

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc886lm-6ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC886/888CLM

8-Bit Single Chip Microcontroller

1 Summary of Features

The XC886/888 has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 12 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 1.5 Kbytes of XRAM
 - 24/32 Kbytes of Flash; or
 24/32 Kbytes of ROM, with additional 4 Kbytes of Flash (includes memory protection strategy)
- I/O port supply at 3.3 V or 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

	⁻ ROM ¹⁾ 2K x 8	On-Chin Debug Support		UART	SSC	Port 0	8-bit Digital I/O
Boot ROM 12K x 8		XC800 Core		Capture/Compare Unit 16-bit		Port 1	8-bit Digital I/O
XRAM 1.5K x 8					are Unit -bit	Port 2	8-bit Digital/ Analog Input
RAM 256 x 8	Timer 0 16-bit	Timer 1 16-bit	Timer 2 16-bit	Watchdog Timer	ADC 10-bit 8-channel	Port 3	8-bit Digital I/O
MDU	CORDIC	MultiCAN	Timer 21 16-bit	UART1	Port 5	Port 4	8-bit Digital I/O
							-
1) All ROM	devices com	e with an add	litional 4K x 8	Flash	B-bit Digital I/0	C	

Figure 1 XC886/888 Functional Units

General Device Information

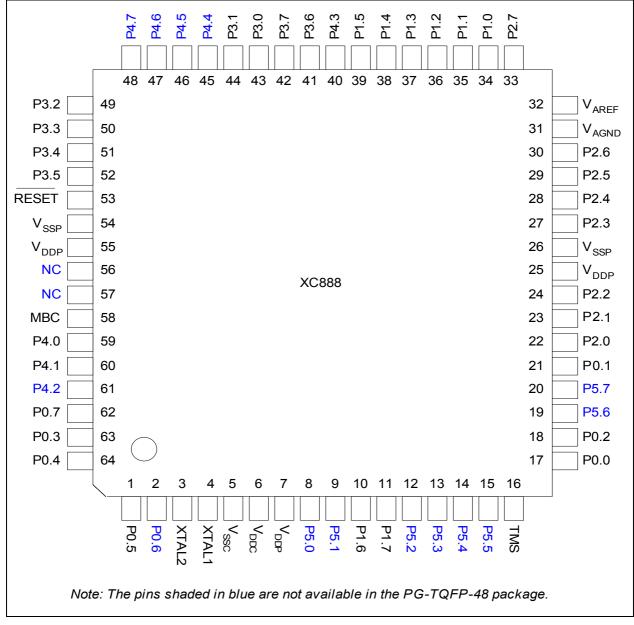


Figure 5 XC888 Pin Configuration, PG-TQFP-64 Package (top view)

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
Р3		I/O		I/O port. It ca	B-bit bidirectional general purpose an be used as alternate functions ART1, Timer 21 and MultiCAN.
P3.0	35/43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output
P3.1	36/44		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output
P3.2	37/49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1
P3.3	38/50		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output
P3.4	39/51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input
P3.5	40/52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output
P3.6	33/41		PD	CTRAP_0	CCU6 Trap Input

Table 3Pin Definitions and Functions (cont'd)

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Reset State	Function	
P3.7	34/42	Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

The page register has the following definition:

MOD_PAGE Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	Ρ	ST	NR	0		PAGE	
v	V	V	V	r		rw	I

Field	Bits	Туре	Description
PAGE	[2:0]	rw	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected. 0101ST1 is selected. 1010ST2 is selected. 1111ST3 is selected.

3.2.3.1 Password Register

PASSWD

Pass	word	Register					Reset	Value: 07 _H
	7	6	5	4	3	2	1	0
		1	PASS	1		PROTECT _S	МС	DE
. <u> </u>			wh			rh	r	W

Field	Bits	Туре	Description
MODE	[1:0]	rw	 Bit Protection Scheme Control Bits 00 Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11_B and 00_B, the bit field PASS must be written with 11000_B; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	 Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits.
PASS	[7:3]	wh	Password BitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits

XC886/888CLM

Functional Description

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0, PAGE 1								I	
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Select Register	Туре	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
в1 _Н	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2									
⁸⁰ H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H P0 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H P1 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
91 _H	P1_ALTSEL1 Reset: 00 _H P1 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H P5 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CDH	ADC_LCBR Reset: B7 _H	Bit Field		BOU	IND1			BOL	JND0	
	Limit Check Boundary Register	Туре		r	N			r	w	
CEH	ADC_INPCR0 Reset: 00 _H	Bit Field				S	тс			
	Input Class 0 Register	Туре				r	w			
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE N1	SYNE N0		ETRSEL	1	ETRSEL0		
	Register	Туре	rw	rw		rw			rw	
RMAP =	0, PAGE 1				•					
CAH	ADC_CHCTR0 Reset: 00 _H	Bit Field	0		LCC		()	RESE	RSEL
	Channel Control Register 0	Туре	r		rw			r	n	N
св _Н	ADC_CHCTR1 Reset: 00 _H	Bit Field	0		LCC		0		RESE	RSEL
	Channel Control Register 1	Туре	r		rw			r	n	N
сс _Н	ADC_CHCTR2 Reset: 00 _H	Bit Field	0		LCC		()	RESE	RSEL
	Channel Control Register 2	Туре	r		rw			r	n	N
CDH	ADC_CHCTR3 Reset: 00 _H	Bit Field	0		LCC		(C	RESE	RSEL
	Channel Control Register 3	Туре	r		rw			r	n	N
CEH	ADC_CHCTR4 Reset: 00 _H	Bit Field	0		LCC		()	RESE	RSEL
	Channel Control Register 4	Туре	r		rw			r	n	N
CFH	ADC_CHCTR5 Reset: 00 _H	Bit Field	0		LCC		()	RESE	RSEL
	Channel Control Register 5	Туре	r		rw			r	n	N
D2 _H	ADC_CHCTR6 Reset: 00 _H	Bit Field	0		LCC		(C	RESE	RSEL
	Channel Control Register 6	Туре	r		rw			r	n	N
D3 _H	ADC_CHCTR7 Reset: 00 _H	Bit Field	0		LCC		()	RESE	RSEL
	Channel Control Register 7	Туре	r		rw			r	n	N
RMAP =	0, PAGE 2		•							
CA _H	ADC_RESR0L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 0 Low	Туре	r	h	r	rh	rh		rh	
св _Н	ADC_RESR0H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 0 High	Туре				I	ħ			
сс _Н	ADC_RESR1L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 1 Low	Туре	r	'n	r	rh	rh		rh	
CDH	ADC_RESR1H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 1 High	Туре				I	'n			
CEH	ADC_RESR2L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 2 Low	Туре	r	'n	r	rh	rh		rh	
CF _H	ADC_RESR2H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 2 High	Туре					ħ			
D2 _H	ADC_RESR3L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 3 Low	Туре	r	'n	r	rh	rh		rh	

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field			<u> </u>	CC6	OSL	<u> </u>	<u> </u>	
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh			
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field				CC6	0SH			
	Capture/Compare Shadow Register for Channel CC60 High	Туре				rv	vh			
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field				CC6	51SL			
	Capture/Compare Shadow Register for Channel CC61 Low	Туре				rv	vh			
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field				CC6	1SH			
	Capture/Compare Shadow Register for Channel CC61 High	Туре				rv	vh			
Fe _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	2SL			
	Capture/Compare Shadow Register for Channel CC62 Low	Туре				rv	vh			
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field				CC6	2SH			
	Capture/Compare Shadow Register for Channel CC62 High	Туре				rv	vh			
RMAP =	0, PAGE 1									
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL			
	Capture/Compare Register for Channel CC63 Low	Туре				r	h			
98 _H	CCU6_CC63RH Reset: 00 _H	Bit Field				CC6	3VH			
	Capture/Compare Register for Channel CC63 High	Туре				r	h			
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field				T12	PVL			
	Timer T12 Period Register Low	Туре				rv	vh			
9D _H	CCU6_T12PRH Reset: 00 _H Timer T12 Period Register High	Bit Field				T12	PVH			
		Туре				rv	vh			
9E _H	CCU6_T13PRLReset: 00HTimer T13 Period Register Low	Bit Field				T13	PVL			
		Туре				rv	vh			
9F _H	CCU6_T13PRH Reset: 00 _H Timer T13 Period Register High	Bit Field				T13	PVH			
		Туре				rv	vh			
A4 _H	CCU6_T12DTCL Reset: 00 _H Dead-Time Control Register for	Bit Field				D	ГM			
	Timer T12 Low	Туре				r	N			
А5 _Н	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	СТМ	CDIR	STE1 2	T12R	T12 PRE		T12CLK	
		Туре	rw	rh	rh	rh	rw		rw	
А7 _Н	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field		0	STE1 3	T13R	T13 PRE		T13CLK	
		Туре		r	rh	rh	rw		rw	
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CC6	60VL			
	Capture/Compare Register for Channel CC60 Low	Туре				r	h			

