM	62F	62R	61F	61R	60F	60R	
		Туре	rw	rw							
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM	
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw	
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPCC62		INPCC61		INPCC60		
	Capture/Compare Interrupt Node Pointer Register Low	Туре	r	w	rw		rw		rw		
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	(0 INPT13		T13	INPT12		INPERR		
	Capture/Compare Interrupt Node Pointer Register High	Туре		r	r	w	r	w	rw		
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R	
	Set Register Low	Туре	w	w	w	w	w	w	w	w	
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM	
	Set Register High	Туре	w	w	w	w	w	w	w	w	
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL			
	Passive State Level Register	Туре	rwh	r	rwh						
а7 _Н	CCU6_MCMCTR Reset: 00 _H	Bit Field	0 SWSYN			SYN	0		SWSEL		
	Multi-Channel Mode Control Register	Туре		r	rw r		rw				
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC	
		Туре	r	r	W		rw		rw	rw	

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0										
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field	0					CIS	SIS	MIS	
	Port Input Select Register	Туре			r			rw	rw	rw	
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М		
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw	rw				
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С		
	Control Register Low Operating Mode	Туре	r				rh				
ав _Н	B _H SSC_CONH Reset: 00 _H		EN	MS	0	AREN	BEN	PEN	REN	TEN	
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw	
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
ac _h	SSC_TBL Reset: 00 _H	Bit Field	t Field TB_VALUE								
	Transmitter Buffer Register Low	Туре	rw								
ad _H	SSC_RBL Reset: 00 _H	Bit Field	Field RB_VALUE								
	Receiver Buffer Register Low	Туре	rh								
ае _Н	SSC_BRL Reset: 00 _H	Bit Field	BR_VALUE								
	Baud Rate Timer Reload Register Low	Туре	rw								
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer Reload Register High	Туре				n	N				

Table 16 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	RMAP = 0									
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AUAD		BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	rw		rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _h	ADH Reset: 00 _H	Bit Field	0			CA13	CA12	CA11	CA10	
	CAN Address Register High	Туре			ſ		rwh	rwh	rwh	rwh

Table 19	Table 19Flash Data Retention and Endurance (Operating Conditions apply)								
Retention	Endurance ¹⁾	Size	Remarks						
Program Fla	ash		· ·						
20 years	1,000 cycles	up to 32 Kbytes ²⁾	for 32-Kbyte Variant						
20 years	1,000 cycles	up to 24 Kbytes ²⁾	for 24-Kbyte Variant						
Data Flash	·		· ·						
20 years	1,000 cycles	4 Kbytes							
5 years	10,000 cycles	1 Kbyte							
2 years	70,000 cycles	512 bytes							
2 years	100,000 cycles	128 bytes							

Table 19 shows the Flash data retention and endurance targets.

1) One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in Table 19 is valid only if the following conditions are fulfilled:

- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.

- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.

- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.

2) If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the device variant. Having more Data Flash will mean less Flash is available for Program Flash.

3.3.1 Flash Bank Sectorization

The XC886/888 product family offers Flash devices with either 24 Kbytes or 32 Kbytes of embedded Flash memory. Each Flash device consists of Program Flash (P-Flash) and Data Flash (D-Flash) bank(s) with different sectorization shown in **Figure 11**. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations.

The 32-Kbyte Flash device consists of 6 P-Flash and 2 D-Flash banks, while the 24-Kbyte Flash device consists of also of 6 P-Flash banks but with the upper 2 banks only 2 Kbytes each, and only 1 D-Flash bank. The XC886/888 ROM devices offer a single 4-Kbyte D-Flash bank.

The P-Flash banks are always grouped in pairs. As such, the P-Flash banks are also sometimes referred to as P-Flash bank pair. Each sector in a P-Flash bank is grouped with the corresponding sector from the other bank within a bank pair to form a P-Flash bank pair sector.

