

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc886cm-8ffi-3v3-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

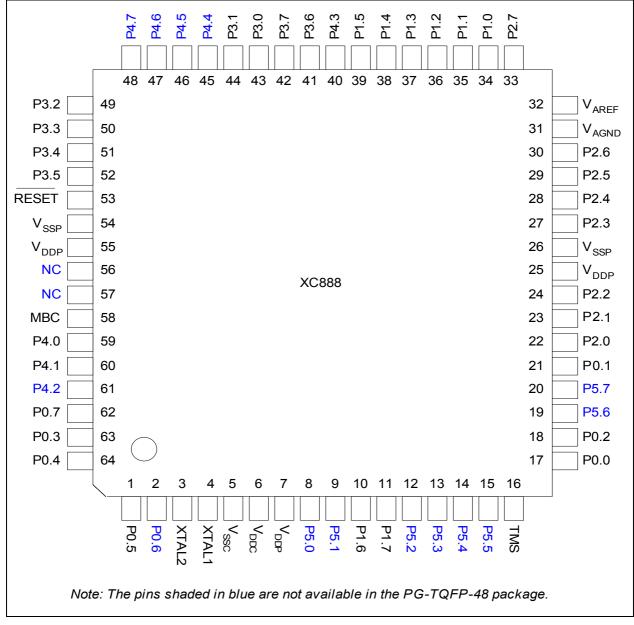
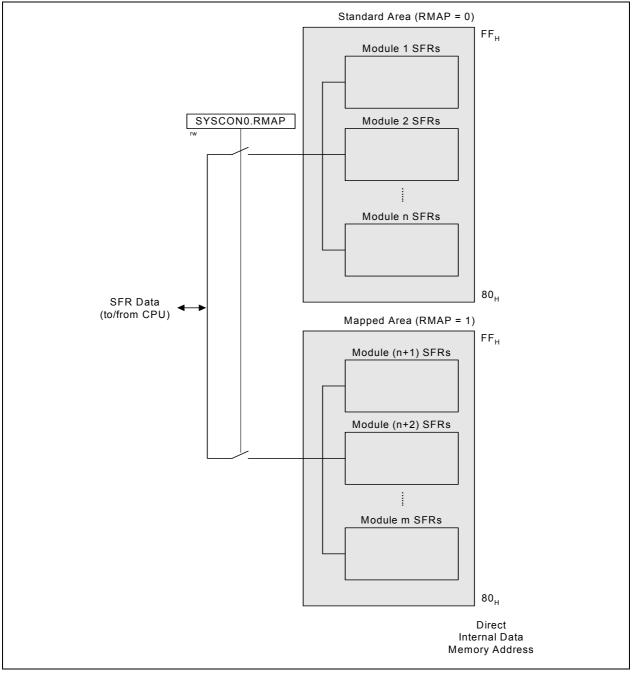



Figure 5 XC888 Pin Configuration, PG-TQFP-64 Package (top view)

Address Extension by Mapping

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

3.2.3.1 Password Register

PASSWD

Pass	word	Register					Reset	Value: 07 _H
	7	6	5	4	3	2	1	0
		1	PASS	1		PROTECT _S	МС	DE
. <u> </u>			wh			rh	r	W

Field	Bits	Туре	Description
MODE	[1:0]	rw	 Bit Protection Scheme Control Bits 00 Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11_B and 00_B, the bit field PASS must be written with 11000_B; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	 Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits.
PASS	[7:3]	wh	Password BitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	()	PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw
в9 _Н	IPH Reset: 00 _H	Bit Field	()	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре		r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 5CPU Register Overview (cont'd)

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	MAP = 1										
в0 _Н	MDUSTAT Reset: 00 _H	Bit Field			0			BSY	IERR	IRDY	
	MDU Status Register	Туре			r			rh	rwh	rwh	
в1 _Н	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE IR RSEL STAR OPCODE T								
		Туре	rw rw rw rwh rw								
B2 _H	MD0 Reset: 00 _H	Bit Field	ield DATA								
	MDU Operand Register 0	Туре	rw								
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 0	Туре	rh								
вз _Н	MD1 Reset: 00 _H	Bit Field	DATA								
	MDU Operand Register 1	Туре				r	W				

Table 7CORDIC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A0 _H	CD_STATC Reset: 00 _H CORDIC Status and Data	Bit Field	KEEP Z	KEEP Y	KEEP X	DMAP	INT_E N	EOC	ERRO R	BSY
	Control Register	Туре	rw	rw	rw	rw	rw	rwh	rh	rh
А1 _Н	CD_CON Reset: 00 _H CORDIC Control Register	Bit Field	MPS		X_USI GN	ST_M ODE	ROTV EC	MODE		ST
		Туре	r	N	rw	rw	rw	r	v	rwh