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 64-byte for P-Flash
- 1-sector minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $3 \times t_{CCLK} = 125 \text{ ns}^{2}$
- Program time: 248256 / $f_{SYS}^{(3)}$ = 2.6 ms³⁾
- Erase time: 9807360 / f_{SYS} = 102 ms³⁾

¹⁾ P-Flash: 64-byte wordline can only be programmed once, i.e., one gate disturb allowed. D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ Values shown here are typical values. f_{sys} = 96 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5 %) is the maximum frequency range for Flash read access.

³⁾ Values shown here are typical values. $f_{sys} = 96 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

Functional Description

Interrupt Source	Vector Address	Assignment for XC886/888	Enable Bit	SFR
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21		
		CORDIC		
		UART1]	
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]	1	
XINTR9	004B _H	004B _H External Interrupt 3		
		External Interrupt 4	1	
		External Interrupt 5		
		External Interrupt 6		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

3.5 Parallel Ports

The XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4), while the XC888 has 48 port pins organized into six parallel ports, Port 0 (P0) to Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3, P4 and P5 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals. Converter (ADC).

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features

- Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- Alternate input for on-chip peripherals
- Analog input for ADC module

Table 25 shows the VCO range for the XC886/888.

Table 25 VC	O Range
-------------	---------

<i>f</i> _{vcomin}	f _{VCOmax}	$f_{\sf VCOFREEmin}$	<i>f</i> _{VCOFREEmax}	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in **Figure 25** can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor. **Figure 25** shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode	e Action				
Idle	Clock to the CPU is disabled.				
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.				
Power-down	Oscillator and PLL are switched off.				

XC886/888CLM

Functional Description

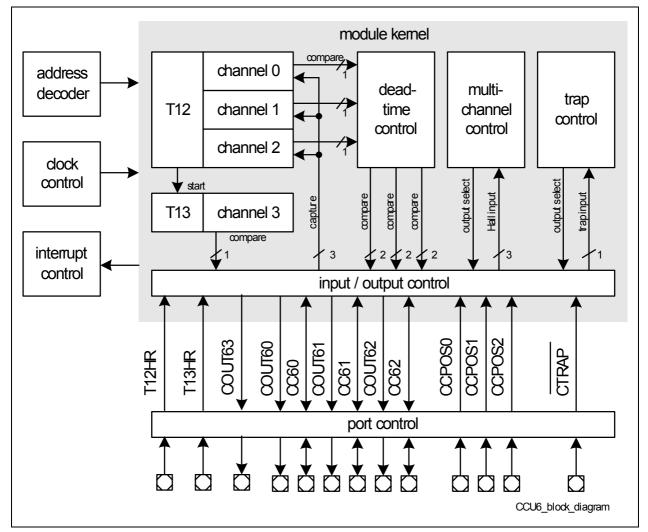


Figure 33 CCU6 Block Diagram

3.21 Analog-to-Digital Converter

The XC886/888 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2.

