

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc888-6ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC886/888.

2.1 Block Diagram

The block diagram of the XC886/888 is shown in Figure 2.

Figure 2 XC886/888 Block Diagram

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3.7	34/42		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable 0 The access to the standard SFR area is enabled 1 The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
BEH	COCON Reset: 00 _H Clock Output Control Register	Bit Field	0 TLEN r rw		COUT S		CO	REL		
		Туре			rw	rw				
E9 _H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field				0				DFLAS HEN
		Туре				r				rwh
RMAP =	= 0, PAGE 3									
вз _Н	XADDRH Reset: F0 _H	Bit Field				ADI	ORH			
	On-chip XRAM Address Higher Order	Туре				r	w			
B4 _H	IRCON3 Reset: 00 _H Interrupt Request Register 3	Bit Field	0 CAN RC5 r rwh		CANS RC5	CCU6 SR1		0	CANS RC4	CCU6 SR0
		Туре			rwh	rwh	r		rwh	rwh
в5 _Н	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field		0	CANS RC7	CCU6 SR3	0		CANS RC6	CCU6 SR2
		Туре		r	rwh	rwh		r	rwh	rwh
в7 _Н	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field	EXINT 6IS		0	UR1RIS		T21EX IS	JTAGT DIS1	JTAGT CKS1
	1	Туре	rw		r	r	rw		rw	rw
ва _Н	MODPISEL2 Reset: 00 _H	Bit Field			0		T21IS	T2IS	T1IS	TOIS
	2 2	Туре			r		rw	rw	rw	rw
вв _Н	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field			0			UART 1_DIS	T21_D IS	
		Туре			r			rw	rw	
вd _Н	MODSUSP Reset: 01 _H Module Suspend Control	Bit Field		0		T21SU SP	T2SUS P	T13SU SP	T12SU SP	WDTS USP
	Register	Туре		r		rw	rw	rw	rw	rw

Table 8SCU Register Overview (cont'd)

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	1											
BB _H WDTCON Reset: 00 _H Watchdog Timer Control Register		Bit Field		0	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N		
		Туре		r	rw	rh	r	rw	rwh	rw		
вс _Н	WDTREL Reset: 00 _H	Bit Field		WDTREL								
	Watchdog Timer Reload Register	Туре			rw							
BD _H WDTWINB Reset: 00 _H Watchdog Window-Boundary Count Register		Bit Field				WDT	WINB					
		Туре				rw						

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
cc ^H	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	w	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw							
CeH	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	(0	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	(0	EVINC 1	EVINC 0
	Register	Туре	w	w	w	w		r	w	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(D	EVINS 1	EVINS 0
		Туре	w	w	w	w		r	w	w
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	(0	EVINP 1	EVINP 0
	Register	Туре	rw	rw	rw	rw	r rw			rw
RMAP =	= 0, PAGE 6	_	-							
са _Н	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4	0			
	Register 1	Туре	rwh	rwh	rwh	rwh	r			
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		()	
	Register 1	Туре	rwh	rwh	rwh	rwh		l	r	
cc ^H	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw
CDH	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT
		Туре	w	w	w	w	r	rw	r	rw
CEH	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	(D	FI	LL
		Туре	r	r	rh	rh		r	r	h
CFH	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
		Туре	rh	rh	rh	rh	r rh			
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
	Queue Dackup Register U	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	ર
		Туре	w	w	w		r		w	

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

		1								1
Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
C0H	T2_T2CONReset: 00Timer 2 Control Register	Bit Field	TF2	TF2 EXF2 0		EXEN 2	TR2	C/T2	CP/ RL2	
		Туре	rwh	rwh		r	rw	rwh	rw	rw
C1 _H	T2_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	EDGE PREN SEL		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	C2 _H T2_RC2L Reset: 00 _H	Bit Field				R	C2			
	Register Low	Туре	rwh							
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2			
	Register High	Туре				rv	vh			
C4 _H	T2_T2L Reset: 00 _H	Bit Field				T⊦	IL2			
	Timer 2 Register Low					rv	vh			
C5 _H	T2_T2H Reset: 00 _H	Bit Field				T⊦	IL2			
	i imer 2 Register High	Туре				rv	vh			