3.2.4.4 System Control Registers

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Addr Bit 7 3 2 1 **Register Name** 6 5 4 0 RMAP = 0 or 1 IMOD 8F_H SYSCON0 Reset: 04_H Bit Field 0 0 1 0 RMAP System Control Register 0 F r r r r rw Туре rw RMAP = 0 SCU_PAGE STNR PAGE BFH Reset: 00_H Bit Field OP 0 Page Register Туре w w r rw RMAP = 0, PAGE 0 Reset: 00_H Bit Field URRIS JTAGT JTAGT EXINT EXINT EXINT URRIS MODPISEL 0 B3_H Peripheral Input Select Register Н DIS CKS 2IS 1IS 0IS rw Туре r rw rw rw rw rw rw Reset: 00_H B4_H **IRCON0** Bit Field 0 **EXINT** EXINT EXINT EXINT EXINT EXINT EXINT Interrupt Request Register 0 4 3 0 6 5 2 1 rwh Туре r rwh rwh rwh rwh rwh rwh Reset: 00_H в5_Н CANS **IRCON1** Bit Field 0 CANS ADCS ADCS RIR TIR EIR Interrupt Request Register 1 RC2 RC1 R0 R1 Туре r rwh rwh rwh rwh rwh rwh rwh B6_H Reset: 00_H 0 CANS 0 CANS **IRCON2** Bit Field Interrupt Request Register 2 RC3 RC0 Туре rwh rwh r r B7_H EXICON0 EXINT3 EXINT2 EXINT1 EXINT0 Reset: F0µ Bit Field External Interrupt Control Туре rw rw rw rw Register 0 Reset: 3F_H BAH EXICON1 Bit Field 0 EXINT6 EXINT5 EXINT4 External Interrupt Control rw rw rw Туре r Register 1 ввн NMICON Reset: 00_H Bit Field 0 NMI NMI NMI NMI NMI NMI NMI NMI Control Register ECC VDDP VDD OCDS FLASH PLL WDT Туре r rw rw rw rw rw rw rw

Table 8SCU Register Overview

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field			<u> </u>	CC6	OSL	<u> </u>	<u> </u>		
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh				
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field	CC60SH								
	Capture/Compare Shadow Register for Channel CC60 High	Туре	rwh								
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field	CC61SL								
	Capture/Compare Shadow Register for Channel CC61 Low	Туре	Type rwh								
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field				CC6	1SH				
	Capture/Compare Shadow Register for Channel CC61 High	Туре				rv	vh				
Fe _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	2SL				
	Capture/Compare Shadow Register for Channel CC62 Low	Туре				rv	vh				
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field				CC6	2SH				
	Capture/Compare Shadow Register for Channel CC62 High	Туре				rv	vh				
RMAP =	0, PAGE 1										
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL				
	Capture/Compare Register for Channel CC63 Low	Туре				r	h				
98 _H	CCU6_CC63RH Reset: 00 _H	Bit Field	CC63VH								
	Capture/Compare Register for Channel CC63 High	Туре	rh								
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field	d T12PVL								
	Timer T12 Period Register Low	Туре	rwh								
9D _H	CCU6_T12PRH Reset: 00 _H Timer T12 Period Register High	Bit Field	T12PVH								
		Туре	rwh								
9E _H	CCU6_T13PRLReset: 00HTimer T13 Period Register Low	Bit Field	T13PVL								
		Туре				rv	vh				
9F _H	CCU6_T13PRH Reset: 00 _H Timer T13 Period Register High	Bit Field				T13	PVH				
		Туре				rv	vh				
A4 _H	CCU6_T12DTCL Reset: 00 _H Dead-Time Control Register for	Bit Field				D	ΓM				
	Timer T12 Low	Туре				r	N				
А5 _Н	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0	
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw	
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	CTM CDIR STE1 T12R T12 T12CL 2 PRE T12CL				T12CLK				
		Туре	rw rh rh rh rw rw								
А7 _Н	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field									
		Туре		r	rh	rh	rw		rw		
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CC6	60VL				
	Capture/Compare Register for Channel CC60 Low	Туре				r	h				

Table 17CAN Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
db _h	DATA0 Reset: 00 _H	Bit Field	CD									
	CAN Data Register 0	Туре	rwh									
DC _H	DATA1 Reset: 00 _H	Bit Field			CD							
	CAN Data Register 1	Туре	e rwh									
dd _H	DATA2 Reset: 00 _H	Bit Field				С	D					
	CAN Data Register 2	Туре	rwh									
de _h	DATA3 Reset: 00 _H	Bit Field	it Field CD		D							
	CAN Data Register 3	Туре	/pe rwh									