Features

- Successive approximation
- 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)
- Eight analog channels
- Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- Single conversion mode
- Autoscan functionality
- Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- Two independent conversion request sources with programmable priority
- · Selectable conversion request trigger
- · Flexible interrupt generation with configurable service nodes
- Programmable sample time
- Programmable clock divider
- · Cancel/restart feature for running conversions
- Integrated sample and hold circuitry
- Compensation of offset errors
- Low power modes

3.21.1 ADC Clocking Scheme

A common module clock f_{ADC} generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

The internal clock for the analog part f_{ADCI} is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures f_{ADCI} does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register

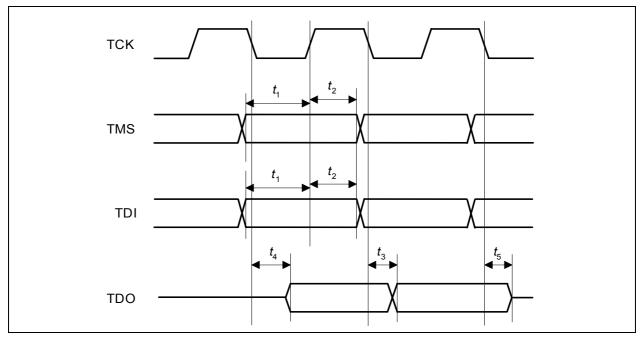
Electrical Parameters

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
Input high voltage on RESET pin	V _{IHR}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode	
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode	
Input Hysteresis on port pins	HYSP	CC	$0.07 \times V_{ m DDP}$	-	V	CMOS Mode ¹⁾	
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)	
Input low voltage at XTAL1	V_{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V		
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V		
Pull-up current	$I_{\rm PU}$	SR	-	-10	μA	V _{IHP,min}	
			-150	_	μA	$V_{\rm ILP,max}$	
Pull-down current	$I_{\rm PD}$	SR	-	10	μA	$V_{ILP,max}$	
			150	-	μA	V _{IHP,min}	
Input leakage current	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C^{2)}$	
Input current at XTAL1	I_{ILX}	CC	-10	10	μA		
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)	
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding V_{DDP} and V_{SS})	$I_{\rm M}{ m SR}$	SR	-	15	mA		
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	-	90	mA		
Maximum current into V_{DDP}	I _{mvddp}	SR	-	120	mA	3)	

Electrical Parameters

4.2.3.1 ADC Conversion Timing


Conversion time, $t_{\rm C} = t_{\rm ADC} \times (1 + r \times (3 + n + STC))$, where r = CTC + 2 for CTC = $00_{\rm B}$, $01_{\rm B}$ or $10_{\rm B}$, r = 32 for CTC = $11_{\rm B}$, CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), $t_{\rm ADC} = 1 / f_{\rm ADC}$

Electrical Parameters

Table 50JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)						
Parameter	Symbol		Limits		Unit	Test
			min	max		Conditions
TDO high impedance to valid	<i>t</i> ₄	CC	-	27	ns	5V Device ¹⁾
output from TCK			-	36	ns	3.3V Device ¹⁾
TDO valid output to high impedance from TCK	t_5	5 CC	-	22	ns	5V Device ¹⁾
			-	28	ns	3.3V Device ¹⁾

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Package and Quality Declaration

5.2 Package Outline

Figure 48 shows the package outlines of the XC886.

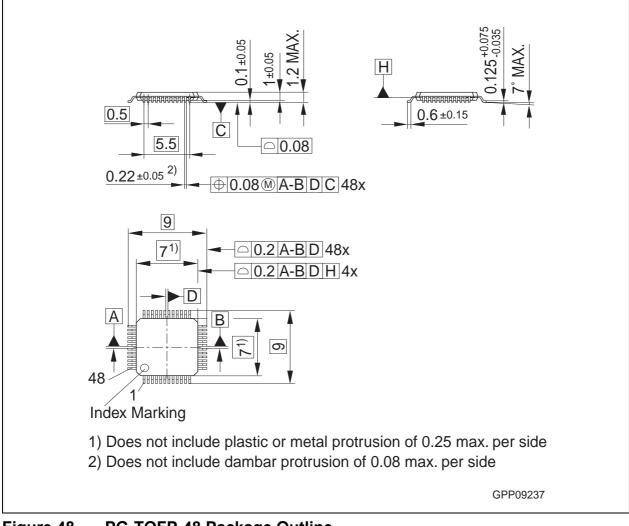


Figure 48 PG-TQFP-48 Package Outline