Table 12T2 Register Overview

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: : 1			•	•	•				
c₀ _H	T21_T2CON Reset: 00 _H Timer 2 Control Register		TF2	EXF2	(0		TR2	C/T2	<u>CP/</u> RL2
		Туре	rwh	rwh		r	rw	rwh	rw	rw
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN	T2PRE I		DCEN	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T21_RC2L Reset: 00 _H	Bit Field	RC2							
	Timer 2 Reload/Capture Register Low	Туре	rwh							
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре	-ype rwh							
C4 _H	T21_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре				rv	/h			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7 6 5 4 3 2 1 0							0			
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field				CCe	0SL						
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh						
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field	CC60SH										
	Capture/Compare Shadow Register for Channel CC60 High	Туре				rv	vh						
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field	CC61SL										
	for Channel CC61 Low	Туре		rwh									
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field				CC6	51SH						
	for Channel CC61 High	Туре	rwh										
FE _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	S2SL						
	for Channel CC62 Low	Туре				rv	vh						
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field				CC6	2SH						
	for Channel CC62 High	Туре				rv	vh						
RMAP =	= 0, PAGE 1												
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL						
	Capture/Compare Register for Channel CC63 Low	Туре	rh										
9B _H	CCU6_CC63RH Reset: 00 _H	Bit Field	CC63VH										
	Capture/Compare Register for Channel CC63 High	Туре				r	h						
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field				T12	PVL						
	Timer 112 Period Register Low	Туре	rwh										
9D _H	CCU6_T12PRH Reset: 00 _H	Bit Field				T12	PVH						
		Туре				rv	vh						
9E _H	CCU6_T13PRL Reset: 00 _H	Bit Field				T13	PVL						
		Туре				rv	vh						
9F _H	CCU6_T13PRH Reset: 00 _H	Bit Field				T13	PVH						
		Туре				rv	vh						
A4 _H	CCU6_T12DTCL Reset: 00 _H	Bit Field				D	ГМ						
	Timer T12 Low	Туре				r	W						
A5 _H	CCU6_T12DTCH Reset: 00 _H	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0			
	Timer T12 High	Туре	r rh rh rh r rw rw					rw	rw				
A6 _H	CCU6_TCTR0LReset: 00HTimer Control Register 0 Low	Bit Field	d CTM CDIR STE1 T12R T12 T12CLK										
		Туре	rw rh rh rh rw rw										
а7 _Н	CCU6_TCTR0HReset: 00HTimer Control Register 0 High	Bit Field	Field 0 STE1 T13R T13 T13CL 3 PRE				T13CLK						
		Туре		r	rh	rh	rw		rw				
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CCG	60VL						
	Capture/Compare Register for Channel CC60 Low					r	h						