3.2.4.14 OCDS Registers

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 18 OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1	1										
E9 _H	MMCR2 Reset: 1U _H Monitor Mode Control 2	Bit Field	STMO DE	EXBC	DSUS P	MBCO N	ALTDI	MMEP	MMOD E	JENA		
	Register	Туре	rw	rw	rw	rwh	rw	rwh	rh	rh		
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	0	MSTE P	MRAM S_P	MRAM S	TRF	RRF		
		Туре	w	rwh	r	rw	w	rwh	rh	rh		
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F		
		Туре	rw	rwh	rwh	rwh	rwh	rwh	rwh	rwh		
F3 _H	MMBPCR Reset: 00 _H Breakpoints Control Register			B3C	HWB2C		HWB1 C	HWB0C				
		Туре	rw	rw		rw		rw	rw			
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control	Bit Field	DVEC T	DRET R	COMR ST	MSTS EL	MMUI E_P	MMUI E	RRIE_ P	RRIE		
	Register	Туре	rwh	rwh	rwh	rh	w	rw	w	rw		
F5 _H	MMDR Reset: 00 _H	Bit Field	Bit Field MMRR									
	Monitor Mode Data Transfer Register Receive	Туре				r	h					
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select	Bit Field	0		BPSEL _P	BPSEL		SEL				
	Register	Туре	r		w		r	w				
F7 _H	HWBPDR Reset: 00 _H	Bit Field	eld		HWE	BPxx						
	Hardware Breakpoints Data Register	Туре	rw									
EB _H	MMWR1 Reset: 00 _H	Bit Field				MM	NR1					
	Monitor Work Register 1	Туре				r	W					

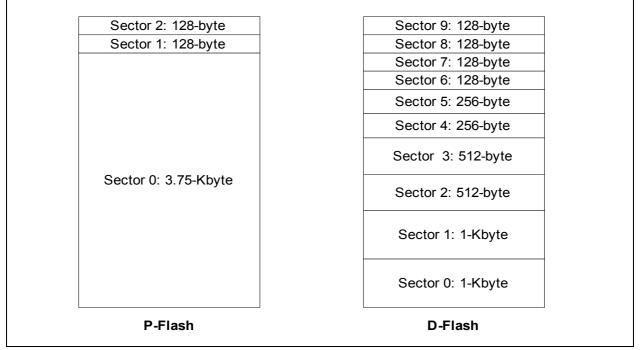


Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

3.3.2 Parallel Read Access of P-Flash

To enhance system performance, the P-Flash banks are configured for parallel read to allow two bytes of linear code to be read in 4 x CCLK cycles, compared to 6 x CCLK cycles if serial read is performed. This is achieved by reading two bytes in parallel from a P-Flash bank pair within the 3 x CCLK cycles access time and storing them in a cache. Subsequent read from the cache by the CPU does not require a wait state and can be completed within 1 x CCLK cycle. The result is the average instruction fetch time from the P-Flash banks is reduced and thus, the MIPS (Mega Instruction Per Second) of the system is increased.

However, if the parallel read feature is not desired due to certain timing constraints, it can be disabled by calling the parallel read disable subroutine.

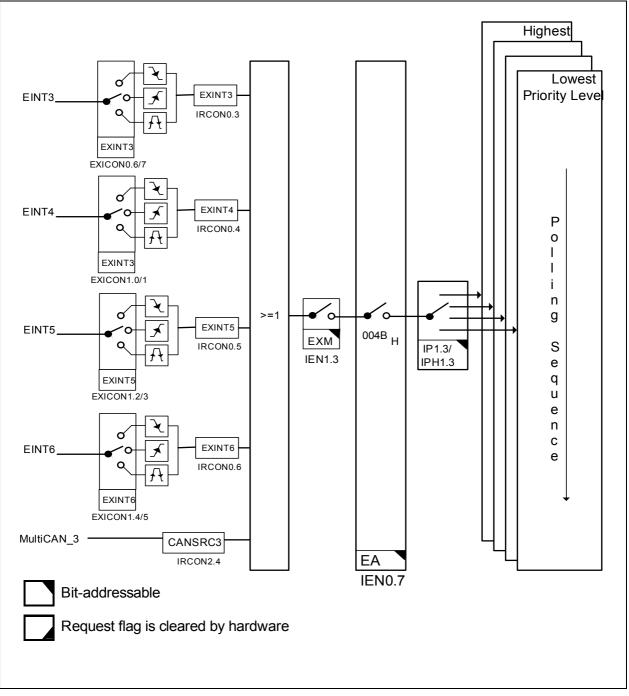
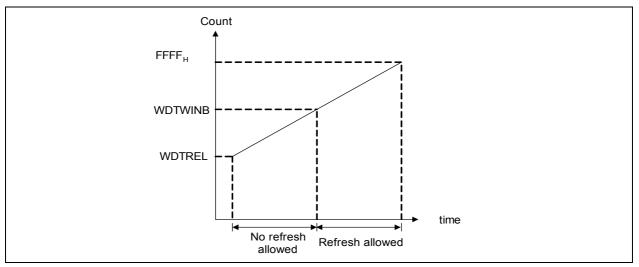


