

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75К х 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc888c-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3

General Device Information

Pin Definitions and Functions (cont'd) Type Reset Function Pin Number Symbol (TQFP-48/64) State **P2** I Port 2 Port 2 is an 8-bit general purpose input-only port. It can be used as alternate functions for

			the digital inputs of the JTAG and CCU6. It is also used as the analog inputs for the ADC.			
P2.0	14/22	Hi-Z	CCPOS0_0 EXINT1_0 T12HR_2	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input		
			TCK_1 CC61_3	JTAG Clock Input Input of Capture/Compare channel 1		
			AN0	Analog Input 0		
P2.1	15/23	Hi-Z	CCPOS1_0 EXINT2_0 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input		
			TDI_1 CC62_3	JTAG Serial Data Input Input of Capture/Compare channel 2		
		· ·· -	ANT			
P2.2	16/24	Hi-Z	CCPOS2_0 CTRAP_1 CC60_3	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare		
				channel 0 Apalog Input 2		
D2 3	10/27	Ці 7				
F 2.3	19/27		ANJ			
P2.4	20/28	HI-Z	AN4	Analog Input 4		
P2.5	21/29	Hi-Z	AN5	Analog Input 5		
P2.6	22/30	Hi-Z	AN6	Analog Input 6		
P2.7	25/33	Hi-Z	AN7	Analog Input 7		

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3.7	34/42		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

Address Extension by Mapping

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC886/888 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
CD _H	ADC_LCBR Reset: B7 _H	Bit Field		BOUND1			BOUND0				
	Limit Check Boundary Register	Туре		rw				rw			
Ceh	ADC_INPCR0 Reset: 00 _H	Bit Field				S	ГС				
	Input Class 0 Register	Туре				r	W				
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE SYNE ETRSEL1			1 ETRSEL0					
	Register	Туре	rw	rw		rw			rw		
RMAP =	= 0, PAGE 1										
са _Н	ADC_CHCTR0 Reset: 00 _H	Bit Field	0		LCC		(0	RESF	RSEL	
	Channel Control Register 0	Type r rw			r	۲١	N				
св _Н	ADC_CHCTR1 Reset: 00 _H	Bit Field	0		LCC		(0	RESF	RSEL	
	Channel Control Register 1		r		rw			r	n	N	
сс _Н	ADC_CHCTR2 Reset: 00 _H	Bit Field	0		LCC		(0	RESP	RSEL	
	Channel Control Register 2	Туре	r		rw			r	۲١	N	
CD _H	ADC_CHCTR3 Reset: 00 _H	Bit Field	0		LCC		(0	RESF	RSEL	
	Channel Control Register 3	Туре	r		rw			r	۲١	N	
Ceh	ADC_CHCTR4 Reset: 00 _H	Bit Field	0	0 LCC			0		RESF	RSEL	
	Channel Control Register 4		r rw				r	۲۱	N		
CF _H	CF _H ADC_CHCTR5 Reset: 00 _H Channel Control Register 5		0		LCC		(0	RESF	RSEL	
			r rw				r	۲۱	N		
D2 _H	ADC_CHCTR6 Reset: 00 _H	Bit Field	0		LCC		(0	RESF	RSEL	
	Channel Control Register 6	Туре	r		rw		r		۲۱	N	
D3 _H	ADC_CHCTR7 Reset: 00 _H	Bit Field	0		LCC		0		RESRSEL		
	Channel Control Register 7	Туре	r		rw			r	۳	N	
RMAP =	= 0, PAGE 2		•	•							
CA _H	ADC_RESR0L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR		
	Result Register 0 Low	Туре	r	'n	r	rh	rh		rh		
св _Н	ADC_RESR0H Reset: 00 _H	Bit Field				RES	SULT				
	Result Register 0 High	Туре				r	h				
сс _н	ADC_RESR1L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR		
	Result Register 1 Low	Туре	r	'n	r	rh	rh		rh		
CD _H	ADC_RESR1H Reset: 00 _H	Bit Field				RES	SULT				
	Result Register 1 High	Туре				r	h				
Ceh	ADC_RESR2L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR		
	Result Register 2 Low	Туре	r	'n	r	rh	rh		rh		
CF _H	ADC_RESR2H Reset: 00 _H	Bit Field				RES	ULT				
	Result Register 2 High	Туре				r	h				
D2 _H	ADC_RESR3L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC	DRC CHNR			
	Result Register 3 Low	Туре	r	'n	r	rh	rh		rh		

