

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc886clm-8ffi-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC886/888 Data Sheet

Revision History: V1.2 2009-07

Previous \	/ersions: V1.0, V1.1							
Page	Subjects (major changes since last revision)							
Changes f	from V1.1 2009-01 to V1.2 2009-07							
8 9	Note on LIN baud rate detection is added.							
92	RXD slave line in SSC block diagram is updated.							
108	Electrical parameters are now valid for all variants, previous note on exclusion of ROM variants is removed.							
116	Symbol for ADC error parameters are updated.							
120	Power supply current parameters for ROM variants are updated.							
128 Test condition for the on-chip oscillator short term deviation is up								

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Table of Contents

4.3.3	Power-on Reset and PLL Timing 126
4.3.4	On-Chip Oscillator Characteristics 128
4.3.5	External Clock Drive XTAL1 129
4.3.6	JTAG Timing
4.3.7	SSC Master Mode Timing 132
5	Package and Quality Declaration
5.1	Package Parameters
5.2	Package Outline
52	Quality Daslandian (100

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3		I/O		Port 3 Port 3 is an 8 I/O port. It ca for CCU6, U/	B-bit bidirectional general purpose on be used as alternate functions ART1, Timer 21 and MultiCAN.
P3.0	35/43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output
P3.1	36/44		Hi-Z	CCPOS0_2 CC61_2 COUT60_0	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare
				TXD1_1	UART1 Transmit Data Output/Clock Output
P3.2	37/49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1
P3.3	38/50		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output
P3.4	39/51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input
P3.5	40/52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output
P3.6	33/41		PD	CTRAP 0	CCU6 Trap Input

Table 3Pin Definitions and Functions (cont'd)

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3.7	34/42		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

3.2 Memory Organization

The XC886/888 CPU operates in the following five address spaces:

- 12 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 1.5 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- A 128-byte Special Function Register area
- 24/32 Kbytes of Flash program memory (Flash devices); or 24/32 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices)

Figure 7 illustrates the memory address spaces of the 32-Kbyte Flash devices. For the 24-Kbyte Flash devices, the shaded banks are not available.

Figure 7 Memory Map of XC886/888 Flash Device

For both 24-Kbyte and 32-Kbyte ROM devices, the last four bytes of the ROM from $7FFC_{H}$ to $7FFF_{H}$ are reserved for the ROM signature and cannot be used to store user

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable 0 The access to the standard SFR area is enabled 1 The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field	RESULT								
	Result Register 3 High		e rh								
RMAP =	0, PAGE 3										
CA _H	CA _H ADC_RESRA0L Reset: 00 _H Result Register 0, View A Low	Bit Field		RESULT		VF	DRC		CHNR		
		Туре		rh		rh	rh		rh		
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field				RES	SULT	•			
	Result Register 0, View A High	Туре				r	h				
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR		
	Result Register 1, View A Low	Туре		rh		rh	rh		rh		
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	SULT				
	Result Register 1, View A High	Туре				r	h				
CEH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR		
	Result Register 2, View A Low	Туре		rh		rh	rh		rh		
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	SULT				
	Result Register 2, View A High	Туре				r	h				
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field		RESULT		VF	DRC CHNR				
	Result Register 3, View A Low	Туре	rh rh				rh rh				
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field	RESULT								
	Result Register 3, View A High	Туре	rh								
RMAP =	= 0, PAGE 4										
са _Н	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R	
		Туре	rw	rw	r	rw	r		rw		
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN	0		DRCT R		
		Туре	rw	rw	r	rw		r		rw	
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN	0		DRCT R		
		Туре	rw	rw	r	rw		r		rw	
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R	
		Туре	rw	rw	r	rw		r	-	rw	
CEH	ADC_VFCR Reset: 00 _H	Bit Field		()		VFC3	VFC2	VFC1	VFC0	
	Valid Flag Clear Register	Туре			r		w	w	w	w	
RMAP =	= 0, PAGE 5										
CA _H	CA _H ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register		CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0	
		Туре	rh								
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0	
		Туре	w	w	w	w	w	w	w	w	

