

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc888c-6ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC886/888.

2.1 Block Diagram

The block diagram of the XC886/888 is shown in Figure 2.

Figure 2 XC886/888 Block Diagram

XC886/888CLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1.6	8/10		PU	CCPOS1_1 T12HR_0	•
				EXINT6_0 RXDC0_2 T21_1	• •
P1.7	9/11		PU	CCPOS2_1 T13HR_0 T2 1	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input Timer 2 Input
				TXDC0_2	•
					.6 can be used as a software chip t for the SSC.

Table 9WDT Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
ве _Н	WDTL Reset: 00 _H	Bit Field	WDT							
	Watchdog Timer Register Low	Туре	rh							
bf _h	WDTH Reset: 00 _H	Bit Field	WDT							
	Watchdog Timer Register High	Туре	rh							

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0	1								<u>.</u>
B2 _H	PORT_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
	Page Register	Туре	١	N	١	N	r		rw	
RMAP =	= 0, PAGE 0				•		•			
80 _H	P0_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре	rw	rw						
86 _H	P0_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register	Туре	rw	rw						
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rw	rw						
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw						
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rw	rw						
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw	rw						
A0 _H	P2_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register	Туре	rw	rw						
A1 _H	P2_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Register	Туре	rw	rw						
во _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rw	rw						
в1 _Н	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw	rw						
C8 _H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rw	rw						
C9 _H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Туре	rw	rw						

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
cc ^H	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0	
		Туре	w	w	w	w	w	W	w	w	
CDH	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0	
	Register	Туре	rw								
Ceh	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	()	EVINF 1	EVINF 0	
		Туре	rh	rh	rh	rh		r	rh	rh	
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	()	EVINC 1	EVINC 0	
	Register	Туре	w	w	w	w		r	w	w	
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	()	EVINS 1	EVINS 0	
		Туре	w	w	w	w		r	w	w	
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	()	EVINP 0		
	Register	Туре	rw	rw	rw	rw		r rw r			
RMAP =	= 0, PAGE 6										
CA _H	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4		()		
	Conversion Request Control Register 1	Туре	rwh	rwh	rwh	rwh		I	r		
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		()		
	Conversion Request Pending Register 1	Туре	rwh	rwh	rwh	rwh		I	r		
сс ^н	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT	
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw	
CD _H	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT	
		Туре	w	w	w	w	r	rw	r	rw	
Ceh	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	()	FI	LL	
		Туре	r	r	rh	rh		r rh			
CF _H	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	REQCHNR			
	Queue 0 Register 0	Туре	rh	rh	rh	rh	r	rh			
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	REQCHNR			
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r	rh			
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	REQCHNR			
	Queue Input Register 0	Туре	w	w	w		r		w		

Table 13T21 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	- 1	Bit Field				TH	IL2			
	Timer 2 Register High	Туре	rwh							

3.2.4.10 CCU6 Registers

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
	Page Register	Туре	١	N	۱	N	r		rw	
RMAP =	= 0, PAGE 0									
9A _H	CCU6_CC63SRL Reset: 00 _H Capture/Compare Shadow Register	Bit Field				CC6	63SL			
	for Channel CC63 Low	Туре		ſW						
9B _H	CCU6_CC63SRH Reset: 00 _H	Bit Field				CC63SH				
	Capture/Compare Shadow Register for Channel CC63 High	Туре			rw					
9CH	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	(0	DT T12 T12R T12 RES RES S R			
		Туре	w	w		r w w w				w
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR						T13R R
		Туре	w	w		r		w w w		
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0			MC	MPS		
	Register Low	Туре	w	r			r	w		
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRH P	0		CURHS			EXPHS	
	Register High	Туре	w	r		rw			rw	
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12 PM	RT12 OM	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R
	Reset Register Low	Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWH E	RCHE	0	RTRP F	RT13 PM	RT13 CM
	Reset Register High	Туре	w	w	w	w	r	w	w	w
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3S						MCC6 0S
	Low	Туре	r	w		r		w	w	w
а7 _Н	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3R		0		MCC6 2R 1R 0F		
	High	Туре	r	w		r		w	w	w