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 3 High	Туре				r	h			
RMAP =	0, PAGE 3									
CA _H	ADC_RESRA0L Reset: 00 _H	Bit Field	Field RESULT VF		DRC	DRC CHNR				
	Result Register 0, View A Low	Туре		rh		rh	rh rh			
св _Н	ADC_RESRA0H Reset: 00H					RES	SULT	•		
	Result Register 0, View A High	Туре				r	h			
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 1, View A Low	Туре		rh		rh	rh		rh	
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 1, View A High	Туре				r	h			
CEH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 2, View A Low	Туре		rh		rh	rh		rh	
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 2, View A High	Туре				r	h			
D2 _H	2 _H ADC_RESRA3L Reset: 00 _H		RESULT VF			DRC CHNR				
	Result Register 3, View A Low	Туре	rh rh		rh rh					
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field	tit Field RESULT			SULT				
	Result Register 3, View A High	Туре				h				
RMAP =	= 0, PAGE 4									
са _Н	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r	-	rw
CEH	ADC_VFCR Reset: 00 _H	Bit Field		()		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре			r		w	w	w	w
RMAP =	= 0, PAGE 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh	rh	rh	rh	rh	rh	rh	rh
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
FB _H	CCU6_CC60RH Reset: 00 _H	Bit Field		•		CC6	60VH					
	Capture/Compare Register for Channel CC60 High	Туре				r	'n					
FC _H	CCU6_CC61RL Reset: 00 _H	Bit Field		CC61VL								
	Capture/Compare Register for Channel CC61 Low	Туре		rh								
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field				CC6	61VH					
	Capture/Compare Register for Channel CC61 High	Туре				r	'n					
FE _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CC6	62VL					
	Capture/Compare Register for Channel CC62 Low	Туре				r	'n					
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	S2VH					
	Capture/Compare Register for Channel CC62 High	Туре				r	'n					
RMAP =	0, PAGE 2											
9A _H	CCU6_T12MSELL Reset: 00 _H	Bit Field		MSI	EL61			MSE	EL60			
	Register Low	Туре	rw					r	w			
9B _H	CCU6_T12MSELH Reset: 00 _H	Bit Field	DBYP		HSYNC			MSE	EL62			
	Register High	Туре	rw		rw		rw					
9CH	CCU6_IENL Reset: 00 _H	Bit Field	ENT1	ENT1	ENCC	ENCC	ENCC	ENCC	ENCC	ENCC		
	Register Low		PM	OM	02F	02R	OIF	OIR	OUF	OUR		
		Туре	rw	rw								
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM		
		Туре	rw	rw	rw	rw	r	rw	rw	rw		
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPCC61		INPCC60			
	Pointer Register Low	Туре	r	W	rw		rw		rw			
9F _H	CCU6_INPH Reset: 39 _H	Bit Field		0	INPT13		INP	PT12	INPERR			
	Pointer Register High	Туре		r	r	w	r	w	r	w		
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R		
	Set Register Low	Туре	w	w	w	w	w	w	w	w		
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM		
	Set Register High	Туре	w	w	w	w	w	w	w	w		
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL				
		Туре	rwh	r			rv	vh				
А7 _Н	CCU6_MCMCTR Reset: 00 _H Multi-Channel Mode Control Register	Bit Field	(0	SW	SYN	0		SWSEL			
		Туре		r	r	w	r		rw			
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC		
			r	r	W		rw rw			rw		

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

∆ddr	Register Name	Bit	7	6	5	4	3	2	1	0	
		ы	'	Ŭ	Ŭ	-	0	-	•	v	
RMAP =	: 0										
А9 _Н	SSC_PISEL Reset: 00 _H	Bit Field			0			CIS	SIS	MIS	
	Port Input Select Register	Туре			r			rw	rw	rw	
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М		
	Programming Mode	Туре	rw	rw	rw	rw		rw			
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С		
	Control Register Low Operating Mode				r		rh				
ав _Н	AB _H SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw		
ab _H	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
ac _h	SSC_TBL Reset: 00 _H	Bit Field	TB_VALUE								
	I ransmitter Buffer Register Low	Туре		rw							
ad _H	SSC_RBL Reset: 00 _H	Bit Field	d RB_VALUE								
	Receiver Buffer Register Low	Туре	rh								
AE _H	SSC_BRL Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer Reload Register Low	Туре	rw								
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE				
	Register High	Туре				r	N				

Table 16 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Table 17	CAN R	egister	Overview
----------	-------	---------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
D8 _H	H ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AUAD		BSY	RWEN
CAN Address/Data Control Register	Туре	rw	rw	rw	rw	rw		rh	rw	
D9 _H	09 _H ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
CAN Address Register Low	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
DA _H ADH Reset: 00 _H		Bit Field	0				CA13	CA12	CA11	CA10
CAN Address F	CAN Address Register High	Туре	r			rwh	rwh	rwh	rwh	

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC886/888 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 13 to **Figure 17** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

Figure 13 Non-Maskable Interrupt Request Sources

3.6 Power Supply System with Embedded Voltage Regulator

The XC886/888 microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 21 shows the XC886/888 power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

Figure 21 XC886/888 Power Supply System

EVR Features

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode
- V_{DDC} and V_{DDP} prewarning detection
- V_{DDC} brownout detection

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

(3.3)

System Frequency Selection

For the XC886/888, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. Table 24 provides examples on how $f_{\rm sys}$ = 96 MHz can be obtained for the different oscillator sources.