3.7 Reset Control

The XC886/888 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC886/888 is first powered up, the status of certain pins (see **Table 23**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin $\overrightarrow{\text{RESET}}$ must be asserted until V_{DDC} reaches 0.9* V_{DDC} . The delay of external reset can be realized by an external capacitor at $\overrightarrow{\text{RESET}}$ pin. This capacitor value must be selected so that V_{RESET} reaches 0.4 V, but not before V_{DDC} reaches 0.9* V_{DDC} .

A typical application example is shown in Figure 22. The V_{DDP} capacitor value is 100 nF while the V_{DDC} capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for V_{DDC} to reach 0.9^*V_{DDC} is less than 50 µs once V_{DDP} reaches 2.3V. Hence, based on the condition that 10% to 90% V_{DDP} (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See Figure 23.

Figure 22 Reset Circuitry

3.7.1 Module Reset Behavior

Table 22 lists the functions of the XC886/888 and the various reset types that affect these functions. The symbol "■" signifies that the particular function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, Reliable	Not affected, Reliable	Not affected, Reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected			
FLASH					
NMI	Disabled	Disabled			

Table 22Effect of Reset on Device Functions

3.7.2 Booting Scheme

When the XC886/888 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. Table 23 shows the available boot options in the XC886/888.

MBC	TMS	P0.0	Type of Mode	PC Start Value
1	0	Х	User Mode ¹⁾ ; on-chip OSC/PLL non-bypassed	0000 _H
0	0	Х	BSL Mode; on-chip OSC/PLL non-bypassed ²⁾	0000 _H
0	1	0	OCDS Mode; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	User (JTAG) Mode ³⁾ ; on-chip OSC/PLL non- bypassed (normal)	0000 _H

Table 23	XC886/888 Boot Selection

- 1) BSL mode is automatically entered if no valid password is installed and data at memory address 0000H equals zero.
- 2) OSC is bypassed in MultiCAN BSL mode
- 3) Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

Note: The boot options are valid only with the default set of UART and JTAG pins.

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC886/888. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support

The CGU consists of an oscillator circuit and a PLL. In the XC886/888, the oscillator can be from either of these two sources: the on-chip oscillator (9.6 MHz) or the external oscillator (4 MHz to 12 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode Action			
Idle	Clock to the CPU is disabled.		
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.		
Power-down	Oscillator and PLL are switched off.		

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number					
	AA-Step	AB-Step	AC-Step			
XC886LM-6RFA 3V3	22411522 _H	-	-			
XC888LM-6RFA 3V3	22411523 _H	-	-			
XC886CM-8RFA 3V3	22480502 _H	-	-			
XC888CM-8RFA 3V3	22480503 _H	-	-			
XC886C-8RFA 3V3	22480542 _H	-	-			
XC888C-8RFA 3V3	22480543 _H	-	-			
XC886-8RFA 3V3	22480562 _H	-	-			
XC888-8RFA 3V3	22480563 _H	-	-			
XC886CM-6RFA 3V3	22491502 _H	-	-			
XC888CM-6RFA 3V3	22491503 _H	-	-			
XC886C-6RFA 3V3	22491542 _H	-	-			
XC888C-6RFA 3V3	22491543 _H	-	-			
XC886-6RFA 3V3	22491562 _H	-	-			
XC888-6RFA 3V3	22491563 _H	-	-			
XC886CLM-8RFA 5V	22800502 _H	-	-			
XC888CLM-8RFA 5V	22800503 _H	-	-			
XC886LM-8RFA 5V	22800522 _H	-	-			
XC888LM-8RFA 5V	22800523 _H	-	-			
XC886CLM-6RFA 5V	22811502 _H	-	-			
XC888CLM-6RFA 5V	22811503 _H	-	-			
XC886LM-6RFA 5V	22811522 _H	-	-			
XC888LM-6RFA 5V	22811523 _H	-	-			
XC886CM-8RFA 5V	22880502 _H	-	-			
XC888CM-8RFA 5V	22880503 _H	-	-			
XC886C-8RFA 5V	22880542 _H	-	-			
XC888C-8RFA 5V	22880543 _H	-	-			
XC886-8RFA 5V	22880562 _H	-	-			
XC888-8RFA 5V	22880563 _H	-	-			
XC886CM-6RFA 5V	22891502 _H	-	-			