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	7 6 5 4 3 2 1						0
FB _H	CCU6_TCTR2H Reset: 00 _H	Bit Field			0		T13F	RSEL	T12F	RSEL
	Timer Control Register 2 High	Туре			r		r	w	r	w
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MCM EN	0			T12M	ODEN		
		Туре	rw	r	rw					
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 30	0	T13MODEN					
		Туре	rw	r			r	w		
FE _H	CCU6_TRPCTRLReset: 00HTrap Control Register Low	Bit Field			0			TRPM 2	TRPM 1	TRPM 0
		Туре		_	r			rw	rw	rw
FF _H	CCU6_TRPCTRHReset: 00HTrap Control Register High	Bit Field	TRPP EN	TRPE N13			TRI	PEN		
		Туре	rw	rw			r	w		
RMAP =	0, PAGE 3	•			-					
9A _H	CCU6_MCMOUTL Reset: 00 _H	Bit Field	0	R			MC	MP		
	Low	Туре	r	rh	rh					
9B _H	CCU6_MCMOUTH Reset: 00 _H	Bit Field	(0		CURH			EXPH	
	High	Туре		r	rh			rh		
9CH	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61	ISC	C60
		Туре	r	w	r	w	r	w	r	W
9F _H	CCU6_PISEL0H Reset: 00 _H	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISP	OS0
		Туре	r	w	r	w	r	w	r	W
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field				0			IST1	3HR
		Туре				r			r	W
FA _H	CCU6_T12L Reset: 00 _H	Bit Field				T12	CVL			
		Туре	rwh							
FB _H	CCU6_T12H Reset: 00 _H Timer T12 Counter Register High	Bit Field	Field		T12	CVH				
		Туре	e rwh							
FCH	CCU6_T13L Reset: 00 _H Timer T13 Counter Register Low	Bit Field				T13	CVL			
		Туре				rv	vh			
FDH	CCU6_T13H Reset: 00 _H Timer T13 Counter Reaister High	Bit Field				T13	CVH			
		Туре				rv	vh			

Figure 18 Interrupt Request Sources (Part 5)

3.5 Parallel Ports

The XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4), while the XC888 has 48 port pins organized into six parallel ports, Port 0 (P0) to Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3, P4 and P5 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals. Converter (ADC).

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features

- Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- Alternate input for on-chip peripherals
- Analog input for ADC module

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC886/888 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC886/888 will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 28** shows the block diagram of the WDT unit.

Figure 28 WDT Block Diagram

f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error						
24 MHz	1	10 (A _H)	197 (C5 _H)	+0.20 %						
12 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %						
8 MHz	1	4 (4 _H)	236 (EC _H)	+0.03 %						
6 MHz	1	3 (3 _H)	236 (EC _H)	+0.03 %						

Table 31 Deviation Error for UART with Fractional Divider enabled

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.7)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 30**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.8)

3.15 LIN Protocol

The UART module can be used to support the Local Interconnect Network (LIN) protocol for both master and slave operations. The LIN baud rate detection feature, which consists of the hardware logic for Break and Synch Byte detection, provides the capability to detect the baud rate within LIN protocol using Timer 2. This allows the UART to be synchronized to the LIN baud rate for data transmission and reception.

Note: The LIN baud rate detection feature is available for use only with UART. To use UART1 for LIN communication, software has to be implemented to detect the Break and Synch Byte.

LIN is a holistic communication concept for local interconnected networks in vehicles. The communication is based on the SCI (UART) data format, a single-master/multipleslave concept, a clock synchronization for nodes without stabilized time base. An attractive feature of LIN is self-synchronization of the slave nodes without a crystal or ceramic resonator, which significantly reduces the cost of hardware platform. Hence, the baud rate must be calculated and returned with every message frame.

The structure of a LIN frame is shown in **Figure 31**. The frame consists of the:

- Header, which comprises a Break (13-bit time low), Synch Byte (55_H), and ID field
- Response time
- Data bytes (according to UART protocol)
- Checksum

Figure 31 Structure of LIN Frame

3.15.1 LIN Header Transmission

LIN header transmission is only applicable in master mode. In the LIN communication, a master task decides when and which frame is to be transferred on the bus. It also identifies a slave task to provide the data transported by each frame. The information

needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes.

In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field.

Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

STEP 1: Initialize interface for reception and timer for baud rate measurement

STEP 2: Wait for an incoming LIN frame from host

STEP 3: Synchronize the baud rate to the host

- STEP 4: Enter for Master Request Frame or for Slave Response Frame
- Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.

3.20 Controller Area Network (MultiCAN)

The MultiCAN module contains two Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Both CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each CAN node has it's own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list. A powerful, command driven list controller performs all list operations.

The bit timings for the CAN nodes are derived from the peripheral clock (f_{CAN}) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver.

Figure 34 Overview of the MultiCAN

Features

Compliant to ISO 11898.