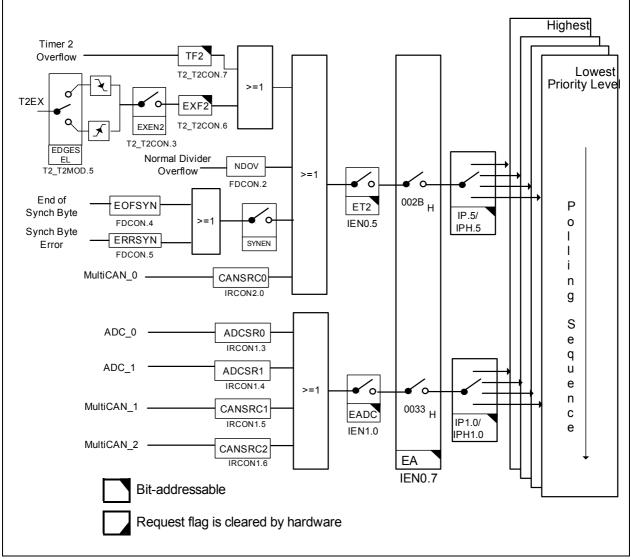


Figure 15 Interrupt Request Sources (Part 2)

3.11 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC886/888 Core in real-time control applications, which require fast mathematical computations.

Features

- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- 32-bit arithmetic/logical shift operations

 Table 28 specifies the number of clock cycles used for calculation in various operations.

Operation	Result	Remainder	No. of Clock Cycles used for calculation
Signed 32-bit/16-bit	32-bit	16-bit	33
Signed 16-bit/16bit	16-bit	16-bit	17
Signed 16-bit x 16-bit	32-bit	-	16
Unsigned 32-bit/16-bit	32-bit	16-bit	32
Unsigned 16-bit/16-bit	16-bit	16-bit	16
Unsigned 16-bit x 16-bit	32-bit	-	16
32-bit normalize	-	-	No. of shifts + 1 (Max. 32)
32-bit shift L/R	-	-	No. of shifts + 1 (Max. 32)

 Table 28
 MDU Operation Characteristics

3.15 LIN Protocol

The UART module can be used to support the Local Interconnect Network (LIN) protocol for both master and slave operations. The LIN baud rate detection feature, which consists of the hardware logic for Break and Synch Byte detection, provides the capability to detect the baud rate within LIN protocol using Timer 2. This allows the UART to be synchronized to the LIN baud rate for data transmission and reception.

Note: The LIN baud rate detection feature is available for use only with UART. To use UART1 for LIN communication, software has to be implemented to detect the Break and Synch Byte.

LIN is a holistic communication concept for local interconnected networks in vehicles. The communication is based on the SCI (UART) data format, a single-master/multipleslave concept, a clock synchronization for nodes without stabilized time base. An attractive feature of LIN is self-synchronization of the slave nodes without a crystal or ceramic resonator, which significantly reduces the cost of hardware platform. Hence, the baud rate must be calculated and returned with every message frame.

The structure of a LIN frame is shown in **Figure 31**. The frame consists of the:

- Header, which comprises a Break (13-bit time low), Synch Byte (55_H), and ID field
- Response time
- Data bytes (according to UART protocol)
- Checksum

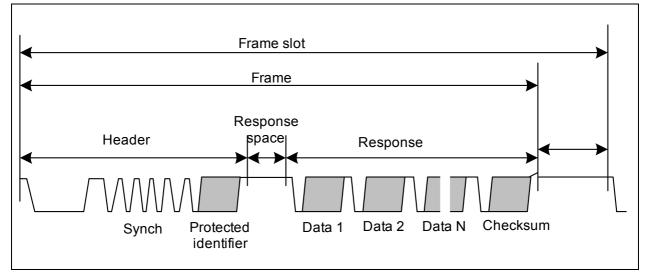


Figure 31 Structure of LIN Frame

3.15.1 LIN Header Transmission

LIN header transmission is only applicable in master mode. In the LIN communication, a master task decides when and which frame is to be transferred on the bus. It also identifies a slave task to provide the data transported by each frame. The information