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field			<u> </u>	CC6	OSL	<u> </u>	<u> </u>	
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh			
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field				CC6	0SH			
	Capture/Compare Shadow Register for Channel CC60 High	Туре				rv	vh			
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field				CC6	51SL			
	Capture/Compare Shadow Register for Channel CC61 Low	Туре				rv	vh			
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field				CC6	1SH			
	Capture/Compare Shadow Register for Channel CC61 High	Туре				rv	vh			
Fe _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	2SL			
	Capture/Compare Shadow Register for Channel CC62 Low	Туре				rv	vh			
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field				CC6	2SH			
	Capture/Compare Shadow Register for Channel CC62 High	Туре				rv	vh			
RMAP =	0, PAGE 1									
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL			
	Capture/Compare Register for Channel CC63 Low	Туре				r	h			
98 _H	CCU6_CC63RH Reset: 00 _H	Bit Field				CC6	3VH			
	Capture/Compare Register for Channel CC63 High	Туре				r	h			
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field				T12	PVL			
	Timer T12 Period Register Low	Туре				rv	vh			
9D _H	CCU6_T12PRH Reset: 00 _H Timer T12 Period Register High	Bit Field				T12	PVH			
		Туре				rv	vh			
9E _H	CCU6_T13PRLReset: 00HTimer T13 Period Register Low	Bit Field				T13	PVL			
		Туре				rv	vh			
9F _H	CCU6_T13PRH Reset: 00 _H Timer T13 Period Register High	Bit Field				T13	PVH			
		Туре				rv	vh			
A4 _H	CCU6_T12DTCL Reset: 00 _H Dead-Time Control Register for	Bit Field				D	ΓM			
	Timer T12 Low	Туре				r	N			
А5 _Н	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	СТМ	CDIR	STE1 2	T12R	T12 PRE		T12CLK	
		Туре	rw	rh	rh	rh	rw		rw	
А7 _Н	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field		0	STE1 3	T13R	T13 PRE		T13CLK	
		Туре		r	rh	rh	rw		rw	
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CC6	60VL			
	Capture/Compare Register for Channel CC60 Low	Туре				r	h			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1	1								1		
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh		
C9 _H	SBUF Reset: 00 _H	Bit Field				AL						
	Serial Data Buffer Register	Туре				rv	vh					
са _Н	BCON Reset: 00 _H	Bit Field	0					BRPRE R				
	Baud Rate Control Register	Туре	r					rw rw				
св _Н	BG Reset: 00 _H	Bit Field				BR_V	'ALUE					
	Baud Rate Timer/Reload Register	Туре				rv	vh					
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN		
	Fractional Divider Control Register	Туре			r			rwh	rw	rw		
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP					
	Fractional Divider Reload Register	Туре	rw									
Ceh	FDRES Reset: 00 _H	Bit Field		RESULT								
	Fractional Divider Result Register	Туре				r	h					

Table 17CAN Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
db _h	DATA0 Reset: 00 _H	Bit Field				С	D			
	CAN Data Register 0	Туре				rv	vh			
DC _H	DATA1 Reset: 00 _H	Bit Field	CD							
	CAN Data Register 1	Туре	pe rwh							
dd _H	DATA2 Reset: 00 _H	Bit Field				С	D			
	CAN Data Register 2	Туре				rv	vh			
de _h	DATA3 Reset: 00 _H	Bit Field	d CD							
	CAN Data Register 3	Туре	rwh							