However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

3.21.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (*t*_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

Figure 36 ADC Conversion Timing

3.23 Chip Identification Number

The XC886/888 identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 09_{H} for Flash devices and 22_{H} for ROM devices. However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 36 lists the chip identification numbers of available XC886/888 Flash and ROM device variants.

Product Variant	Chip Identification Number								
	AA-Step	AB-Step	AC-Step						
Flash Devices		·							
XC886CLM-8FFA 3V3	-	09500102 _H	0B500102 _H						
XC888CLM-8FFA 3V3	-	09500103 _H	0B500103 _H						
XC886LM-8FFA 3V3	-	09500122 _H	0B500122 _H						
XC888LM-8FFA 3V3	-	09500123 _H	0B500123 _H						
XC886CLM-6FFA 3V3	-	09551502 _H	0B551502 _H						
XC888CLM-6FFA 3V3	-	09551503 _н	0B551503 _H						
XC886LM-6FFA 3V3	-	09551522 _H	0B551522 _H						
XC888LM-6FFA 3V3	-	09551523 _н	0B551523 _H						
XC886CM-8FFA 3V3	-	09580102 _H	0B580102 _H						
XC888CM-8FFA 3V3	-	09580103 _H	0B580103 _H						
XC886C-8FFA 3V3	-	09580142 _H	0B580142 _H						
XC888C-8FFA 3V3	-	09580143 _H	0B580143 _H						
XC886-8FFA 3V3	-	09580162 _H	0B580162 _H						
XC888-8FFA 3V3	-	09580163 _H	0B580163 _H						
XC886CM-6FFA 3V3	-	095D1502 _H	0B5D1502 _H						
XC888CM-6FFA 3V3	-	095D1503 _H	0B5D1503 _H						
XC886C-6FFA 3V3	-	095D1542 _H	0B5D1542 _H						
XC888C-6FFA 3V3	-	095D1543 _H	0B5D1543 _H						

Table 36 Chip Identification Number

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number		
	AA-Step	AB-Step	AC-Step
XC886LM-6RFA 3V3	22411522 _H	-	-
XC888LM-6RFA 3V3	22411523 _H	-	-
XC886CM-8RFA 3V3	22480502 _H	-	-
XC888CM-8RFA 3V3	22480503 _H	-	-
XC886C-8RFA 3V3	22480542 _H	-	-
XC888C-8RFA 3V3	22480543 _H	-	-
XC886-8RFA 3V3	22480562 _H	-	-
XC888-8RFA 3V3	22480563 _H	-	-
XC886CM-6RFA 3V3	22491502 _H	-	-
XC888CM-6RFA 3V3	22491503 _H	-	-
XC886C-6RFA 3V3	22491542 _H	-	-
XC888C-6RFA 3V3	22491543 _H	-	-
XC886-6RFA 3V3	22491562 _H	-	-
XC888-6RFA 3V3	22491563 _H	-	-
XC886CLM-8RFA 5V	22800502 _H	-	-
XC888CLM-8RFA 5V	22800503 _H	-	-
XC886LM-8RFA 5V	22800522 _H	-	-
XC888LM-8RFA 5V	22800523 _H	-	-
XC886CLM-6RFA 5V	22811502 _H	-	-
XC888CLM-6RFA 5V	22811503 _H	-	-
XC886LM-6RFA 5V	22811522 _H	-	-
XC888LM-6RFA 5V	22811523 _H	-	-
XC886CM-8RFA 5V	22880502 _H	-	-
XC888CM-8RFA 5V	22880503 _H	-	-
XC886C-8RFA 5V	22880542 _H	-	-
XC888C-8RFA 5V	22880543 _H	-	-
XC886-8RFA 5V	22880562 _H	-	-
XC888-8RFA 5V	22880563 _H	-	-
XC886CM-6RFA 5V	22891502 _H	-	-

XC886/888CLM

Electrical Parameters

Figure 44 Power-on Reset Timing