XC886/888CLM

Functional Description

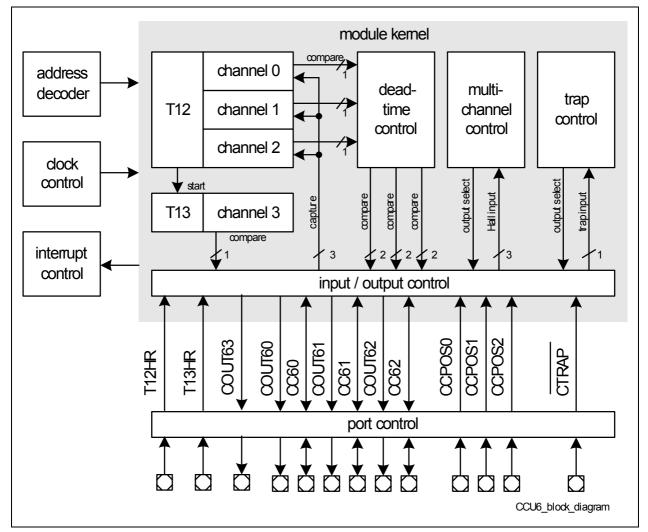



Figure 33 CCU6 Block Diagram

GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 35 ADC Clocking Scheme

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 34**.

Table 34	f _{ADCI} Frequency Selection
----------	---------------------------------------

Module Clock f_{ADC}	СТС	Prescaling Ratio	Analog Clock f_{ADCI}
24 MHz	00 _B	÷ 2	12 MHz (N.A)
	01 _B	÷ 3	8 MHz
	10 _B	÷ 4	6 MHz
	11 _B (default)	÷ 32	750 kHz

As $f_{\rm ADCI}$ cannot exceed 10 MHz, bit field CTC should not be set to $00_{\rm B}$ when $f_{\rm ADC}$ is 24 MHz. During slow-down mode where $f_{\rm ADC}$ may be reduced to 12 MHz, 6 MHz etc., CTC can be set to $00_{\rm B}$ as long as the divided analog clock $f_{\rm ADCI}$ does not exceed 10 MHz.

Electrical Parameters

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Parameter	Symbol	Limi	it Values	Unit	Notes	
		min.	max.			
Ambient temperature	T _A	-40	125	°C	under bias	
Storage temperature	T _{ST}	-65	150	°C	1)	
Junction temperature	T _J	-40	150	°C	under bias ¹⁾	
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)	
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾	
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)	
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA	1)	

Table 4-1	Absolute Maximum Rating Parameters
-----------	------------------------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Electrical Parameters

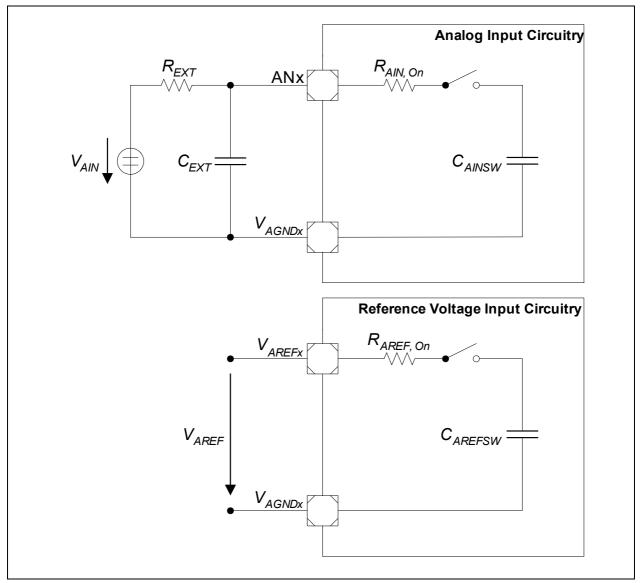


Figure 39 ADC Input Circuits

Package and Quality Declaration

5.3 Quality Declaration

Table 2 shows the characteristics of the quality parameters in the XC886/888.

Table 2Quality Parameters

Parameter	Symbol	Limit V	alues	Unit	Notes	
		Min.	Max.			
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B ¹⁾	
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	500	V	Conforming to JESD22-C101-C ¹⁾	

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

www.infineon.com

Published by Infineon Technologies AG