3.2.4.14 OCDS Registers

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 18 OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1	1										
E9 _H	MMCR2 Reset: 1U _H Monitor Mode Control 2	Bit Field	STMO DE	EXBC	DSUS P	MBCO N	ALTDI	MMEP	MMOD E	JENA		
	Register	Туре	rw	rw	rw	rwh	rw	rwh	rh	rh		
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	0	MSTE P	MRAM S_P	MRAM S	TRF	RRF		
		Туре	w	rwh	r	rw	w	rwh	rh	rh		
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F		
		Туре	rw	rwh	rwh	rwh	rwh	rwh	rwh	rwh		
F3 _H	MMBPCR Reset: 00 _H Breakpoints Control Register	Bit Field	SWBC	HW	B3C	HW	B2C	HWB1 C				
		Туре	rw	n	N	r	w	rw	r	N		
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control	Bit Field	DVEC T	DRET R	COMR ST	MSTS EL	MMUI E_P	MMUI E	RRIE_ P	RRIE		
	Register	Туре	rwh	rwh	rwh	rh	w	rw	w	rw		
F5 _H	MMDR Reset: 00 _H	Bit Field				MN	IRR					
	Monitor Mode Data Transfer Register Receive	Туре				r	h					
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select	Bit Field		0		BPSEL _P		BP	SEL			
	Register	Туре		r		w		r	w			
F7 _H	HWBPDR Reset: 00 _H	Bit Field				HWE	BPxx	x				
	Hardware Breakpoints Data Register	Туре				r	w					
EB _H	MMWR1 Reset: 00 _H	Bit Field				MM	NR1					
	Monitor Work Register 1	Туре				r	W					

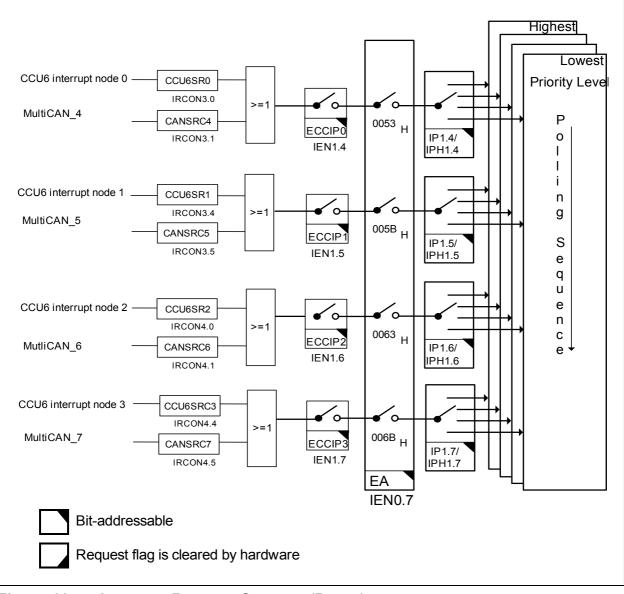


Figure 18 Interrupt Request Sources (Part 5)

3.6 Power Supply System with Embedded Voltage Regulator

The XC886/888 microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 21 shows the XC886/888 power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

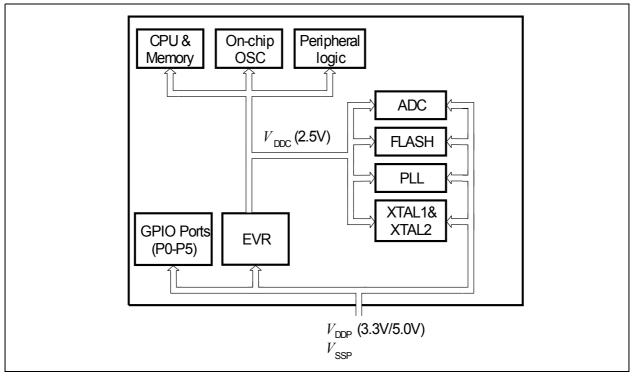


Figure 21 XC886/888 Power Supply System

EVR Features

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- · Low power voltage regulator provided in power-down mode
- V_{DDC} and V_{DDP} prewarning detection
- V_{DDC} brownout detection

- 1) BSL mode is automatically entered if no valid password is installed and data at memory address 0000H equals zero.
- 2) OSC is bypassed in MultiCAN BSL mode
- 3) Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

Note: The boot options are valid only with the default set of UART and JTAG pins.

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC886/888. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support

The CGU consists of an oscillator circuit and a PLL. In the XC886/888, the oscillator can be from either of these two sources: the on-chip oscillator (9.6 MHz) or the external oscillator (4 MHz to 12 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

Table 31 Deviation Error for UART with Fractional Divider enabled								
f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error				
24 MHz	1	10 (A _H)	197 (C5 _H)	+0.20 %				
12 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %				
8 MHz	1	4 (4 _H)	236 (EC _H)	+0.03 %				
6 MHz	1	3 (3 _H)	236 (EC _H)	+0.03 %				

Deviation Error for UADT with Errotional Divider enabled Cable 24

3.13.2 **Baud Rate Generation using Timer 1**

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.7)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see Figure 30). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.8)

needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes.