Figure 17 Interrupt Request Sources (Part 4)

3.4.3 Interrupt Priority


An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 21**.

rrupt Level					
Level					
(highest)					
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					

Table 21 Priority Structure within Interrupt Level

Figure 29 WDT Timing Diagram

Table 27 lists the possible watchdog time ranges that can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Table 27Watchdog Time Ranges

Reload value	Prescaler for <i>f</i> _{PCLK}								
In WDTREL	2 (WDTIN = 0)	128 (WDTIN = 1)							
	24 MHz	24 MHz							
FF _H	21.3 μs	1.37 ms							
FF _H 7F _H	2.75 ms	176 ms							
00 _H	5.46 ms	350 ms							

XC886/888CLM

Functional Description

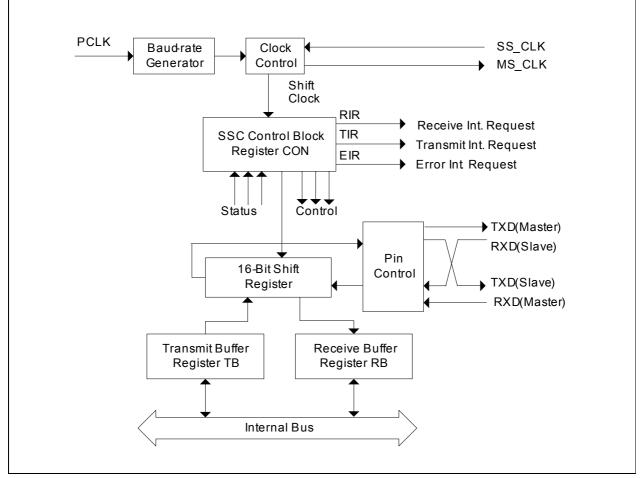



Figure 32 SSC Block Diagram

GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 35 ADC Clocking Scheme

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 34**.

Table 34	f _{ADCI} Frequency Selection
----------	---------------------------------------

Module Clock f_{ADC}	СТС	Prescaling Ratio	Analog Clock f_{ADCI}		
24 MHz	00 _B	÷ 2	12 MHz (N.A)		
	01 _B	÷ 3	8 MHz		
	10 _B	÷ 4	6 MHz		
	11 _B (default)	÷ 32	750 kHz		

As $f_{\rm ADCI}$ cannot exceed 10 MHz, bit field CTC should not be set to $00_{\rm B}$ when $f_{\rm ADC}$ is 24 MHz. During slow-down mode where $f_{\rm ADC}$ may be reduced to 12 MHz, 6 MHz etc., CTC can be set to $00_{\rm B}$ as long as the divided analog clock $f_{\rm ADCI}$ does not exceed 10 MHz.