Table 24	System frequency (<i>f</i> _{svs} = 96 MHz)
----------	--

Oscillator	Fosc	Ν	Ρ	κ	Fsys	
On-chip	9.6 MHz	20	1	2	96 MHz	
External	8 MHz	24	1	2	96 MHz	
	6 MHz	32	1	2	96 MHz	
	4 MHz	48	1	2	96 MHz	

- Interrupt enabling and corresponding flag

3.13 UART and UART1

The XC886/888 provides two Universal Asynchronous Receiver/Transmitter (UART and UART1) modules for full-duplex asynchronous reception/transmission. Both are also receive-buffered, i.e., they can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - Fixed or variable baud rate
- Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART modules can operate in the four modes shown in **Table 29**.

Operating Mode	Baud Rate
Mode 0: 8-bit shift register	f _{PCLK} /2
Mode 1: 8-bit shift UART	Variable
Mode 2: 9-bit shift UART	$f_{\rm PCLK}/32 \text{ or } f_{\rm PCLK}/64^{1)}$
Mode 3: 9-bit shift UART	Variable

Table 29UART Modes

1) For UART1 module, the baud rate is fixed at $f_{PCLK}/64$.

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{\rm PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{\rm PCLK}/32$ or $f_{\rm PCLK}/64$. For UART1 module, only $f_{\rm PCLK}/64$ is available. The variable baud rate is set by the underflow rate on the dedicated baud-rate generator. For UART module, the variable baud rate alternatively can be set by the overflow rate on Timer 1.

3.13.1 Baud-Rate Generator

Both UART modules have their own dedicated baud-rate generator, which is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and

Table 51 Deviation Error for BART with Fractional Divider enabled							
f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error			
24 MHz	1	10 (A _H)	197 (C5 _H)	+0.20 %			
12 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %			
8 MHz	1	4 (4 _H)	236 (EC _H)	+0.03 %			
6 MHz	1	3 (3 _H)	236 (EC _H)	+0.03 %			

Table 31 Deviation Error for UART with Fractional Divider enabled

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.7)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 30**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.8)

XC886/888CLM

Functional Description

Figure 32 SSC Block Diagram

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number					
	AA-Step	AB-Step	AC-Step			
XC888CM-6RFA 5V	22891503 _H	-	-			
XC886C-6RFA 5V	22891542 _H	-	-			
XC888C-6RFA 5V	22891543 _H	-	-			
XC886-6RFA 5V	22891562 _H	-	-			
XC888-6RFA 5V	22891563 _H	-	-			

Electrical Parameters

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
Input high voltage on RESET pin	V_{IHR}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode	
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode	
Input Hysteresis on port pins	HYSP	CC	$0.07 \times V_{\text{DDP}}$	_	V	CMOS Mode ¹⁾	
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	_	V	1)	
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{\text{DDC}}$	V		
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V		
Pull-up current	$I_{\rm PU}$	SR	_	-10	μA	$V_{\mathrm{IHP,min}}$	
			-150	_	μA	$V_{ILP,max}$	
Pull-down current	I_{PD}	SR	_	10	μA	$V_{ILP,max}$	
			150	_	μA	$V_{IHP,min}$	
Input leakage current	I _{OZ1}	СС	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C^{2)}$	
Input current at XTAL1	I _{ILX}	CC	-10	10	μA		
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)	
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M SR	SR	_	15	mA		
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	_	90	mA		
Maximum current into V_{DDP}		SR	_	120	mA	3)	

Electrical Parameters

4.2.4 **Power Supply Current**

 Table 41, Table 42, Table 43 and Table 44 provide the characteristics of the power supply current in the XC886/888.

Table 41Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit Values		Unit	Test Condition		
		typ. ¹⁾	max. ²⁾				
V _{DDP} = 5V Range							
Active Mode	I _{DDP}	27.2	32.8	mA	Flash Device ³⁾		
		24.3	29.8	mA	ROM Device ³⁾		
Idle Mode	I _{DDP}	21.1	25.3	mA	Flash Device ⁴⁾		
		18.2	21.6	mA	ROM Device ⁴⁾		
Active Mode with slow-down	I _{DDP}	14.1	17.0	mA	Flash Device ⁵⁾		
enabled		11.9	14.3	mA	ROM Device ⁵⁾		
Idle Mode with slow-down	I _{DDP}	11.7	15.0	mA	Flash Device ⁶⁾		
enabled		9.7	11.9	mA	ROM Device ⁶⁾		

1) The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

2) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP} , no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} , no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

Electrical Parameters

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 40**, **Figure 41** and **Figure 42**.

Figure 40 Rise/Fall Time Parameters

Figure 41 Testing Waveform, Output Delay

Figure 42 Testing Waveform, Output High Impedance