In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field.

Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

STEP 1: Initialize interface for reception and timer for baud rate measurement

STEP 2: Wait for an incoming LIN frame from host

STEP 3: Synchronize the baud rate to the host

- STEP 4: Enter for Master Request Frame or for Slave Response Frame
- Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.

3.21 Analog-to-Digital Converter

The XC886/888 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2.

Features

- Successive approximation
- 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)
- Eight analog channels
- Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- Single conversion mode
- Autoscan functionality
- Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- Two independent conversion request sources with programmable priority
- · Selectable conversion request trigger
- · Flexible interrupt generation with configurable service nodes
- Programmable sample time
- Programmable clock divider
- · Cancel/restart feature for running conversions
- Integrated sample and hold circuitry
- Compensation of offset errors
- Low power modes

3.21.1 ADC Clocking Scheme

A common module clock f_{ADC} generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

The internal clock for the analog part f_{ADCI} is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures f_{ADCI} does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number							
	AA-Step	AB-Step	AC-Step					
XC886-6FFA 3V3	-	095D1562 _H	0B5D1562 _H					
XC888-6FFA 3V3	-	095D1563 _н	0B5D1563 _H					
XC886CLM-8FFA 5V	-	09900102 _H	0B900102 _H					
XC888CLM-8FFA 5V	-	09900103 _H	0B900103 _H					
XC886LM-8FFA 5V	-	09900122 _H	0B900122 _H					
XC888LM-8FFA 5V	-	09900123 _H	0B900123 _H					
XC886CLM-6FFA 5V	-	09951502 _H	0B951502 _H					
XC888CLM-6FFA 5V	-	09951503 _Н	0B951503 _H					
XC886LM-6FFA 5V	-	09951522 _H	0B951522 _H					
XC888LM-6FFA 5V	-	09951523 _Н	0B951523 _H					
XC886CM-8FFA 5V	-	09980102 _H	0B980102 _H					
XC888CM-8FFA 5V	-	09980103 _H	0B980103 _H					
XC886C-8FFA 5V	-	09980142 _H	0B980142 _H					
XC888C-8FFA 5V	-	09980143 _H	0B980143 _H					
XC886-8FFA 5V	-	09980162 _H	0B980162 _H					
XC888-8FFA 5V	-	09980163 _H	0B980163 _H					
XC886CM-6FFA 5V	-	099D1502 _H	0B9D1502 _H					
XC888CM-6FFA 5V	-	099D1503 _H	0B9D1503 _H					
XC886C-6FFA 5V	-	099D1542 _H	0B9D1542 _H					
XC888C-6FFA 5V	-	099D1543 _H	0B9D1543 _H					
XC886-6FFA 5V	-	099D1562 _H	0B9D1562 _H					
XC888-6FFA 5V	-	099D1563 _H	0B9D1563 _H					
ROM Devices	·		·					
XC886CLM-8RFA 3V3	22400502 _H	-	-					
XC888CLM-8RFA 3V3	22400503 _H	-	-					
XC886LM-8RFA 3V3	22400522 _H	-	-					
XC888LM-8RFA 3V3	22400523 _H	-	-					
XC886CLM-6RFA 3V3	22411502 _H	-	-					
XC888CLM-6RFA 3V3	22411503 _H	-	-					

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 38 provides the characteristics of the input/output pins of the XC886/888.

Table 38	Input/Output Characteristics	s (Operating Conditions apply)
----------	------------------------------	--------------------------------

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
V _{DDP} = 5 V Range						·	
Output low voltage	V _{OL}	CC	-	1.0	V	I _{OL} = 15 mA	
			-	1.0	V	I_{OL} = 5 mA, current into all pins > 60 mA	
			-	0.4	V	$I_{\rm OL}$ = 5 mA, current into all pins \leq 60 mA	
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{ОН} = -15 mA	
			V _{DDP} - 1.0	-	V	I_{OH} = -5 mA, current from all pins > 60 mA	
			V _{DDP} - 0.4	-	V	$I_{\rm OH}$ = -5 mA, current from all pins \leq 60 mA	
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode	
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{ m DDP}$	V _{DDP}	V	CMOS Mode	