Parameter	Symbol		Limit	Values	Unit	Test Conditions
				max.		
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)
V_{DDP} = 3.3 V Range						
Output low voltage	V_{OL}	CC	-	1.0	V	I _{OL} = 8 mA
			-	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -8 mA
			V _{DDP} - 0.4	-	V	I _{OH} = -2.5 mA
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode
Input high voltage on RESET pin	V_{IHR}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode
Input Hysteresis	HYS	CC	$0.03 \times V_{ m DDP}$	-	V	CMOS Mode ¹⁾
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V	

4.2.2 Supply Threshold Characteristics

 Table 39 provides the characteristics of the supply threshold in the XC886/888.

Figure 38 Supply Threshold Parameters

Table 39	Supply Threshold Para	ameters (Operating Conditions ap	ply)
----------	-----------------------	----------------------------------	------

Parameters	Symbol		L	Unit		
			min.	typ.	max.	
$V_{\rm DDC}$ prewarning voltage ¹⁾	V _{DDCPW}	CC	2.2	2.3	2.4	V
$V_{\rm DDC}$ brownout voltage in active mode ¹⁾	V _{DDCBO}	CC	2.0	2.1	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	0.9	1.0	1.1	V
$V_{\rm DDC}$ brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V
$V_{\rm DDP}$ prewarning voltage ³⁾	V _{DDPPW}	CC	3.4	4.0	4.6	V
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	CC	1.3	1.5	1.7	V

1) Detection is disabled in power-down mode.

2) Detection is enabled in both active and power-down mode.

 Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

4) The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

Table 43Power Supply Current Parameters (Operating Conditions apply;
 V_{DDP} = 3.3V range)

Parameter	Symbol	Limit	Limit Values		Limit Values		Limit Values		Test Condition
		typ. ¹⁾	max. ²⁾						
V_{DDP} = 3.3V Range									
Active Mode	I _{DDP}	25.6	31.0	mA	Flash Device ³⁾				
		23.4	28.6	mA	ROM Device ³⁾				
Idle Mode	I _{DDP}	19.9	24.7	mA	Flash Device ⁴⁾				
		17.5	20.7	mA	ROM Device ⁴⁾				
Active Mode with slow-down	I _{DDP}	13.3	16.2	mA	Flash Device ⁵⁾				
enabled		11.5	13.7	mA	ROM Device ⁵⁾				
Idle Mode with slow-down	I _{DDP}	11.1	14.4	mA	Flash Device ⁶⁾				
enabled		9.3	11.4	mA	ROM Device ⁶⁾				

1) The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

2) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 3.6 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP} , no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} , no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B,, RESET = V_{DDP} , no load on ports.

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 40**, **Figure 41** and **Figure 42**.

Figure 40 Rise/Fall Time Parameters

Figure 41 Testing Waveform, Output Delay

Figure 42 Testing Waveform, Output High Impedance

4.3.4 On-Chip Oscillator Characteristics

 Table 47 provides the characteristics of the on-chip oscillator in the XC886/888.