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number						
	AA-Step	AB-Step	AC-Step				
XC886-6FFA 3V3	-	095D1562 _H	0B5D1562 _H				
XC888-6FFA 3V3	-	095D1563 _н	0B5D1563 _H				
XC886CLM-8FFA 5V	-	09900102 _H	0B900102 _H				
XC888CLM-8FFA 5V	-	09900103 _H	0B900103 _H				
XC886LM-8FFA 5V	-	09900122 _H	0B900122 _H				
XC888LM-8FFA 5V	-	09900123 _H	0B900123 _H				
XC886CLM-6FFA 5V	-	09951502 _H	0B951502 _H				
XC888CLM-6FFA 5V	-	09951503 _Н	0B951503 _H				
XC886LM-6FFA 5V	-	09951522 _Н	0B951522 _H				
XC888LM-6FFA 5V	-	09951523 _Н	0B951523 _H				
XC886CM-8FFA 5V	-	09980102 _H	0B980102 _H				
XC888CM-8FFA 5V	-	09980103 _H	0B980103 _H				
XC886C-8FFA 5V	-	09980142 _H	0B980142 _H				
XC888C-8FFA 5V	-	09980143 _H	0B980143 _H				
XC886-8FFA 5V	-	09980162 _H	0B980162 _H				
XC888-8FFA 5V	-	09980163 _H	0B980163 _H				
XC886CM-6FFA 5V	-	099D1502 _H	0B9D1502 _H				
XC888CM-6FFA 5V	-	099D1503 _H	0B9D1503 _H				
XC886C-6FFA 5V	-	099D1542 _H	0B9D1542 _H				
XC888C-6FFA 5V	-	099D1543 _H	0B9D1543 _H				
XC886-6FFA 5V	-	099D1562 _H	0B9D1562 _H				
XC888-6FFA 5V	-	099D1563 _H	0B9D1563 _H				
ROM Devices	·		·				
XC886CLM-8RFA 3V3	22400502 _H	-	-				
XC888CLM-8RFA 3V3	22400503 _H	-	-				
XC886LM-8RFA 3V3	22400522 _H	-	-				
XC888LM-8RFA 3V3	22400523 _H	-	-				
XC886CLM-6RFA 3V3	22411502 _H	-	-				
XC888CLM-6RFA 3V3	22411503 _H	-	-				

Electrical Parameters

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC886/888.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC886/888 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC886/888 and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC886/888 is designed in.

Electrical Parameters

Parameter	Symbol		Limit Values		Unit	Test Conditions
			min.	max.		
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)
V_{DDP} = 3.3 V Range						
Output low voltage	V_{OL}	CC	_	1.0	V	I _{OL} = 8 mA
			_	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -8 mA
			V _{DDP} - 0.4	-	V	I _{ОН} = -2.5 mA
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	_	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode
Input high voltage on RESET pin	V_{IHR}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode
Input Hysteresis	HYS	CC	$0.03 \times V_{ m DDP}$	_	V	CMOS Mode ¹⁾
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V	

XC886/888CLM

Electrical Parameters

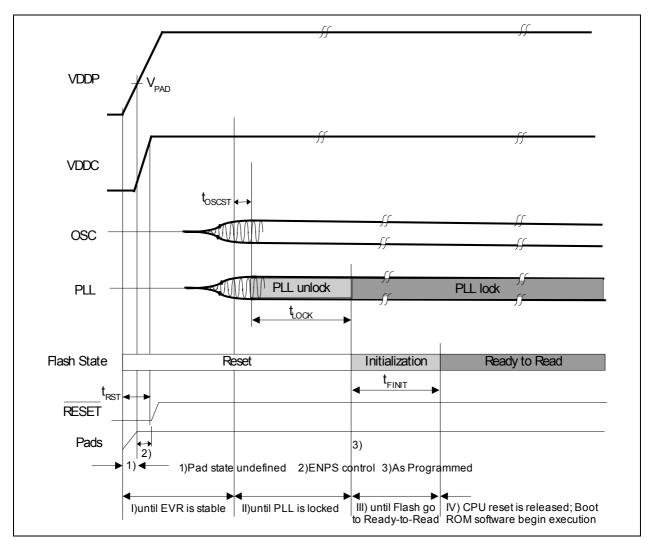


Figure 44 Power-on Reset Timing

Electrical Parameters

4.3.5 External Clock Drive XTAL1

Table 48 shows the parameters that define the external clock supply for XC886/888. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Parameter	Symbo	Symbol		it Values	Unit	Test Conditions
			Min.	Max.		
Oscillator period	t _{osc}	SR	83.3	250	ns	1)2)
High time	<i>t</i> ₁	SR	25	-	ns	2)3)
Low time	<i>t</i> ₂	SR	25	-	ns	2)3)
Rise time	t ₃	SR	-	20	ns	2)3)
Fall time	t_4	SR	-	20	ns	2)3)

 Table 48
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

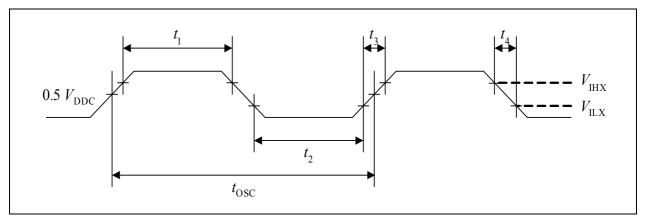


Figure 45 External Clock Drive XTAL1

Package and Quality Declaration

5.3 Quality Declaration

Table 2 shows the characteristics of the quality parameters in the XC886/888.

Table 2Quality Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B ¹⁾
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	500	V	Conforming to JESD22-C101-C ¹⁾

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.