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit	Values	Unit	Test Conditions	
			min.	min. max.			
Input high voltage on RESET pin	V _{IHR}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode	
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode	
Input Hysteresis on port pins	HYSP	CC	$0.07 \times V_{ m DDP}$	-	V	CMOS Mode ¹⁾	
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)	
Input low voltage at XTAL1	V_{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V		
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V		
Pull-up current	$I_{\rm PU}$	SR	-	-10	μA	V _{IHP,min}	
			-150	_	μA	$V_{\rm ILP,max}$	
Pull-down current	$I_{\rm PD}$	SR	-	10	μA	$V_{ILP,max}$	
			150	-	μA	V _{IHP,min}	
Input leakage current	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C^{2)}$	
Input current at XTAL1	I_{ILX}	CC	-10	10	μA		
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	-	25	mA	3)	
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M SR	SR	-	15	mA		
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	-	90	mA		
Maximum current into V_{DDP}	I _{MVDDP}	SR	-	120	mA	3)	

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

						-	
Parameter	Symbol		Liı	nit Val	ues	Unit	Test Conditions/
			min.	typ. max.			Remarks
Overload current coupling factor for	K _{OVD}	CC	_	-	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1)3)}$
digital I/O pins			_	-	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1)3)}$
Switched capacitance at the reference voltage input	C _{AREFSW}	CC	_	10	20	pF	1)4)
Switched capacitance at the analog voltage inputs	C _{AINSW}	CC	_	5	7	pF	1)5)
Input resistance of the reference input	R _{AREF}	CC	_	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	1.5	kΩ	1)

1) Not subjected to production test, verified by design/characterization

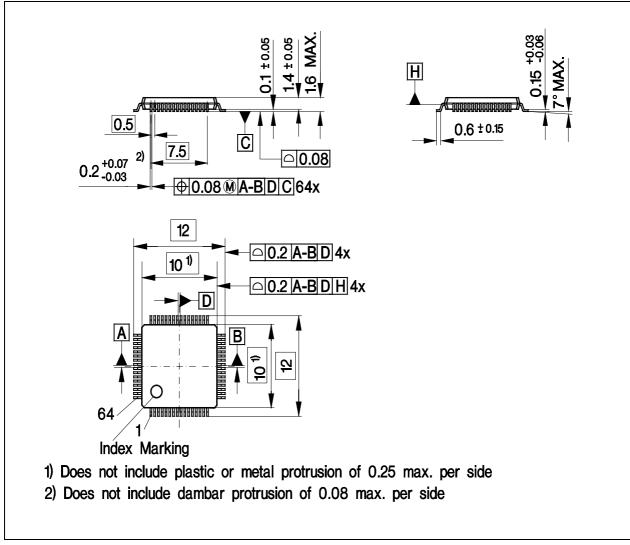
2) TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DDP} = 5.0 V.

- 3) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ1}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 4) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- 5) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

4.3.4 On-Chip Oscillator Characteristics

 Table 47 provides the characteristics of the on-chip oscillator in the XC886/888.

Table 47	On-chip Oscillator Characteristics (Operating Conditions apply)
----------	---


Parameter	Symbol		Limit Values			Unit	Test Conditions	
			min.	n. typ. max.				
Nominal frequency	f _{nom}	CC	9.36	9.6	9.84	MHz	under nominal conditions ¹⁾	
Long term frequency deviation	Δf _{LT}	CC	-5.0	-	5.0	%	with respect to f_{NOM} , over lifetime and temperature (-10°C to 125°C), for one given device after trimming	
			-6.0	-	0	%	with respect to f_{NOM} , over lifetime and temperature (-40°C to -10°C), for one given device after trimming	
Short term frequency deviation	Δf_{ST}	CC	-1.0	-	1.0	%	within one LIN message (<10 ms 100 ms)	

1) Nominal condition: V_{DDC} = 2.5 V, T_{A} = + 25°C.

Package and Quality Declaration

Figure 49 PG-TQFP-64 Package Outline