Table 47	On-chip Oscillator Characteristics (Operating Conditions apply)
----------	---

Parameter	Parameter Symbol Limit Values		Unit	Test Conditions			
			min.	typ.	max.		
Nominal frequency	f _{nom}	CC	9.36	9.6	9.84	MHz	under nominal conditions ¹⁾
Long term frequency deviation	Δf _{LT}	CC	-5.0	-	5.0	%	with respect to f_{NOM} , over lifetime and temperature (-10°C to 125°C), for one given device after trimming
			-6.0	_	0	%	with respect to f_{NOM} , over lifetime and temperature (-40°C to -10°C), for one given device after trimming
Short term frequency deviation	$\Delta f_{\rm ST}$	CC	-1.0	-	1.0	%	within one LIN message (<10 ms 100 ms)

1) Nominal condition: V_{DDC} = 2.5 V, T_{A} = + 25°C.

4.3.5 External Clock Drive XTAL1

Table 48 shows the parameters that define the external clock supply for XC886/888. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Symbol		Limit Values		Limit Values Unit	
		Min.	Max.		
t _{osc}	SR	83.3	250	ns	1)2)
<i>t</i> ₁	SR	25	-	ns	2)3)
<i>t</i> ₂	SR	25	-	ns	2)3)
t ₃	SR	-	20	ns	2)3)
<i>t</i> ₄	SR	-	20	ns	2)3)
	Symbol t_{osc} t_1 t_2 t_3 t_4	Symbol t_{osc} SR t_1 SR t_2 SR t_3 SR t_4 SR	Symbol Limit t_{osc} SR 83.3 t_1 SR 25 t_2 SR 25 t_3 SR - t_4 SR -	Symbol Limit \vee lues Min. Max. t_{osc} SR 83.3 250 t_1 SR 25 - t_2 SR 25 - t_3 SR - 20 t_4 SR - 20	Symbol Limit $>$ lues Unit $Min.$ $Max.$ t_{0sc} SR 83.3 250 ns t_{0sc} SR 25 - ns t_2 SR 25 - ns t_3 SR - 20 ns t_4 SR 20 ns

 Table 48
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

Figure 45 External Clock Drive XTAL1

4.3.6 JTAG Timing

Table 49 provides the characteristics of the JTAG timing in the XC886/888.

Table 49TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Sym	bol	Limits		Unit	Test Conditions
			min	max		
TCK clock period	t _{TCK}	SR	50	-	ns	1)
TCK high time	<i>t</i> ₁	SR	20	_	ns	1)
TCK low time	<i>t</i> ₂	SR	20	-	ns	1)
TCK clock rise time	t ₃	SR	-	4	ns	1)
TCK clock fall time	<i>t</i> ₄	SR	-	4	ns	1)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Figure 46 TCK Clock Timing

Table 50JTAG Timing (Operating Conditions apply; CL = 50 pF)

Parameter		nbol	Lir	nits	Unit	Test	
			min	max		Conditions	
TMS setup to TCK	t ₁	SR	8	-	ns	1)	
TMS hold to TCK	<i>t</i> ₂	SR	24	-	ns	1)	
TDI setup to TCK ∡	<i>t</i> ₁	SR	11	-	ns	1)	
TDI hold to TCK	<i>t</i> ₂	SR	24	-	ns	1)	
TDO valid output from TCK	t_3	CC	-	21	ns	5V Device ¹⁾	
			-	28	ns	3.3V Device ¹⁾	

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC886/888 package and reliability section.

5.1 Package Parameters

Table 1 provides the thermal characteristics of the package used in XC886 and XC888.

Parameter	Symbol		Limit	Values	Unit	Notes
			Min.	Max.		
PG-TQFP-48 (XC886)	1			1	1	1
Thermal resistance junction case	R _{TJC} C	CC	-	13	K/W	1)2)
Thermal resistance junction lead	R _{TJL} C	CC	-	32.5	K/W	1)2)_
PG-TQFP-64 (XC888)		•				
Thermal resistance junction case	R _{TJC} C	CC	-	12.6	K/W	1)2)
Thermal resistance junction lead	R _{TJL} C	CC	-	33.4	K/W	1)2)
	1				I	

Table 1 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.